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DNA replication is a highly precise process that is initiated from origins of replication
(ORIs) and is regulated by a set of regulatory proteins. The mining of DNA sequence
information will be not only beneficial for understanding the regulatory mechanism of
replication initiation but also for accurately identifying ORIs. In this study, the GC profile
and GC skew were calculated to analyze the compositional bias in the Saccharomyces
cerevisiae genome. We found that the GC profile in the region of ORIs is significantly lower
than that in the flanking regions. By calculating the information redundancy, an estimation
of the correlation of nucleotides, we found that the intensity of adjoining correlation in
ORIs is dramatically higher than that in flanking regions. Furthermore, the relationships
between ORIs and nucleosomes as well as transcription start sites were investigated.
Results showed that ORIs are usually not occupied by nucleosomes. Finally, we calculated
the distribution of ORIs in yeast chromosomes and found that most ORIs are in transcription
terminal regions. We hope that these results will contribute to the identification of ORIs
and the study of DNA replication mechanisms.

Keywords: Saccharomyces cerevisiae, origin of replication, GC profile, GC skew, information redundancy,

distribution of ORIs

INTRODUCTION
The well-known replication theory was proposed in 1963 based
on a large number of experiments using the sexual system of
Escherichia coli (Jacob et al., 1963). DNA replication is an orches-
trated process. When a cell enters the S phase of replication, the
DNA double helix of this cell is unwound. Then, replication forks
are generated to allow the DNA synthesis machinery to copy each
DNA strand in a bidirectional manner. In the process of replica-
tion, the specific regions that are responsible for the initiation
of the replication of the genome are called origin of replica-
tion (ORI) regions. These regions are recognized by the origin
recognition complex (ORC). The DNA replication process is usu-
ally activated only once per cell cycle to avoid amplification and
maintain genome integrity (Cayrou et al., 2012).

Although most of bacterial genomes have only a single ORI
region (Gao and Zhang, 2007) and some archaea use more than
one ORI region to initiate DNA replication (Luo et al., 2014),
the fungus, Saccharomyces cerevisiae (S. cerevisiae) has multi-
ple ORIs on its chromosomes to perform complete replication
in a reasonable period of time because of the large size of its
genomes and the limitation of nucleotide incorporation during
DNA synthesis. Therefore, predicting ORIs is more difficult in
the S. cerevisiae genome than that in bacterial genomes. Sev-
eral experiments have revealed that the activity of ORIs in yeast
depends on a cis-acting replicator sequence termed autonomous

replication sequence (ARS). These regulatory sequences are gener-
ally found in AT-rich regions in yeast genome. The ARS generally
contains three domains: A, B, and C. An essential ARS consensus
sequence (ACS) (T/A)TTTAT(A/G)TTT(T/A) usually appears in
the A domain (Wu et al., 2014). The B domain contains a num-
ber of short sequence motifs that contribute to origin activity
(Dhar et al., 2012). The motifs in the C domain are respon-
sible for the interaction between DNA and regulatory proteins
(Crampton et al., 2008). However, these motif sequences are not
conserved enough to be used to identify ORIs (Nieduszynski et al.,
2006). Thus, the discovery of the hidden intrinsic characteris-
tics at the sequence level is helpful not only for understanding
the regulatory mechanism but also for accurately identifying
ORIs.

With the accumulation of experimental data (Levitsky et al.,
2005; Yamashita et al., 2011; Gao et al., 2012), some researchers
have analyzed features of replication. Recently, by analyzing four
highly active origins, Chang et al. (2011) revealed that sequences
adjacent to the ACS contributed substantially to origin activity
and ORC binding. Yin et al. (2009) found that the nucleosome
depletion regions are preferentially permissive for replication and
proposed that the ORI organization imposed by nucleosome
positioning is phylogenetically widespread in eukaryotes. DNA
structure may also influence the distribution of ORIs. Chen et al.
(2012) found that the DNA bendability and cleavage intensity in

www.frontiersin.org November 2014 | Volume 5 | Article 574 | 1

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Journal/10.3389/fmicb.2014.00574/abstract
http://community.frontiersin.org/people/u/182509
http://community.frontiersin.org/people/u/190131
http://community.frontiersin.org/people/u/190118
http://community.frontiersin.org/people/u/190122
http://community.frontiersin.org/people/u/190127
http://community.frontiersin.org/people/u/190126
http://community.frontiersin.org/people/u/182351
mailto:hding@uestc.edu.cn
mailto:greatchen@heuu.edu.cn
http://www.frontiersin.org/
http://www.frontiersin.org/Evolutionary and Genomic Microbiology/archive


Li et al. The sequence analysis of origin of replication

ORIs are dramatically lower than those in both upstream and
downstream regions of ORIs.

Although some characteristics of ORIs have been described,
the available information about ORIs is still far from satisfactory.
Therefore, to clarify replication mechanisms, it is still necessary to
discover the intrinsic characteristics of ORIs. With this in mind, we
performed a series of analyses to investigate the composition bias
and correlation of nucleotides in ORIs, the distribution of ORIs
in genomes, and the relationships between ORIs and regulatory
elements.

MATERIALS AND METHODS
DATASETS
The S. cerevisiae ORIs were collected from OriDB (Siow et al., 2012;
http://www.oridb.org/). The confidence of the ORI data has three
levels: confirmed, likely, and dubious. To provide a reliable and
high-quality dataset, only the 410 experimentally confirmed ORIs
were selected and used in the following analysis.

The complete S. cerevisiae genome was downloaded from Gen-
Bank (Benson et al., 2013). The 5015 transcription start sites
(TSSs) of S. cerevisiae were previously published (Lee et al., 2007).
The in vitro nucleosome data and nucleosome data from three
growth conditions [ethanol, yeast extract, peptone, and dextrose
(YPD) medium, and galactose] were previously reported (Yuan
et al., 2005; Lee et al., 2007; Kaplan et al., 2009)

SEQUENCE COMPOSITION ANALYSIS
The GC profile represents the variation in GC content along the
genomic sequence (Gao and Zhang, 2006), which can be defined
by the following equation (Zhang et al., 2005; Xing et al., 2014):

GC profile[i] = fi(G) + fi(C)

fi(A) + fi(C) + fi(G) + fi(T)
(1)

where fi(A), fi(C), fi(G), and fi(T) are the frequencies of ade-
nine(A), cytosine(C), guanine (G), and thymine(T), respectively,
in the i-th sliding window along the sequence. The range of values
for the GC profile is between 0 and +1. Values ranging from 0 to
0.5 indicate that the GC content in the i-th sliding window is lower
than the AT content, while values ranging from 0.5 to 1 indicate
that the GC content in the i-th sliding window is higher than the
AT content.

GC skew was the first proposed computational method to iden-
tify ORIs in bacterial genomes (Lobry, 1996a,b). For a given
sequence, the GC skew is defined by the following equation
(McLean et al., 1998):

GC skew[i] = fi(G) − fi(C)

fi(G) + fi(C)
(2)

where fi(C) and fi(G) are the frequencies of cytosine(C), and gua-
nine (G) in the i-th sliding window along a sequence, respectively.
The range of values for GC skew is between −1 and +1. Val-
ues ranging from −1 to 0 indicate that fi(G) < fi(C), and values
ranging from 0 to +1 indicate that fi(G) > fi(C).

INFORMATION REDUNDANCY
As a genetic language, the nucleic acid sequence can be investi-
gated through an information-theoretic method (Luo et al., 1998).

In recent years, informational entropy was widely applied in the
recognition and evolution research of DNA sequences (Grosse
et al., 2000; Yu and Jiang, 2001; Otu and Sayood, 2003; Xing et al.,
2013). The average mutual information profile is an excellent can-
didate for a species signature (Bauer et al., 2008). Based on these
studies, we introduced the k-order information redundancy, which
can be defined as follows (Luo et al., 1998):

Dk + 2 = 2H +
∑

i,j

p i(k)j log 2 p i(k)j k = 0, 1, 2, . . . (3)

where pi(k)j is the joint probability of base j occurring after base
i at a distance k along the sequence. The term k = 0 indicates
the adjacent correlation between two bases. Dk+2 describes the
divergence of the sequence from independence and the correlation
between nucleotides with the gap of k nucleotides. In general, the
larger the Dk+2 value is, the stronger the divergence degree of the
sequence from independence is. The H value is the informational
entropy and is defined by the following equation

H = −
∑

a

pa log 2 pa (4)

where pa is the probability of base a (a = A, G, C, or T) occurring
in the sequence.

RESULTS AND DISCUSSION
GC CONTENT SURROUNDING ORIs
DNA sequence information is the most basic but important genetic
information. It also plays an important role in the determination
of ORIs in the S. cerevisiae genome. However, the extent to which
ORIs are determined in vivo by cis-acting sequence is poorly under-
stood. To investigate the compositional bias of ORIs, we calculated
the GC content of 300 bp of each ORI. As a comparison, the GC
content of the genome sequence was also calculated by using a
window of 300 bp with a step of 300 bp. The mean GC content of
ORIs is 0.3168 (SD = 0.23 × 10−2), which is significantly lower
(P < 2.3 × e−133, Mann–Whitney U-test) than the genome-wide
GC content (0.3796; SD = 0.24 × 10−2). In other words, ORIs
are AT-rich. The high AT content of ORI sequences contributes to
the opening of the DNA double helix structure for the initiation
of DNA replication.

GC PROFILE AND GC-SKEW SURROUNDING ORI
To investigate the compositional bias, the GC profile and GC skew
surrounding ORIs was calculated using a 50 bp sliding window
with a step of 1 bp. The average scores of the GC profile and GC-
skew are plotted in Figure 1. As illustrated in Figure 1A, the score
of the GC profile in the ORI regions was statistically lower than
that in the surrounding regions (P < 2.0 × e−86, Mann-Whitney
U-test).

To further investigate the sequence mode of ORI sequences,
MEME (Multiple Em for Motif Elicitation; Bailey and Elkan,
1994) was used to discover the consensus motifs in ORI sequences.
We found that the consensus sequences are all AT-rich motifs. It
has been reported that ORIs contain some AT-rich elements for
interactions with regulatory proteins (Reeves and Beckerbauer,
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FIGURE 1 |The GC profile (A) and the GC skew (B) of origins of

replication (in ORIs) and surrounding regions. The profiles are plotted
using a 50-bp sliding window with a 1-bp step. The horizontal axis
represents the nucleotide position, which ranges from −300 to +300 bp
relative to ORIs (denoted as 0). The vertical axis represents the GC content
score (A) and GC skew score (B).

2001; Takahashi et al., 2003). Previous research demonstrated that
the information encoded in the high AT content can be rec-
ognized by the Orc4 subunit of ORC (Mojardin et al., 2013).
This can be attributed to the enrichment of the ACS around
ORIs in S. cerevisiae, which is an AT-rich motif that contains
the binding site for ORC. Recent research also revealed that a
conspicuous feature of a replication regulatory protein was the
presence of nine AT-hook domains in its amino terminus (Chuang
and Kelly, 1999) that were essential for the binding of ORC to
ORIs.

However, the GC skew in Figure 1B displays a different trend.
The GC skew score in the core ORI regions was statistically lower
than that in the upstream regions (P < 2.3 × e−80, Mann-
Whitney U-test), but higher than that in the downstream regions

(P < 5.0 × e−40, Mann-Whitney U-test). We noticed that the
GC skew score conversed from positive to negative at the 0th site
corresponding to the DNA replication initiation site. In bacte-
rial genomes, GC skew changes sign at the boundaries of the two
replichores, which correspond to the DNA replication origin or
terminus (Lobry, 1996a; Necsulea and Lobry, 2007). Thus, our
finding implies that the S. cerevisiae genome may have a replication
mechanism that is similar to that of bacterial genomes.

CORRELATION OF NUCLEOTIDES SURROUNDING ORIs
Based on Eq. 3, we calculated information redundancies Dk+2

of ORI sequences. The average values are illustrated in Figure 2A.
The main maxima for most ORI sequences are located on D2. This
result demonstrates that D2 is the maximum among all considered
Dk+2 (k = 0, 1, . . ., 48), indicating that ORI sequences have
a short-range dominance of base correlations. Subsequently, we
calculated D2 in a 150 bp window with a step of 1 bp for ORI

FIGURE 2 | (A) Average Dk +2 vs. k+2 for the ORI sequences. The
horizontal axis represents the gap of k+2. The vertical axis represents the
value of Dk +2. (B) The distribution of D2 surrounding ORIs. The horizontal
axis represents the nucleotide position, which ranges from −300 bp to
+300 bp relative to ORIs (denoted as 0). The vertical axis represents the
value of D2.
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sequences. As shown in Figure 2B, a peak near the ORIs and two
valleys flanking the ORIs were observed, suggesting that the ORI
sequences have very strong short-range correlations. It has been
reported that D2 is correlated with the evolutionary active region
(Du et al., 2006). As a special region in the replication process,
ORIs have a high probability of deletion, insertion, and mismatch
(Umar and Kunkel, 1996). Thus, the evolutionary force reflected
by the D2 constraint indicates the diversity of ORI sequences.
However, the evolutionary mechanism of fungi ORIs needs further
investigation.

DISTRIBUTION OF ORIs IN THE GENOME
It is widely accepted that functional regions are not randomly
distributed in the genome (Zhang et al., 2007). Based on this
hypothesis, we statistically analyzed the distribution of ORIs in
the yeast genome.

First, we investigated the position relationship between ORIs
and nucleosomes. Nucleosomes are the elementary units of chro-
matin organization and are composed of a ∼147 bp stretch of
DNA that is tightly wrapped around a histone core (Richmond
and Davey, 2003; Segal et al., 2006). Nucleosome positioning
affects nearly every cellular process that requires protein access
to genomic DNA (Lee et al., 2007; Kaplan et al., 2009). Thus, it
is worth studying the nucleosome occupancy around ORIs. To
examine the distribution of nucleosomes around ORIs, we selected
regions from −1000 to 1000 bp flanking ORIs and then mapped
the nucleosomes in these regions. The average nucleosome occu-
pancy scores surrounding ORIs in vitro and in vivo (ethanol, YPD,
and galactose) are shown in Figure 3. The nucleosome occu-
pancies around ORIs both in vitro and in vivo display a similar
tendency: i.e., the nucleosome occupancy scores in ORIs are sig-
nificantly lower than those in flanking regions, indicating that
ORIs always appear in the nucleosome-free regions. This result
can be explained as follows: once wrapped around the histone

FIGURE 3 | Nucleosome occupancy around ORIs. The black curve
represents the in vitro data. The red, blue, and green curves represent
in vivo experimental maps for three growth conditions (ethanol, yeast
extract, peptone, and dextrose medium [YPD] and galactose).

core, it is difficult for regulatory proteins to access the regions,
which makes it difficult to open the DNA double helix (Kass and
Wolffe, 1998).

Gene transcription also requires the opening of the DNA
double helix. Thus, there are coupling effects between ORIs
and promoters. In fact, several studies focused on replication–
transcription interactions (Rocha, 2004; Sequeira-Mendes and
Gomez, 2012; Helmrich et al., 2013; Lubelsky et al., 2014). Here,
the distance between ORIs and TSSs in the yeast genome was calcu-
lated. For over 31.46% of cases, the distance between ORI and TSS
was less than 500 bp. These promoters are also AT-rich sequences
(Lee et al., 2001). Thus, these promoters might share elements with
ORIs.

Origins of replications are associated with bias in gene den-
sity (Necsulea et al., 2009). To further investigate the relationship
between replication and transcription, we analyzed the distribu-
tion of ORIs in three kinds of intergenic regions. We obtained
2770 tandem, 1514 divergent, and 1497 convergent intergenic
regions based on the orientations of the adjacent gene pair
from the GenBank database. The tandem and divergent inter-
genic regions usually contain promoters; especially, each divergent
intergenic region has two promoters for the transcription of
two genes, whereas no promoter appears in convergent inter-
genic regions. By mapping ORIs in these regions, we found
that 12.9% of ORIs are located in convergent regions, 25.1%
are located in tandem regions, and 12.9% are located in diver-
gent regions. The remaining ORIs (about 46.8%) overlap with
coding regions, including 16.3% that are found in the tail of
coding regions and 6.6% that are in the head of genes. These
results suggest that most ORIs are not biased to transcription start
regions, which may guarantee the coordination of replication and
transcription.

Table 1 | Predicted results of different parameters using a support

vector machinea.

Method Performance evaluationb

Sn Sp Acc

GC profile 0.7605 0.7728 0.7667

GC skew 0.6247 0.5778 0.6012

D2 0.5309 0.5704 0.5506

Nucleosome (in vitro) 0.7448 0.7575 0.7511

Nucleosome (ethanol) 0.7071 0.7840 0.7456

Nucleosome (YPD) 0.7567 0.7811 0.7689

Nucleosome (galactose) 0.7485 0.7910 0.7697

aThe software package LIBSVM (version 3.17) was used to implement the sup-
port vector machine. The best separating hyperplane was constructed using the
basis of radial basis kernel function.The regularization parameter C and the kernel
width parameter γ were optimized using the grid-search approach.
bThe three metrics, sensitivity (Sn), specificity (Sp), and overall accu-
racy (Acc), we re defined as Sn =TP / (TP+FN), Sp = TN / (TN+FP), and
Acc = (TP+TN) / (TP+TN+FP+FN), respectively, where TP denotes the number of
correctly predicted ORIs, FN denotes the number of ORIs that were predicted
as non-ORIs, FP denotes the number of non-ORIs that were predicted as ORIs,
and TN denotes the number of correctly predicted non-ORIs.

Frontiers in Microbiology | Evolutionary and Genomic Microbiology November 2014 | Volume 5 | Article 574 | 4

http://www.frontiersin.org/Evolutionary and Genomic Microbiology/
http://www.frontiersin.org/Evolutionary and Genomic Microbiology/archive


Li et al. The sequence analysis of origin of replication

PREDICTION OF ORIs
The aim of the above statistical analysis was to gain intrinsic obser-
vations to understand the replication initiation mechanism and to
provide enough information for ORI prediction. Thus, we evalu-
ated the predicted accuracies of the GC profile, GC skew, informa-
tion redundancy D2, and nucleosome occupancy to discriminate
the ORIs from non-ORIs using a support vector machine. Here,
300 bp of each ORI was selected as the positive set, while the 300 bp
upstream of ORIs was extracted as the negative set. The 10-fold
cross-validated results are recorded in Table 1. It is obvious that
the nucleosome occupancy feature can more accurately predict
ORIs than GC skew and D2. The comparative accuracy was also
obtained with the GC profile. However, these results are still far
from satisfactory. The features of GC profile, GC skew, and D2 are
based on the nucleotide sequence content, in which little sequence-
order effect was considered. In the future, we will consider the
sequence-order effect to improve the prediction quality.

CONCLUSION
Despite several studies focusing on DNA replication, the mecha-
nism of replication initiation remains elusive. This study focused
on the ORIs of S. cerevisiae and systematically analyzed the
sequences surrounding ORIs. We found that the sequence around
ORIs had a lower GC profile score and a higher nucleotide cor-
relation than the sequence in flanking regions. DNA replication
is a highly regulated process that relies on interactions between
regulatory proteins and DNA sequences. The AT-rich motif is eas-
ily recognized by ORC. By studying the distribution of ORIs in
genomes, we found that DNA replication initiation usually occurs
in nucleosome-free regions. The short distance between ORIs and
TSSs suggested that the expression of genes may be influenced by
DNA replication. We expect that the observed properties of ORIs
in this work will influence research related to ORIs and provide
novel insights into regulatory mechanisms of DNA replication.
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