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Corresponding to the sole or basic component of the surface (S)-layer surrounding the
archaeal cell in most known cases, S-layer glycoproteins are in direct contact with the
harsh environments that characterize niches where Archaea can thrive. Accordingly, early
work examining archaeal S-layer glycoproteins focused on identifying those properties
that allow members of this group of proteins to maintain their structural integrity in the
face of extremes of temperature, pH, and salinity, as well as other physical challenges.
However, with expansion of the list of archaeal strains serving as model systems, as
well as growth in the number of molecular tools available for the manipulation of these
strains, studies on archaeal S-layer glycoproteins are currently more likely to consider the
various post-translational modifications these polypeptides undergo. For instance, archaeal
S-layer glycoproteins can undergo proteolytic cleavage, both N- and O-glycosylation, lipid-
modification and oligomerization. In this mini-review, recent findings related to the post-
translational modification of archaeal S-layer glycoproteins are considered.
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Although Archaea are now recognized as denizens of an enor-
mous range of environments, they remain best known in their
capacities as extremophiles, namely organisms able to thrive in
some of the most physically challenging settings on the planet.
In direct contact with these often hostile surroundings, the
archaeal cell surface must not only maintain its integrity but
also must carry out a variety of normal physiological functions.
In Bacteria, the cell boundary consists of membranes and a
peptidoglycan-based cell wall together with other polysaccharide-
based molecules (e.g., lipopolysaccharide, teichoic acid) and pro-
teins (Braun, 1975; Lugtenberg and Van Alphen, 1983; Raetz
et al., 2007), in many cases comprising a surface (S)-layer (Fagan
and Fairweather, 2014). By contrast, the cell wall in Archaea
tends to be much simpler. Apart from a number of documented
examples (König, 2001), the S-layer, in many cases compris-
ing a single protein species but not always (Peters et al., 1995;
Grogan, 1996; Veith et al., 2009), corresponds to the sole cell
wall structure (Eichler, 2003; Albers and Meyer, 2011). Stud-
ies from several groups studying different Archaea have shown
that the S-layer glycoprotein is not just a standardized building
block used to generate the two-dimensional lattice of the S-layer
but rather that S-layer glycoproteins undergo a variety of post-
translational modifications. In this mini-review, recent findings
concerning such processing of archaeal S-layer glycoproteins are
considered.

DIFFERENCES IN THE SUGAR COATING
The S-layer glycoprotein of the haloarchaeon Halobacterium sali-
narum offered the first example of N-glycosylation in a domain
other than the Eukarya (Mescher and Strominger, 1976a). This

observation led to a flurry of biochemical activity aimed at
describing the composition of N-linked glycans decorating the
Hbt. salinarum S-layer glycoprotein and their biosynthesis (cf.
Lechner and Wieland, 1989). However, the lack of sufficient
genetic tools for manipulating this and other archaeal species
shown to contain glycosylated S-layer proteins (Sumper et al.,
1990; Brockl et al., 1991; Karcher et al., 1993) stood in the
way of gaining detailed information into such post-translational
modification of this protein. Since then, the sequencing of a
growing list of archaeal genomes, the development of techniques
for manipulating the genetic content of numerous strains and
the analytical power of mass spectrometry have been combined
to help clear obstacles encountered by earlier studies of S-layer
glycoprotein N-glycosylation.

Genomic analyses point both to the presence of S-layer glyco-
proteins and N-glycosylation machineries in almost all sequenced
Archaea (Magidovich and Eichler, 2009; Albers and Meyer, 2011;
Kaminski et al., 2013a). Still, the majority of research on archaeal
S-layer glycoprotein N-glycosylation to date has focused on
Methanococcus voltae, Methanococcus maripaludis, Sulfolobus aci-
docaldarius, and Haloferax volcanii (for recent review, see Jarrell
et al., 2014). In each of these species, genes involved in the
assembly and attachment of N-linked glycans and often their
protein products have been studied. Yet, apart from S. acidocal-
darius, where N-glycosylation is essential for cell survival (Meyer
and Albers, 2014), the elimination of such protein processing
seemingly has limited impact on the organism (Abu-Qarn and
Eichler, 2006; Chaban et al., 2006; VanDyke et al., 2009). As such,
one can ask why Archaea devote such a significant number of
genes to this post-translational modification. Recent studies on
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Hfx. volcanii S-layer glycoprotein have begun to shed light on this
point.

The Hfx. volcanii S-layer glycoprotein contains seven putative
N-glycosylation sites (Sumper et al., 1990). Of these, Asn-13 and
Asn-83 are modified by a pentasaccharide comprising a hexose,
two hexuronic acids, a methyl ester of hexuronic acid and a man-
nose (Abu-Qarn et al., 2007; Guan et al., 2010; Magidovich et al.,
2010). However, when Hfx. volcanii cells are grown in medium
containing 1.75 M NaCl (“low salt” conditions) rather than 3.4 M
NaCl (“high salt” conditions), Asn-498 is modified by a distinct
glycan comprising a sulfated hexose, two hexoses and a rhamnose
(Guan et al., 2012). Indeed, the same glycan had been reported
earlier as bound to dolichol phosphate in Hfx. volcanii grown
in the presence of 1.25 M NaCl (Kuntz et al., 1997), the lipid
carrier that serves as the platform for N-glycan assembly in this
and other Archaea (Lechner et al., 1985; Guan et al., 2010; Calo
et al., 2011). As such, it would appear that the Hfx. volcanii S-layer
glycoprotein undergoes differential N-glycosylation as a function
of environmental salinity. While it remains to be defined how
such differential S-layer glycoprotein N-glycosylation translates
into an appropriate response to changes in surrounding salt levels,
the path involved in the biogenesis of the so-called “low-salt”
tetrasaccharide has been revealed (Kaminski et al., 2013b). Unex-
pectedly, the cluster of genes involved does not include an obvious
oligosaccharyltransferase, namely that enzyme responsible for
transferring a glycan from its lipid carrier to select Asn residues
of target proteins (Mohorko et al., 2011). The observation that
AglB, the only known archaeal oligosaccharyltransferase (Abu-
Qarn and Eichler, 2006; Chaban et al., 2006), is not involved in
“low-salt” tetrasaccharide attachment implies the existence of a
novel yet undefined enzyme as serving this role (Kaminski et al.,
2013b).

It is possible that N-glycosylation of the Hfx. volcanii
S-layer glycoprotein is even more complicated still. It was
recently reported that the Asn-732 position is modified by a
sulfoquinovose-hexose-based glycan, N-linked via a chitobiose
core (Parente et al., 2014). Moreover, the composition of this
glycan was modified in response to the absence or presence of
a membrane-localized rhomboid protease. The presence of such
a glycan in Hfx. volcanii is surprising, given this organism does
not contain a homolog of S. acidocaldarius Agl3 (Meyer et al.,
2011), a UDP-sulfoquinovose synthase responsible for convert-
ing UDP-glucose and sodium sulfite into UDP-sulfoquinovose,
the activated form of this sugar that is presumably used in S.
acidocaldarius and presumably Hfx. volcanii N-glycosylation. It
should also be noted that Asn-732 is found in the same C-
terminal region as a cluster of O-glycosylated threonine residues
(Sumper et al., 1990) and a lipid anchor (see below). This suggests
that post-translational modification of the Hfx. volcanii S-layer
glycoprotein C-terminal region is a complex event that requires
the orchestrated involvement of numerous protein processing
pathways.

Unlike Hfx. volcanii, which must cope with an environment
characterized by molar concentrations of salt, S. acidocaldarius
is a thermophile that grows optimally at 75–80◦C and pH 2–
3 (Brock et al., 1972). Possibly due to the challenges presented
by its surroundings, not only is N-glycosylation essential in

S. acidocaldarius (Meyer and Albers, 2014) but at least one of
the glycoproteins comprising the S-layer in this species (SlaA)
presents an extremely high number of N-glycosylation sites. The
1,395 amino acid-long protein contains 31 potential sites for
N-glycosylation scattered throughout the polypeptide, translat-
ing to an N-glycosylation site every 45 residues on average,
with the highest densely of such sites being seen in the C-
terminal quarter of the protein (Peyfoon et al., 2010). In the
region spanning Lys-1004 to Gln-1395, nine of the 11 poten-
tial N-glycosylation sites were experimentally verified as being
charged with a tri-branched hexasaccharide comprising a glucose,
a mannose, two N-acetylglucosamines and a sulfoquinovose, an
unusual sugar routinely found in chloroplasts and photosynthetic
bacteria (Zahringer et al., 2000; Peyfoon et al., 2010). Indeed,
a tallying of the number of putative N-glycosylation sites in 20
different archaeal S-layer glycoproteins reveals that the S-layer
glycoproteins of thermo(acido)philes can contain up to 20-fold
more such sites than do S-layer glycoproteins in species isolated
from other growth conditions (Jarrell et al., 2014). Based on
this comparison, it was proposed that such high densities of N-
glycosylation sites reflect the need for a rigid and stable cell wall
to cope with the challenges of elevated temperatures and acidity
encountered by thermo(acido)philic Archaea.

The importance of S-layer glycoprotein glycosylation was also
demonstrated in recent work linking the activity of a transcrip-
tion factor controlling the expression of genes involved in sugar
metabolism with S-layer glycoprotein glycosylation and hence,
with the maintenance of cell shape in Hbt. salinarum (Todor
et al., 2014). TrmB binds to the promoters of over 110 genes
encoding products involved in various metabolic processes in
response to glucose concentrations. Yet, Hbt. salinarum does not
catabolize glucose, cannot use glucose as the sole carbon or energy
source and does not actively transport glucose from the media
(Gochnauer and Kushner, 1969; Severina et al., 1990). As such, it
was proposed that TrmB activity ensures that sufficient amounts
of glucose and other monosaccharides are available for S-layer
glycoprotein glycosylation. S-layer glycoprotein glycosylation is
directly related to Hbt. salinarum maintaining its rod-like shape,
with a loss of N-glycosylation leading to the appearance of round
cells (Mescher and Strominger, 1976b). Hence, TrmB activity is
linked to Hbt. salinarum shape and by extension to cell growth,
since this process requires the presence of sufficient fully pro-
cessed S-layer glycoprotein.

Finally, O-glycosylation, where the glycan is linked to the
hydroxyl group of Ser or Thr residues, has been reported for both
the Hbt. salinarum and the Hfx. volcanii S-layer glycoproteins
(Mescher and Strominger, 1976a; Sumper et al., 1990). In both
proteins, Thr-rich regions adjacent to the predicted membrane-
spanning domain of the protein are modified with galactose–
glucose disaccharides. Still today, nothing is known of the path-
ways responsible for O-glycosylation in Archaea.

HANGING ON BY A LIPID
Just as S-layer glycoproteins have served as tractable reporters
of archaeal protein glycosylation, they have also been central to
our understanding of lipid modification in Archaea, namely the
covalent linkage of lipid-based groups to a polypeptide chain.
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FIGURE 1 | Schematic depiction of the proposed Hfx. volcanii
S-layer glycoprotein lipid modification process. In Hfx. volcanii, the
S-layer glycoprotein is synthesized with a C-terminal membrane-spanning
domain. ArtA cleaves the protein at a PGF motif immediately upstream
of the transmembrane domain. The cleaved S-layer glycoprotein
fragment is transferred to a waiting archaetidic acid anchor,
schematically depicted in purple (detailed structure provided).
Alternatively, attachment of the lipid anchor could proceed protein

cleavage. In either case, two S-layer glycoprotein populations appear.
Such lipid modification transpires following N-glycosylation of the
protein. Of the seven putative N-glycosylation sites, Asn-13 and Asn-83
are modified by a pentasaccharide comprising a hexose (yellow), three
hexuronic acids (green; the last a methyl ester of hexuronic acid) and a
mannose (blue). The temporal relation between lipid modification and
O-glycosylation of a cluster of Thr residues found above the cleavage
site (not shown) remains to be determined.

Relying on various biochemical approaches, it was shown that the
S-layer glycoproteins of Hbt. salinarum and Hfx. volcanii undergo
lipid modification (Kikuchi et al., 1999; Konrad and Eichler,
2002). However, it is only of late that insight into the process of
such lipid modification has been provided.

Analysis of the deduced amino acid sequence of the Hfx.
volcanii S-layer glycoprotein (Sumper et al., 1990) predicts the
existence of a 20-residue-long C-terminal membrane-spanning
domain, thought to anchor the protein within the membrane.
At the same time, it was shown that EDTA treatment leads
to the release of the S-layer glycoprotein into the surrounding
growth medium (Cline et al., 1989). Solving the paradox of how
an apparently integral membrane protein could be solubilized

by divalent cation chelation began with studies showing incor-
poration of radiolabeled polyprenol precursors into the Hfx.
volcanii S-layer glycoprotein. This observation led to the con-
clusion that the protein is subjected to magnesium-dependent
processing associated with lipid modification (Eichler, 2001;
Konrad and Eichler, 2002). A decade later, a combination of
sequential solubilization steps, native gel electrophoresis and
mass spectrometry pointed to the existence of two distinct sub-
populations of the S-layer glycoprotein, the first correspond-
ing to an EDTA-solubilized pool anchored to the membrane
via a covalently linked archaetidic acid lipid anchor and the
second representing detergent-solubilized pool anchored to the
membrane likely via the C-terminal membrane-spanning domain
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(Kandiba et al., 2013). Both S-layer glycoproteins were shown to
be N-glycosylated.

In the same period, it was proposed that the Pro-Gly-Phe motif
found just upstream of the presumed C-terminal membrane-
spanning domain of the Hfx. volcanii and Hbt. salinarum S-layer
glycoproteins is processed similarly as a comparable motif found
in certain membrane-linked Gram-positive bacterial proteins
(Haft et al., 2012). In Bacteria, this motif is cleaved by a transpep-
tidase called an exosortase and the released protein is linked to
the cell wall via a waiting lipid anchor. Accordingly, genome
sequence analysis predicted the existence of an archaeal version of
exosortase, termed archaeosortase A (ArtA). Subsequent genetic
and biochemical work confirmed not only the existence of ArtA
but also its ability to cleave the Hfx. volcanii S-layer glycoprotein at
the C-terminal Pro-Gly-Phe motif described above (Abdul Halim
et al., 2013).

Together, the results of these recent studies argue that in
Hfx. volcanii (and likely in Hbt. salinarum as well), the S-layer
glycoprotein is initially synthesized with a C-terminal membrane-
spanning domain. This precursor is cleaved by ArtA and the
processed S-layer glycoprotein is transferred to a waiting archae-
tidic acid anchor lipid anchor in a magnesium-dependent man-
ner. Still, as only selected aspects of this hypothesized pathway
(Figure 1) have been demonstrated, further experiments await.

CONCLUSION
Corresponding to the building block of the S-layer, the outermost
limit of the archaeal cell surface, S-layer glycoproteins are not only
in direct contact with the harsh environments Archaea can inhabit
but are also amongst the first archaeal proteins to encounter any
changes in those environments. Post-translational modification
of S-layer glycoproteins offer a rapid and reversible response to
such changes. Soon, ongoing efforts in laboratories around the
world will not only provide further insight into the pathways
recruited for these protein processing events but will also hope-
fully reveal how such modifications affect S-layer structure and
stability. Indeed, with the availability of high resolution structures
of archaeal S-glycoproteins (Arbing et al., 2012), it will be possible
to obtain detailed understanding of the contributions of post-
translational modification to S-layer architecture not only as a
function of environment but also of growth stage and other
physiological conditions.
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