
ORIGINAL RESEARCH ARTICLE
published: 10 November 2014

doi: 10.3389/fmicb.2014.00609

Midgut expression of immune-related genes in Glossina
palpalis gambiensis challenged withTrypanosoma brucei
gambiense
Illiassou Hamidou Soumana1, Bernadette Tchicaya1, Paul Chuchana 2 and Anne Geiger 1*

1 IRD-CIRAD, UMR 177, Montpellier, France
2 Inserm, U844, Hôpital Saint-Eloi, Montpellier, France

Edited by:

Suleyman Yazar, Erciyes University,
Turkey

Reviewed by:

Marc S. Dionne, King’s College
London, UK
Ravi Durvasula, University of New
Mexico School of Medicine, USA

*Correspondence:

Anne Geiger, IRD-CIRAD, UMR 177,
CIRAD TA A-17/G, Campus
International de Baillarguet,
34398 Montpellier, Cedex 5, France
e-mail: anne.geiger@ird.fr

Tsetse flies from the subspecies Glossina morsitans morsitans and Glossina palpalis
gambiensis, respectively, transmit Trypanosoma brucei rhodesiense and Trypanosoma
brucei gambiense. The former causes the acute form of sleeping sickness, and the
latter provokes the chronic form. Although several articles have reported G. m. morsitans
gene expression following trypanosome infection, no comparable investigation has been
performed for G. p. gambiensis. This report presents results on the differential expression
of immune-related genes in G. p. gambiensis challenged with T. b. gambiense. The aim
was to characterize transcriptomic events occurring in the tsetse gut during the parasite
establishment step, which is the crucial first step in the parasite development cycle
within its vector. The selected genes were chosen from those previously shown to be
highly expressed in G. m. morsitans, to allow further comparison of gene expression
in both Glossina species. Using quantitative PCR, genes were amplified from the
dissected midguts of trypanosome-stimulated, infected, non-infected, and self-cleared
flies at three sampling timepoints (3, 10, and 20 days) after a bloodmeal. At the 3-day
sampling point, transferrin transcripts were significantly up-regulated in trypanosome-
challenged flies versus flies fed on non-infected mice. In self-cleared flies, serpin-2
and thioredoxin peroxidase-3 transcripts were significantly up-regulated 10 days after
trypanosome challenge, whereas nitric oxide synthase and chitin-binding protein transcripts
were up-regulated after 20 days. Although the expression levels of the other genes were
highly variable, the expression of immune-related genes in G. p. gambiensis appears to be a
time-dependent process.The possible biological significance of these findings is discussed,
and the results are compared with previous reports for G. m. morsitans.
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INTRODUCTION
Tsetse flies (Glossina sp.) are responsible for the cyclical transmis-
sion of protozoan known as trypanosomes, which are the causative
agents of Human African Trypanosomiasis (HAT; or sleep-
ing sickness) and Animal African Trypanosomiasis (or nagana)
throughout sub-Saharan Africa (Simarro et al., 2003). It is esti-
mated that 60 million people in 36 African countries are at risk
of HAT (WHO, 2006). Sleeping sickness is fatal if untreated
(Holmes, 2013). No vaccine is available for the mammalian
host, as the variant surface glycoprotein (VSG) coating the try-
panosome plasma membrane makes the development of a vaccine
unlikely. Furthermore, part of this VSG composition and struc-
ture periodically varies, which in turn causes periodic antigenic
variations that allow the trypanosome to escape both injected
and/or natural host-produced antibodies. Finally, this coat pre-
vents antibodies from gaining access to invariant surface molecules
(MacGregor et al., 2012). To complicate matters, chemotherapy
treatments have major harmful side effects and are difficult to
administer (Priotto et al., 2008), and the emergence of parasite

resistance has decreased the efficacy of drug treatments (Baker
et al., 2013).

The fly vector, which is strictly hematophagous, acquires the
parasite during a bloodmeal on an infected host, whether human
or animal. To be transmitted, trypanosomes must first estab-
lish in the midgut; then they migrate to the salivary glands,
where they mature into an infective metacyclic form; they are
finally secreted in the saliva during a bloodmeal (Hu and Aksoy,
2006).

In ideal laboratory conditions, 40% or more of challenged
flies will eliminate their ingested trypanosomes (Lehane et al.,
2003, 2008). For field flies, infection rates rarely exceed 10% of
the population (Frézil and Cuisance, 1994). Only a small num-
ber of flies are able to transmit parasites to a host (Aksoy et al.,
2003; Rio et al., 2004). Approximately 72 h following ingestion of
the infected bloodmeal, a process of attrition leads to the com-
plete elimination of the infection in a high proportion of flies,
whereas parasites are established in the gut during a successful
infection. Flies can be arranged into two groups following this
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attrition process: those that are susceptible to infection when
trypanosomes are detectable in the fly’s gut, and those that
are refractory (or self-cleared) when trypanosomes are unde-
tectable (Gibson and Bailey, 2003). Differential expression of
midgut effector molecules in different tsetse species or strains
may account for the variability in susceptibility to trypanosomes
(Haddow et al., 2005). Many other factors are involved in deter-
mining the success or failure of the infection and maturation
processes (Maudlin and Welburn, 1994). These include fly sex,
age, and nutritional status at the time of exposure to infectious try-
panosomes (Welburn and Maudlin, 1992); antimicrobial peptides
(AMPs; Hao et al., 2001; Hu and Aksoy, 2006); trypanosome-
binding lectins (Maudlin and Welburn, 1988; Welburn et al.,
1994); gut-associated EP protein (Chandra et al., 2004; Haines
et al., 2005, 2010); and reactive oxygen species (ROS; Hao et al.,
2003).

Since trypanosomes initiate their cycle within the host midgut,
an improved understanding of the differential expression of
immunity genes could provide opportunities to identify genes pos-
sibly involved in tsetse refractoriness, as well as those involved in
active infections.

Previously, Lehane et al. (2003) reported a number of selected
genes (including genes related to fly immunity) that exhibit altered
expression patterns in response to trypanosome infection, during
their establishment in the fly gut. These studies were conducted
on insectary-maintained flies belonging to the subspecies Glossina
morsitans morsitans (initially collected in Zimbabwe) and chal-
lenged with Trypanosoma brucei brucei. In east African countries,
flies of the morsitans group transmit trypanosomes belonging to
the subspecies Trypanosoma brucei rhodesiense, causing the acute
form of sleeping sickness. Conversely, Glossina palpalis gambien-
sis (palpalis group) flies in West Africa transmit trypanosomes
belonging to the subspecies Trypanosoma brucei gambiense, caus-
ing the chronic form of the disease (Hoare, 1972). We chose to
investigate G. p. gambiensis challenged with T. b. gambiense, as
this approach had previously not been utilized to examine this
specific Glossina/trypanosome couple. Furthermore, our choice
enables checking whether the responses of the two Glossina sub-
species to their, respectively, transmitted trypanosome subspecies
are comparable or not. We investigated the G. p. gambiensis
response at the trypanosome invasion step, as it is determi-
nant in whether the parasite will establish within the fly gut
(i.e., flies susceptible to trypanosome infection) or if it will be
eliminated (i.e., flies refractory to trypanosome infection, or
self-cleared/self-cured flies). Finally, we investigated 12 immune
genes selected from those previously reported to be highly over-
expressed in G. m. morsitans challenged with T. b. brucei (Lehane
et al., 2003).

MATERIALS AND METHODS
ETHICS STATEMENT
All experiments on animals were conducted according to interna-
tionally recognized guidelines. The experimental protocols were
approved by the Ethics Committee on Animal Experiments and the
Veterinary Department of the Centre International de Recherche
Agronomique pour le Développement (CIRAD), Montpellier,
France.

T. b. gambiense STRAIN AND FLY INFECTION
The T. b. gambiense isolate S7/2/2 used for fly infections was iso-
lated in 2002 by rodent inoculation from a HAT patient detected
in the sleeping sickness focus of Bonon, Côte d’Ivoire (Ravel et al.,
2006).

Female G. p. gambiensis tsetse flies were collected from the
CIRAD Baillarguet insectary. Following adult emergence, the pop-
ulation was maintained in a level 2 containment insectary at 23◦C
and 80% relative humidity (Geiger et al., 2005). This fly colony
originated from Burkina Faso, where it was first collected 40 years
ago.

A T. b. gambiense stabilate was thawed at room tempera-
ture and 0.2 ml was injected intraperitoneally into Balb/cj mice.
To monitor infection, tail blood was examined using a phase-
contrast microscope at 400× magnification. Teneral flies (less
than 32 h old) were fed on the abdomens of infected mice (30
flies per mouse, on average); mice displayed parasitemia levels
between 16 and 64 × 106 parasites/ml, as determined by the
matching method (Herbert and Lumsden, 1976). Only flies that
had ingested a large bloodmeal were retained for further stud-
ies. After 10-day and 20-day timepoints, anal drops were collected
from flies that fed on infected mice, and their infection status
was assessed. T. b. gambiense presence was determined by PCR
of chelex-extracted anal drop DNA using the TBR1 and TBR2
primers (Moser et al., 1989). The presence of parasites in the anal
drop was positive indication for midgut infection (i.e., suscep-
tible flies). By contrast, the absence of the parasite indicated that
these flies receiving an infected bloodmeal were refractory to infec-
tion. Anal drop analysis was selected in this study to determine fly
contamination status since the whole midgut was later used for
RNA extraction. The prevalence of midgut infection was less than
5% for 10-day flies and greater than 10% for 20-day flies, corre-
sponding with recently recorded values from artificial infection
experiments (Ravel et al., 2006; Hamidou Soumana et al., 2014).
Using this procedure, flies were separated into infected and self-
cured groups (i.e., flies that had ingested trypanosomes in their
bloodmeal but had cleared the infection), and dissected accord-
ing to the method described by Penchenier and Itard (1981). The
3-day group of flies received an infected bloodmeal and was dis-
sected 3 days later; they were compared with 3-day flies fed on
an uninfected bloodmeal, considered as control flies. Dissected
tsetse fly midguts were collected (pool of seven fly guts per sam-
ple) in 400 μl of RNA later reagent and stored at −80◦C until RNA
extraction.

Sampling times were chosen according to a previously deter-
mined time course of susceptible fly infection by trypanosome
(Van Den Abbeele et al., 1999; Ravel et al., 2003). The 3-day
and 10-day sampling times were respectively, selected to target
differentially expressed genes involved in early events associated
with trypanosome entry into the midgut, and the establish-
ment of infection. The 20-day time point was selected to target
genes involved in events occurring relatively late in trypanosome
infection, within its vector.

TOTAL RNA ISOLATION
Midguts were dissected from 3-day flies (fed on either an infected
or a non-infected bloodmeal), as well as from infected and
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self-cleared flies at 10 and 20 days after the infective blood-
meal. Each timepoint consisted of four biological replicates (seven
pooled midguts). Total RNA was then extracted from each sample
using Trizol reagent (Invitrogen), according to the manufacturer’s
specifications. RNA integrity was assessed after extraction using
agarose gel electrophoresis. RNA quality and the absence of any
DNA contamination were checked on an Agilent RNA 6000 Bio-
analyzer and quantified using the Agilent RNA 6000 Nano kit
(Agilent Technologies).

IMMUNITY-RELATED GENES AND QUANTITATIVE REAL-TIME PCR
PRIMERS
Lehane et al. (2003) identified genes with putative immune-
related functions in G. m. morsitans following T. b. brucei
infection. Twelve highly up-regulated genes were chosen from
this study to investigate their possible differential expression in
either G. p. gambiensis refractory flies versus T. b. gambiense
infected flies (10- and 20-day samples), or in trypanosome-
stimulated flies versus control flies (3-day samples). Gene
expression was measured by quantitative PCR using specific
primer pairs (Table 1) designed with the PrimerBlast software
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Pairs of G. p.
gambiensis tubulin beta-1 gene-specific primers were designed
using the sequences from the G. m. morsitans tubulin beta-1 gene
(GenBank accession number, DQ377071; Attardo et al., 2006).

cDNA SYNTHESIS AND QUANTITATIVE REAL-TIME PCR
Samples were treated with RNase-free TURBO DNase I (Ambion).
First-strand cDNA was then synthesized from 5 μg of total RNA
using random hexamers and SuperScript II Reverse-Transcriptase
(Invitrogen), according to the manufacturer’s instructions. Quan-
titative PCR was performed in triplicate using 2 μl of cDNA on
an Mx3005P QPCR System (Agilent Technologies) and using the
Brilliant II SYBR Green qPCR Kit (Agilent Technologies). The
G. p. gambiensis housekeeping gene tubulin beta-1 was used as
the reference gene to calculate the normalization of the relative

quantification of expression. Cycle thresholds (Ct) for each reac-
tion were obtained using the MxPRO QPCR Software (Agilent
Technologies). PCR conditions were as follows: 94◦C for 5 min
(1 cycle); 94◦C for 45 s, 60◦C for 45 s, and 72◦C for 1 min (39
cycles); and 72◦C for 10 min (1 cycle). The amplification effi-
ciency was checked by the standard curve method, and melting
curve analysis was performed to check PCR specificity. Relative
quantification was calculated using the 2−��C(t) method (Livak
and Schmittgen, 2001) and was determined for a given gene with
respect to the calibrator.

STATISTICAL ANALYSIS
Quantitative PCR data was analyzed using the 2−��C(t) method.
Data were then normalized against the G. p. gambiensis tubulin
gene to determine the consecutive gene expression levels between
infected and self-cleared flies, or stimulated and naive flies, for
three timepoints post-infective bloodmeal (3, 10, and 20 days).
A separate Kruskal–Wallis test (Hollander and Wolfe, 1973) was
used for each immune gene, with R statistic software (version
2.15.0) for assessing differences in transcript expression levels. The
transcription level of genes was expressed as the difference in Ct
values and �Ct values between infected and self-cleared flies.

RESULTS
Midgut transcript responses of G. p. gambiensis were assayed using
quantitative PCR amplification of selected immune-related genes
at 3, 10, and 20 days after T. b. gambiense challenge. Transcrip-
tion analysis of the multiple timepoints following the challenge
were used to access information about the temporal kinetics of
gene regulation in the host midgut response against trypanosome
establishment.

TRANSCRIPT VARIATION 3 DAYS AFTER FLY TRYPANOSOME
CHALLENGE
Variation in transcript expression level was assessed at the early
stage of infection by comparing 3-day flies that received an infec-
tive bloodmeal with 3-day flies fed on a non-infected bloodmeal.

Table 1 | Primers of immunity-related genes designed for quantitative PCR.

Gene symbol Gene name Forward primer (5′-3′) Reverse primer (5′-3′) Amplicon

size (bp)

Accession

number

GMOY003306 EP protein GCT-GAA-GTT-GGG-AAG-ACT-GC AGC-TTG-CTC-GAA-AGC-TTG-AT 108 AY077716.1

GMOY010190 Transferrin CAA-CGG-GCT-TGA-GTT-TAT-CA GTC-CCG-AAT-TGG-AAT-GTG-TC 128 AF368908.3

GMOY001942 Chitin binding protein TGG-TTT-TGC-CGA-TGT-TCA-TA CAA-CCC-ATC-TCC-TCC-CAT-AA 108 DQ307192.1

GMOY002442 Serpin-1 AAG-GTG-ACC-CCG-TTG-ATG-TA ACC-TGC-TAG-GTT-AGC-GTT-CG 123 JQ312066.1

GMOY005573 Sphinginase TCC-GAT-ATT-CCC-AGC-GTT-AG CAC-TTT-GAG-GTA-GCC-AAC-GAC 122 JQ308535.1

GMOY000597 Thioredoxin peroxidase-2 TAA-TTC-GTG-TGC-GGA-AGA-TG TTG-GAA-ATG-ACT-GCC-TTG-GT 117 AY625506.1

GMOY003093 Nitric oxide synthase GGC-TTT-TCT-TTG-GTT-GTC-GT CGG-TGT-ATT-TGG-TTC-TCT-GGA 122 AY152725.1

GMOY002443 Serpin-2 AGA-GTC-CCG-AAG-ATT-TGC-AT TAT-AAA-TTG-CGT-GGG-CAA-CA 137 JQ312067.1

Gmm0601 Thioredoxin peroxidase-3 TTG-CTG-TGG-TAG-GCA-AAG-AA TTT-AAT-GCG-CTC-GCT-AAA-AGA 137 AY625502.1

GMOY003656 Serpin-4 TTC-TCC-CTT-TGC-TGT-GTG-GT ACG-CCG-AAC-GTA-TAA-CTT-GC 122 JQ312069.1

GM-489 C1-Tetrahydrofolate synthase TAA-TTC-CGG-TTT-CCG-TAT-TCA CGG-CTT-CGT-GGT-AGC-TAT-GT 101 EZ422151.1

GMOY000148 Glossina tubulin CCA-TTC-CCA-CGT-CTT-CAC-TT GAC-CAT-GAC-GTG-GAT-CAC-AG 149 DQ377071
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The infected bloodmeal induced a significant increase (p < 0.05)
in transferrin transcripts 3 days after the trypanosome challenge
(Figure 1A).

GENE EXPRESSION IN INFECTED VERSUS SELF-CLEARED FLIES
Comparison of infected and self-cleared flies showed that serpin-2
and thioredoxin peroxidase-3 were expressed significantly higher
(p < 0.05) in self-cleared flies at 10 days post-challenge with
the trypanosome (Figures 1B,C, respectively). At 20 days post-
infected bloodmeal, nitric oxide synthase (NOS) and chitin-
binding protein were significantly overexpressed in refractory
tsetse flies versus infected flies (p < 0.05; Figures 1D,E,
respectively). Most of the other selected genes displayed dif-
ferences in gene expression between refractory and infected
flies, although their recorded differences were not statistically
significant.

EXPRESSION LEVEL IN SUSCEPTIBLE FLIES THROUGHOUT THE COURSE
OF THE INFECTION
By comparing transcript levels at the three timepoints post-
challenge with the parasite, we observed a decrease in the
expression of chitin-binding protein transcripts along the

progression of the infection (p = 0.03) for stimulated flies
(3-days sampling timepoint) as compared to infected flies sampled
10 days post-infected bloodmeal uptake. Similar results were
recorded for the chitin-binding protein transcript expression
level, when comparing tsetse flies infected for 10 and 20 days
(p = 0.02).

DISCUSSION
In the present study we investigated the expression profile of
immune-related genes in G. p. gambiensis following a T. b.
gambiense challenge. The expression level of selected genes was
compared at three crucial time points of the infection process
using quantitative PCR.

Twelve immune-related genes were selected on the basis of
their high differential expression in the G. m. morsitans/T. b.
brucei couple, as previously reported by Lehane et al. (2003).
In the G. p. gambiensis/T. b. gambiense system, only 5 of
these 12 genes displayed different expression profiles between
trypanosome-challenged flies and control flies.

Nitric oxide is a signaling and immune effector molecule syn-
thesized by the NOS (Bayne et al., 2001; Rivero, 2006). NOS
production is induced in Drosophila midgut and hemocytes

FIGURE 1 | qRT-PCR expression analysis of immune-related Glossina

palpalis gambiensis genes at 3, 10, and 20 days post-challenge

withTrypanosoma brucei gambiense, normalized against the

G. p. gambiensis tubulin gene. (A) Transferrin; (B) Serpin-2; (C) Thioredoxin
peroxidase-3; (D) NOS; (E) Chitin binding protein. The “∗” represents
significant difference between infected and self-cleared samples (p < 0.05).
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challenged with bacteria or parasitoids; in mosquito it was
described as a midgut-associated parasite antagonist that kills
Plasmodium ookinetes (Peterson et al., 2007). Our results, show-
ing a significant up-regulation of NOS transcripts in self-cleared
flies at 20 days, are in agreement with those previous findings.
Nitric oxide could be a part of the process leading to T. b. gam-
biense clearing in G. p. gambiensis. This has been demonstrated
by injecting a specific NOS inhibitor into Drosophila body cavity
prior to infection, which significantly increased parasite survival
(Carton et al., 2009). However, Hao et al. (2003) showed NOS
to be down-regulated by infection and not modulated by tsetse
age. Its host immune response involvement may depend on the
tsetse/trypanosome species couple.

Digestion of the bloodmeal can also generate ROS, which
may cause damages such as enzyme inactivation, DNA degra-
dation, and deterioration of the cellular membrane (Droge,
2002). No difference was found in the expression of thiore-
doxin peroxidase-2 between infected and self-cleared flies, while
thioredoxin peroxidase-3 was significantly up-regulated in 10-
day self-cleared flies. This enzyme may offer protection against
ROS generated during the immune response (Lehane et al.,
2003).

Among the three serpin (serine protease inhibitor) genes
investigated, only serpin-2 was significantly over-expressed in
self-cleared flies at 10 days post-challenge. The main molecu-
lar functions attributed to serpins range from the inhibition of
blood coagulation to host inflammation and platelet aggregation,
which are likely crucial for blood-feeding insects (Stark and James,
1995; Chmelar et al., 2011). Immune-related CLIP domain serine
proteases and their inhibitors, the serpins were previously identi-
fied in G. morsitans (Mwangi et al., 2011). Serine proteases play
an important role in the activation of the Toll or IMD path-
ways. Many serine proteases involved in the immune response
exist in a fine balance with serine protease inhibitors to ensure
that the impact of protease-activated cascades remains localized
in time and space (Muta and Iwanaga, 1996; Jiang and Kanost,
2000). Drosophila serpin also plays a role in the regulation of
Toll-mediated antifungal defense (Levashina et al., 1999; Ahmad
et al., 2009). The large number of serpin transcripts found in the
tsetse midgut may reflect the need to inactivate the complement
and coagulation cascades of the bloodmeal, so as to protect the
midgut epithelium and retain the meal in a physical state suit-
able for digestion. Thus, differences in serpin gene expression
between the different groups of G. p. gambiensis flies fed on blood
may reflect differences in their function according to the flies’
status.

Surprisingly, no significant changes were found in G. p. gam-
biensis EP protein transcript levels at any stage of the T. b.
gambiense infection. In G. m. morsitans, EP protein was strongly
up-regulated following fly challenge with Gram-negative bacte-
ria, as well as in response to trypanosome infection (Haines et al.,
2005, 2010). Furthermore, tsetse EP protein may be involved in
immune modulation, as RNAi knockdown increased susceptibility
to trypanosome infection. Tsetse EP protein transcript levels are,
however, dramatically reduced after 3 days of starvation (Haines
et al., 2010). In our study, flies were starved for 3 days prior to
dissection to remove any bloodmeal in the fly gut, which could

explain the absence of variation in EP protein transcripts. Akoda
et al. (2009), however, reported starvation to result in a signifi-
cant reduction in non-induced baseline immune gene expression,
but only after a longer starvation (4 days for newly emerged flies;
7 days for older flies).

In hematophagous insects, iron-binding protein is essential
for sequestering iron, which overabundance can quickly lead to
oxidative stress, a potentially destructive process for membranes,
proteins, and nucleic acids. The transferrin gene expression
level was significantly increased in 3-day stimulated flies ver-
sus control flies. This observation is in agreement with results
reported on transferrin transcription in mosquito (Yoshiga et al.,
1997) and in Bombyx mori (Yun et al., 1999). In tsetse flies
and other insects, transferrin plays multiple physiological roles
in immunity, iron metabolism, and reproduction, and displays
tissue-dependent expression levels (Nichol et al., 2002). As shown
in other insects, transferrin mRNA levels increase upon bacte-
rial challenge in tsetse, suggesting that transferrin may play an
additional role in immunity (Guz et al., 2007). In contrast, tsetse
flies that had cleared the trypanosome did not show any differ-
ence in transferrin transcript levels when compared with infected
flies at 10 and 20 days post-infected bloodmeal. Similar results
were reported by Lehane et al. (2003) for T. b. brucei infected
G. m. morsitans versus self-cleared flies. The parasite, compet-
ing in limited dietary iron environment, may modulate host gene
expression.

Chitin-binding protein gene expression increased significantly
in self-cleared flies 20 days after the infected bloodmeal. Chitin is
the main constituent of the peritrophic membrane (PM), a physi-
cal barrier preventing trypanosome entry into the ecto-peritrophic
space, and thus constitutes an obstacle to parasite establish-
ment in the midgut. This chitin-binding gene is homologous to
the Drosophila gene chit, which encodes a chitinase-like protein
(Kawamura et al., 1999). In Sodalis glossinidius, the secondary sym-
biont of the tsetse fly that favors fly infection by trypanosomes,
a homologous gene encodes a chitinase that was previously
hypothesized to hydrolyze pupal chitin into glucosamine which
inhibits the fly midgut lectin lethal to procyclic forms of the
trypanosome (Welburn and Maudlin, 1999). Based on the try-
panosome developmental cycle within the tsetse fly, one would
expect the increase in chitinase gene transcripts to occur much
earlier than the observed 20 days post-infected bloodmeal. In
Anopheles, for example, chitin-binding protein and the enzyme
involved in PM formation both displayed increased expression 3–
24 h after the bloodmeal in all flies analyzed, independent of their
infection status (Dimopoulos et al., 1998). This does, however,
raise an additional question on the actual role of this protein in
Anopheles.

The overall results on G. p. gambiensis immune-related genes
shows their expression to be highly dependent either on the stage of
trypanosome invasion and/or the status of the fly (i.e., susceptible
or refractory to trypanosome infection). The midgut response rep-
resents part of the Glossina defense arsenal against trypanosomes.
Nevertheless, important variability between individual tsetse fly
responses to trypanosome infection was observed. This variability
could be due to variation in the size of the infected bloodmeal, and
in turn to the differences in the number of ingested parasites; it

www.frontiersin.org November 2014 | Volume 5 | Article 609 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Microbial_Immunology/archive


Soumana et al. Glossina immune-related genes qPCR

could also be due to normal biological variability in the individual
host’s response. In addition, significant differences were noticed
between the G. p. gambiensis gut immune-related response and
that displayed by G. m. morsitans following infection of the gut
with T. b. brucei. These results strongly encourage broader inves-
tigations aimed at evaluating and identifying the factors causing
these differences between the G. p. gambiensis and G. m. morsitans
responses. Improved understanding in this domain is expected
to be particularly relevant to identify common gene targets that
would be suitable for controlling both forms of sleeping sickness.
Transcriptional analysis is expected to provide data that are at the
basis of the physiological response(s) of an organism to any per-
turbation. The recorded data will, in turn, provide further research
directions that could consist, in a next step, in a proteomic analysis
to assess, whether or not, the expressed genes are really trans-
lated into the corresponding proteins, and, finally, which role they
actually play.
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