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Investigation of microbial interspecies interactions is essential for elucidating the function
and stability of microbial ecosystems. However, community-based analyses including
molecular-fingerprinting methods have limitations for precise understanding of interspecies
interactions. Construction of model microbial consortia consisting of defined mixed
cultures of isolated microorganisms is an excellent method for research on interspecies
interactions. In this study, a model microbial consortium consisting of microorganisms
that convert acetate into methane directly (Methanosaeta thermophila) and syntrophically
(Thermacetogenium phaeum and Methanothermobacter thermautotrophicus) was con-
structed and the effects of elevated CO2 concentrations on intermicrobial competition were
investigated. Analyses on the community dynamics by quantitative RT-PCR and fluorescent
in situ hybridization targeting their 16S rRNAs revealed that high concentrations of CO2
have suppressive effects on the syntrophic microorganisms, but not on the aceticlastic
methanogen. The pathways were further characterized by determining the Gibbs free
energy changes (�G) of the metabolic reactions conducted by each microorganism under
different CO2 concentrations. The �G value of the acetate oxidation reaction (T. phaeum)
under high CO2 conditions became significantly higher than −20 kJ per mol of acetate,
which is the borderline level for sustaining microbial growth.These results suggest that high
concentrations of CO2 undermine energy acquisition ofT. phaeum, resulting in dominance
of the aceticlastic methanogen. This study demonstrates that investigation on model
microbial consortia is useful for untangling microbial interspecies interactions, including
competition among microorganisms occupying the same trophic niche in complex microbial
ecosystems.
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INTRODUCTION
In natural and engineered environments, many species of microor-
ganisms coexist by interacting with each other. Comprehension of
interspecies interactions is essential for describing the features of
complex microbial ecosystems, and competition among microor-
ganisms occupying similar trophic niches is a conventional and
significant aspect of such interspecies interaction. Coexistence of
multiple microorganisms with similar trophic niches is regarded
as one of the major factors to confer functional stability and
resiliency on microbial ecosystems (Loreau et al., 2001; Deng,
2012). It is important to grasp how the population of each
microorganism changes depending on a specific environmental
disturbance. Most microbial ecological research has assessed the
effects of specific environmental factors on competitive interac-
tions among multiple microbial species by observing the transition
of abundances of each microorganism responding to environ-
mental disturbances. Although this approach has produced

many excellent outcomes, existence of non-target microorgan-
isms and uncontrollable environmental factors in the systems
often hamper precise understanding of the effects of specific envi-
ronmental factors on the competitive interactions among target
microorganisms.

Construction of microbial model consortia, in which inter-
species interactions in ecosystems are reproduced by defined
co-culture of isolated microorganisms, is appreciated as a worth-
while method to investigate microbial interactions (Haruta et al.,
2009; De Roy et al., 2014; Großkopf and Soyer, 2014). For
instance, the complex phenomenon of bacterial competition as
being similar to rock-paper-scissors among colisin-producing,
colisin-resistant, and colisin-sensitive strains was untangled by
constructing model co-culture systems (Kerr et al., 2002; Nahum
et al., 2011). Kato et al. (2005, 2008) constructed model microbial
consortia composed of 4–5 bacterial strains, in which all mem-
bers stably coexisted for long period of time, and demonstrated
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that existence of both positive and negative interspecies inter-
actions among the members make these consortia stable. The
construction of model consortia is a specific and beneficial feature
of microbiological research fields, which will also be effective for
proof-of-concept studies for theories in the field of macro-ecology
(Haruta et al., 2009, 2013).

Methanogenesis from organic compounds is a complex micro-
bial process accomplished by catabolic interactions among differ-
ent trophic levels of microorganisms (Schink, 1997; Jones et al.,
2008; Kato and Watanabe, 2010). Among the sequential biodegra-
dation processes, acetate is the most important intermediary
metabolite (Schink, 1997). Methanogenic acetate degradation pro-
ceeds by either aceticlastic methanogenesis or syntrophic acetate
oxidation. The aceticlastic pathway is solely mediated by aceticlas-
tic methanogens (Jetten et al., 1992). On the contrary, syntrophic
acetate oxidation pathway requires cooperative interactions of
two different types of microorganisms: acetate is first oxidized
to H2 and CO2 by syntrophic acetate-oxidizing bacteria (SAOB),
and then hydrogenotrophic methanogens convert the products
to CH4 (Zinder and Koch, 1984). As the acetate oxidation reac-
tion is endoergonic under the standard conditions and is feasible
only under extremely low H2 partial pressure, acetate oxidation by
SAOB requires H2 elimination by hydrogenotrophic methanogens
(Karakashev et al., 2006; Hattori, 2008). These two different
acetate-degrading methane-producing pathways and organisms
involved can co-exist, but diverse environmental factors, such
as temperature, pH, salinity, toxic compounds, and concen-
trations of substrates determine one pathway and organisms
to dominate over the other (Nüsslein et al., 2001; Shigematsu
et al., 2004; Karakashev et al., 2006; Hao et al., 2013; Kato et al.,
2014).

In our previous studies, we demonstrated that the syntrophic
pathway is the dominant methanogenic acetate degradation path-
way in underground, thermophilic petroleum reservoirs (Mayumi
et al., 2011). We further demonstrated that aceticlastic path-
way becomes dominant under high CO2 concentrations, which
mimicked carbon capture and storage field conditions (Mayumi
et al., 2013), whereas syntrophic acetate oxidation dominated
over aceticlastic reactions under low CO2 concentrations. Since
CO2 is either substrate or product of aceticlastic methanogen-
esis, acetate oxidation, and hydrogenotrophic methanogenesis,
high CO2 concentration alters the thermodynamics of each
methanogenic reaction, which may cause the observed tran-
sition between syntrophic and aceticlastic methanogenic path-
ways. However, all the data were based on the analyses of
complex microbial communities in field samples thus many
other factors that affect the community shift could not be
ruled out.

In the present study, the effect of CO2 concentrations on
methanogenic microorganisms were assessed by using a defined
inorganic medium and a defined methanogenic consortium which
is comprised of three organisms, i.e., SAOB, hydrogenotrophic
methanogen and aceticlastic methanogen, namely, which con-
tains two different acetate-degrading methanogenic pathways. The
experiments allowed to precisely show the CO2 concentrations to
be a crucial factor affecting the dominance of respective pathways
and organisms.

MATERIALS AND METHODS
MICROORGANISMS AND CULTURE CONDITIONS
Methanosaeta thermophila DSM6194T (Kamagata and Mikami,
1991) and Thermacetogenium phaeum DSM12270T (Hattori et al.,
2000) were obtained from the Deutsche Sammlung von Mikroor-
ganismen und Zellkukturen GmbH (Braunschweig, Germany).
Methanothermobacter thermautotrophicus strain TM was isolated
from a thermophilic anaerobic methanogenic reactor in Japan
(Hattori et al., 2000). Routine cultivations were conducted at
55◦C with 68-ml capacity serum vials containing 20 ml of a
bicarbonate-buffered inorganic medium (pH 7.0; Kato et al.,
2014) under an atmosphere of N2-CO2 [80/20 (v/v)] without
shaking. Pyruvate (40 mM) or 200 kPa H2-CO2 [80/20 (v/v)]
was supplemented as energy and carbon sources for the pure
cultures of T. phaeum and Methanothermobacter thermautotroph-
icus, respectively. Sodium acetate (40 mM) was utilized as an
energy and carbon source for the pure culture of Methanosaeta
thermophila, the defined co-culture of T. phaeum and Methan-
othermobacter thermautotrophicus, and the tri-culture of the
three strains. The tri-culture was constructed by simultane-
ously inoculating 1 and 2 ml of the early-stationary phases of
pure culture of Methanosaeta thermophila and the defined co-
culture of T. phaeum and Methanothermobacter thermautotroph-
icus, respectively, into the 20 ml of the medium. Although the
long term stability of the tri-culture was not been tested, coex-
istence of the three microorganisms in the batch culture was
confirmed.

CULTURES WITH DIFFERENT CO2 CONCENTRATIONS
Three culture conditions were prepared to examine the effects of
CO2 concentrations on the microorganisms. For each condition,
the media were supplemented with different concentrations of
sodium bicarbonate and the gas phases were replaced with N2/CO2

mixed gas with different volume ratios, as described in Table 1.
The medium was bubbled with the respective deoxygenated gas
with 100 ml min−1 for 5 min and immediately capped with a
butyl rubber stopper and an aluminum cap. The medium pH was
adjusted to 7.0 by adding 1N NaOH solution before the cultivation,
and the fluctuation of pH value throughout the cultivation was
less than 0.2. For pH measurement, 100 μl of the medium was
sampled with syringes and the pH value was determined using a
compact pH meter B-212 (Horiba). The concentration of CO2 in
the aqueous phase [caq (M)] was calculated according to Henry’s
law (caq = kp), where k is the Henry’s low constant (0.019 for
CO2 at 55◦C) and p is the partial pressure of CO2 in the gas phase
(atm). Then the bicarbonate concentrations were calculated based
on the equilibrium formula (H2CO3 = H+ + HCO−

3 ) with the

Table 1 | Media with different initial [�CO2] used in this study.

[�CO2]initial

(mmol l−1)

NaHCO3

added (mM)

Partial pressure of the

gas phase CO2 (atm)

Calculated

[HCO−
3

]initial (mM)

5.0 5 0 0.8

50.7 35 0.2 8.1

113.4 35 1 18.1
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equilibrium constant of 4.47 × 107. The culture experiments were
conducted in triplicate and the student’s t-test was used for the
statistical analyses.

Growth of Methanosaeta thermophila and Methanothermobac-
ter thermautotrophicus in pure and mixed cultures was deter-
mined by measuring methane production. Growth of T. phaeum
pure culture was determined by measuring acetate produc-
tion from pyruvate. The partial pressure of CH4 was deter-
mined using a gas chromatograph GC-2014 (Shimadzu) as
described previously (Kato et al., 2014). The partial pressure
of H2 was determined using a trace reduction gas analyzer
TRA-1000 (ACE Inc.) according to the manufacturer’s instruc-
tion. The concentrations of organic acids were determined using
a high performance liquid chromatography (D-2000 LaChrom
Elite HPLC system, HITACHI) equipped with Aminex HPX-
87H Ion Exclusion column (BIO-RAD) and L2400 UV detector
(HITACHI).

FLUORESCENT IN SITU HYBRIDIZATION (FISH)
Microbial cells of the tri-cultures in the early stationary phases
were collected by centrifugation, fixed with 4% paraformalde-
hyde in phosphate buffered saline (PBS; 137 mM NaCl, 2.7 mM
KCl, 8.1 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.2) and left
for 6 h at 4◦C. The samples were washed three times with PBS,
immobilized on glass slides, and dehydrated by successive pas-
sages through 50, 70, 80, 90, and 100% ethanol (3 min each).
The following oligonucleotide probes complementary to specific
regions of 16S rRNA were utilized for hybridizations: (i) Alexa488-
labeled EUB338, specific for the domain Bacteria (Amann et al.,
1990) and (ii) TexRed-labeled ARCH917, specific for the domain
Archaea (Loy et al., 2002), (iii) Alexa594-labeled MSMX860, spe-
cific for the order Methanosarcinales (Raskin et al., 1994), and (iv)
Alexa488-labeled MB311, specific for the order Methanobacteri-
ales (Crocetti et al., 2006). Hybridizations were performed at 46◦C
for 3 h with hybridization buffer (0.9 M NaCl, 0.1 M Tris-HCl, pH
7.5) containing 5 ng μl−1 of each labeled probe. The specificity
of each probe was confirmed by FISH observations using pure
cultures of the three microorganisms used in this study even with
the hybridization buffer not containing formamide. The washing
step was done at 48◦C for 30 min with washing buffer (0.2 M
NaCl, 0.1 M Tris-HCl, pH 7.5). The samples hybridized with the
probes were observed with a fluorescent microscope Provis AX70
(Olympus).

QUANTITATIVE RT-PCR (qRT-PCR)
Microbial cells were harvested from the mid-logarithmic phases by
centrifugation at 10,000 X g and 4◦C. Total RNA was isolated using
ISOGEN II reagent (Nippon Gene, Japan) combined with a bead-
beating method, as described previously (Kato et al., 2014). Total
RNA was purified using an RNeasy Mini kit (Qiagen) with DNase
treatment (RNase-free DNase set, Qiagen) as described in the
manufacturer’s instructions. The purified RNA was spectroscop-
ically quantified using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies). The PCR primers used for quantita-
tive RT-PCR (qRT-PCR) were designed with Primer3 software
(http://simgene.com/Primer3) and are listed in Table 2. Quantifi-
cation of 16S rRNA copy numbers in the defined mixed culture

Table 2 | Quantitative RT-PCR (qRT-PCR) primers designed and used in

this study.

Primer

name

Sequence (5′–3′) Target

PT387f GATAAGGGGACCTCGAGTGCT Methanosaeta thermophila

PT573r GGCCGGCTACAGACCCT Methanosaeta thermophila

PB486f ACGGGACGAAGGGAGTGACGG Thermacetogenium phaeum

PB646r CTCCTCCCCTCAAGTCATCCAGT Thermacetogenium phaeum

TM1139f TTACCAGCGGAACCCTTATGG Methanothermobacter

thermautotrophicus

TM1275r ACCTGGTTTAGGGGATTACCTCC Methanothermobacter

thermautotrophicus

were performed by one-step real-time RT-PCR using a Mx3000P
QPCR System (Stratagene) and RNA-direct SYBR Green Realtime
PCR Master Mix (Toyobo) as described previously (Kato et al.,
2014). At least three biological replicates were subjected to qRT-
PCR analysis, and at least two separate trials were conducted for
each sample. Standard curves were generated with serially diluted
PCR products (103–108 copies ml−1) amplified using the respec-
tive primer sets and were used to calculate the copy number of
rRNA in the total RNA samples.

RESULTS AND DISCUSSION
EFFECTS OF CO2 CONCENTRATIONS ON THE MODEL METHANOGENIC
CONSORTIUM
As the model consortium performing methanogenic acetate degra-
dation, we utilized a defined mixed culture of an aceticlastic
methanogen (Methanosaeta thermophila), a hydrogenotrophic
methanogen (Methanothermobacter thermautotrophicus), and a
SAOB (T. phaeum; Table 3). These microbial species were
originally isolated from a thermophilic methanogenic digester
(Kamagata and Mikami, 1991; Hattori et al., 2000) and are
regarded as representative species for the methanogenic acetate
degradation reactions that occur in various natural environ-
ments such as high-temperature petroleum reservoirs (Pham et al.,
2009; Mayumi et al., 2011, 2013) and thermophilic methanogenic
digesters (Sekiguchi et al., 1998; McHugh et al., 2003; Hori et al.,
2011).

To adequately assess the effects of CO2 concentration
itself, media with different supplementation of CO2/HCO−

3
were prepared (Table 1). The initial concentrations of total
CO2/HCO−

3 in the cultures, designated as [�CO2]initial, were
5.0, 50.7, or 113.4 mmol l−1. The model consortium com-
posed of Methanosaeta thermophila, Methanothermobacter ther-
mautotrophicus, and T. phaeum was cultivated under the three
different [�CO2]initial conditions to evaluate their methanogenic
acetate degradation abilities (Figure 1). A stoichiometric pro-
duction of CH4 from acetate in a 1:1 molar ratio was observed
in all culture conditions tested. Both acetate consumption and
CH4 production rates slightly decreased with increasing the
[�CO2]initial (Figures 1A,B). Interestingly, the partial pres-
sure of H2, which is an important intermediate of syntrophic
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Table 3 |The metabolic reactions and the respective standard Gibbs free energy changes (�G◦’) of the microorganisms utilized in this study.

Microbial species Metabolic reactions �G◦ ′ (kJ mol−1)a

Methanosaeta thermophila CH3COO− + H2O → CH4 + HCO−
3 −31.0

Thermacetogenium phaeum CH3COO− + 4H2O → 2HCO−
3 + 4H2 + H+ +104.6

Methanothermobacter thermautotrophicus 4H2 + HCO−
3 + H+ → CH4 + 3H2O −135.6

aThe �G◦′ values were calculated according to the reference (Thauer et al., 1977).

FIGURE 1 | Effects of CO2 concentrations on the metabolism of the

model consortium composed ofThermacetogenium phaeum,

Methanothermobacter thermautotrophicus, and Methanosaeta

thermophila. Time courses of acetate (A), CH4 (B), and H2 (C)

concentrations during cultivation on acetate with different [�CO2]initial are
shown. Data are presented as means of three independent cultures, and
error bars represent SDs.

acetate degradation, significantly decreased with increasing the
[�CO2]initial (Figure 1C). This observation suggests that syn-
trophic methanogenic microorganisms are influenced by elevated
CO2 concentrations.

To assess the influence of the elevated CO2 concentrations
on each methanogenic pathway, the relative abundances of each
microorganism in the exponentially growing cultures of the
model consortium with the different [�CO2]initial were evalu-
ated by FISH and qRT-PCR analyses. The qRT-PCR analysis
clearly demonstrated the decrease of the abundances of Methan-
othermobacter thermautotrophicus and T. phaeum in the higher
[�CO2]initial cultures (Figure 2). The FISH analysis also demon-
strated that the relative abundances of Methanothermobacter
thermautotrophicus and T. phaeum in the cultures with higher
CO2 concentrations are significantly lower than those in the low
CO2 cultures (Figure 3). These results indicate that the syn-
trophic methanogenic pathway is more strongly influenced by
the elevation of CO2 concentrations compared to the aceticlastic
pathway.

FIGURE 2 | Relative abundances ofT. phaeum, Methanothermobacter

thermautotrophicus, and Methanosaeta thermophila in the model

consortium with different [�CO2]initial. The 16S rRNA copy numbers of
each microorganism in the mid-exponential phases were determined by the
qRT-PCR analysis. The abundance of each microorganism was normalized
against those of the cultures with [�CO2]initial of 5.0 mmol l−1, and plotted
against the respective [�CO2]initial values. Data are presented as the
means of three independent cultures, and error bars represent SDs.
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FIGURE 3 | Fluorescent microscopic images of the three-strains

consortium cultivated with the [�CO2]initial of 5.0 (A) or 113.4 mmol

l–1 (B). The exponential phase cultures were subjected to in situ
hybridization with the probes described in the Materials and Methods
section. Red, Methanosaeta thermophila (hybridized with Archaea917-
TexRed and MSMX860-Alexa594); Yellow, Methanothermobacter
thermautotrophicus (hybridized with Archaea917-TexRed and MB311-
Alexa488); Green, T. phaeum (hybridized with EUB338-Alexa488).
Bars = 10 μm.

EFFECTS OF CO2 CONCENTRATIONS ON THE ACETICLASTIC AND
SYNTROPHIC PATHWAYS
To confirm the differences in the suppressive effects of ele-
vated CO2 concentrations on the two methanogenic path-
ways, the pure culture of Methanosaeta thermophila and the
defined co-culture of Methanothermobacter thermautotrophicus
and T. phaeum were separately cultivated in the media with the
different [�CO2]initial (Figure 4). The growth of Methanosaeta
thermophila was barely affected by the elevated CO2 concentra-
tion: the methanogenic rate in the [�CO2]initial of 113.4 mmol
l−1 cultures decreased only about 10% compared to the cultures
with [�CO2]initial of 5.0 mmol l−1 (Figures 4A,C). On the con-
trary, the methanogenic rate of the syntrophic co-culture in the
[�CO2]initial of 113.4 mmol l−1 dropped to less than half of that
in the cultures with [�CO2]initial of 5.0 mmol l−1 (Figures 4B,C).
These observations confirm the assumption that the syntrophic
acetate degradation pathway is more susceptible to elevated CO2

concentrations than the aceticlastic pathway.

EFFECTS OF CO2 CONCENTRATIONS ON THE PURE CULTURES OF
Methanothermobacter thermautotrophicus AND T. phaeum
One possible explanation for the suppressive effects of CO2

on the syntrophic methanogenesis is the susceptibility of

FIGURE 4 | Effects of CO2 concentrations on aceticlastic

methanogenesis by the pure-culture of Methanosaeta thermophila

(A), syntrophic methanogenesis by the defined co-culture ofT. phaeum

and Methanothermobacter thermautotrophicus (B), and the relative

methanogenic rates of the aceticlastic and syntrophic methanogenic

cultures (C). The methanogenic rates determined from respective methane
generation data (A,B) were normalized against those of the cultures with
[�CO2]initial of 5.0 mmol l−1. Data are presented as the means of three
independent cultures and error bars represent SDs.

Methanothermobacter thermautotrophicus and/or T. phaeum to
some environmental alterations induced by increased CO2 or to
CO2 itself. To evaluate this possibility, pure cultures of Methan-
othermobacter thermautotrophicus and T. phaeum were cultivated
in media with different [�CO2]initial (Figure 5). No significant
differences were observed for the growth of both Methanother-
mobacter thermautotrophicus and T. phaeum under the different
CO2 conditions tested. These results suggest that elevated CO2
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FIGURE 5 | Effects of CO2 concentrations on the pure cultures of

T. phaeum (A) and Methanothermobacter thermautotrophicus (B).

Data are presented as the means of three independent cultures, and error
bars represent SDs.

concentrations negatively affect the microbial activity only when
Methanothermobacter thermautotrophicus and T. phaeum are in a
syntrophic relationship.

EFFECTS OF CO2 CONCENTRATIONS ON THE THERMODYNAMICS OF
EACH REACTION
The other possible explanation for the suppression of syntrophic
methanogenesis by elevated CO2 concentration is alterations
of thermodynamic conditions of each microbial reaction. A
minimum energy required for biochemical energy conversion
is estimated at around –20 kJ mol−1 (Schink, 1997), while
some anaerobic microorganisms have been reported to thrive
under more thermodynamically restricted conditions (Jackson
and McInerney, 2002; Nauhaus et al., 2002). The value was esti-
mated from the energetics of ATP formation (around −70 kJ
mol−1 under the physiological conditions; Jetten et al., 1991;
Tran and Unden, 1998) and the number of protons trans-
ported to ATP formation (between 3 and 4; Maloney, 1983;
Stock et al., 1999). Since syntrophic methanogenesis from acetate

is one of the least exergonic microbial metabolisms (Schink,
1997), it is no wonder that only slight perturbations on
the thermodynamics induce deteriorations of the syntrophic
methanogenesis.

To evaluate the influences of elevated CO2 concentrations on
the thermodynamic properties, �G values of metabolic reactions
conducted by each microorganism in the model consortium were
determined using the data-set of metabolite concentrations shown
in Figure 1. The �G values of the aceticlastic methanogenesis
conducted by Methanosaeta thermophila were not significantly
influenced by the elevated CO2 concentrations (Figure 6). The
average �G values during the logarithmic growth phase (day 2–
5) with the [�CO2]initial of 5.0, 50.7 and 113.4 mmol l−1 were
−47.7 ± 3.5, −44.9 ± 2.6, and −44.6 ± 2.0 kJ mol−1, respec-
tively, which are substantially lower than the �G value required
for microbial energy acquisition.

The �G values of the hydrogenotrophic methanogenesis cat-
alyzed by Methanothermobacter thermautotrophicus were also
largely not altered with different CO2 settings and were constantly
lower than −20 kJ mol−1 (Figure 6). The average �G values
during the logarithmic growth phases with the [�CO2]initial of
5.0, 50.7, and 113.4 mmol l−1 were −24.6 ± 1.0, −27.2 ± 1.0,
and −26.0 ± 1.2 kJ mol−1, respectively. Since CO2 is the sub-
strate for hydrogenotrophic methanogenesis, lower �G values
under the higher CO2 conditions are expected. However, the
decrease in H2 partial pressures under the higher CO2 conditions
(Figure 1C) compensates for the positive effects of increase in CO2

concentration.
On the contrary, elevation of CO2 concentrations significantly

influenced the �G values of the acetate oxidation reaction per-
formed by T. phaeum (Figure 6). While the average �G value
during the logarithmic growth phases with the [�CO2]initial of
5.0 mmol l−1 (−23.1 ± 2.7 kJ mol−1) was less than the bor-
derline �G value of −20 kJ mol−1, those with the [�CO2]initial

of 50.7 and 113.4 mmol l−1 (−17.8 ± 1.3 and −18.7 ± 1.4 kJ

FIGURE 6 | Effects of CO2 concentrations on the Gibbs free

energy change (�G) of metabolisms of each microorganism

under the conditions with the [�CO2]initial of 5.0 (A), 50.7 (B),

or 113.4 mmol l–1 (C). The �G values were calculated using

metabolite concentration data presented in Figure 1. The dotted
line represents �G value of –20 kJ/reaction. Data are presented as
the means of three independent cultures and error bars
represent SDs.
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mol−1, respectively) exceeded the borderline. As acetate oxida-
tion reaction produces 2 mol of CO2 from 1 mol of acetate, it is
rational that this reaction is strongly influenced by the elevation
of CO2 concentration. The decrease in the partial pressure of H2,
the other metabolic product of acetate oxidation, is expected to
compensate for the negative effects of increase in CO2. How-
ever, the decrease in H2 partial pressure would be limited by
the minimum threshold for H2 consumption by Methanother-
mobacter thermautotrophicus. The minimum thresholds for H2

utilization by hydrogenotrophic methanogens have been reported
as around 5–10 Pa (Lovley, 1985; Thauer et al., 2008). However,
considering the energy required for active growth, H2 partial
pressure of around 10–15 Pa observed in the increased CO2 con-
ditions in this study may be the minimum H2 threshold for the
syntrophic interaction. Actually, if the H2 partial pressure in
the cultures with [�CO2]initial of 113.4 mmol l−1 at the log-
arithmic growth phase (day 5) becomes 10 Pa, the �G value
becomes > −20 kJ mol−1 (−19.7 ± 0.3 kJ mol−1) from the
actual value of −25.1 ± 1.4 kJ mol−1 (with H2 partial pressure
of 16.4 ± 1.7 Pa). These results clearly demonstrated that high
concentrations of CO2 thermodynamically constrain the acetate
oxidizing reaction, which results in the deterioration of syntrophic
methanogenesis from acetate.

CONCLUSION
This is the first paper to evaluate the influence of elevated CO2

concentration on the two different methanogenic acetate degra-
dation pathways, namely aceticlastic and syntrophic pathways,
using a model microbial consortium. As expected from the
observations based on in situ environments with complex micro-
bial communities, high concentrations of CO2 suppressed the
syntrophic pathway rather than the aceticlastic pathway. Thermo-
dynamic calculations revealed that the acetate oxidation reaction
is more intensely constrained by elevated CO2 concentrations.
This study exemplified the importance of even slight changes
in the �G values of microbial metabolisms in anaerobic biota.
Furthermore, this study demonstrated that the construction
of model microbial consortia is useful for assessing competi-
tive interspecies interactions even in anaerobic, methanogenic
environments.
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