
OPINION ARTICLE
published: 10 December 2014

doi: 10.3389/fmicb.2014.00704

Far from being well understood: multiple protein
phosphorylation events control cell differentiation in
Bacillus subtilis at different levels
Jan Gerwig and Jörg Stülke*

*Correspondence: jstuelk@gwdg.de

Edited by:

Ivan Mijakovic, Chalmers University of Technology, Sweden

Reviewed by:

Carsten Jers, Technical University of Denmark, Denmark
Colin Harwood, Newcastle University, UK

Keywords: biofilm formation, cross-talk, tyrosine phosphorylation, EpsB, PtkA

CELL DIFFERENTIATION IN BACILLUS
SUBTILIS
In their endless struggle to survive in
harsh and rapidly changing environments,
many bacteria depend on their ability
to live together as multicellular commu-
nities, also known as biofilms. In these
communities cells are embedded within a
self-produced slimy matrix that is mainly
composed out of extracellular polysaccha-
rides and proteins (Hall-Stoodley et al.,
2004). This matrix enables the cells to
cover a solid surface or to float as a
community and can protect them from
harmful environmental substances, such
as antibiotics or competitors. In addi-
tion, biofilm or matrix production can
also function as a virulence factor, as
described for the genetic disorder cystic
fibrosis that goes along with coloniza-
tion by a Pseudomonas aeruginosa biofilm
(Costerton et al., 1999). The Gram-
positive soil bacterium Bacillus subtilis
can choose between a variety of lifestyles
such as sporulation, motility as an explo-
rative lifestyle, biofilm formation, and the
acquisition of genetic competence for the
uptake of foreign DNA (López and Kolter,
2010).

In the B. subtilis biofilm communi-
ties, different groups of cells fulfill dis-
tinct functions, which are important for
the well-being of the whole community
of clonal identical bacteria. Some bacte-
ria produce extracellular polysaccharides
and proteins and thereby provide the
matrix for the community. Other cells
secrete exoproteases for degradation of
protein as an alternative energy source

(Marlow et al., 2014). Furthermore, cells
within the biofilm can differentiate into
spores when the community gets older
and nutrients are limiting (López and
Kolter, 2010). However, not all cells within
a biofilm differentiate into spores upon
nutrient limitation. Some members of a
biofilm community can regain motility.
This allows them to leave the biofilm
and explore the environment for new
sources of nutrients. From an evolution-
ary point of view the presence of dif-
ferent cell forms provides versatility and
enables the bacterium to adapt rapidly
to different environmental conditions. But
how are these complex communities and
the observed cell differentiation processes
regulated?

NOVEL REGULATORY TYROSINE
PHOSPHORYLATION ADDS EVEN
MORE COMPLEXITY TO THE
REGULATORY NETWORK FOR CELL
DIFFERENTIATION
Recent studies in B. subtilis suggest
that tyrosine phosphorylation plays an
important role in the regulation of biofilm
formation and cell differentiation, in
addition to the known mechanisms of
transcriptional regulation and protein-
protein interactions (for review see
Vlamakis et al., 2013; Mielich-Süss and
Lopez, 2014; Mhatre et al., 2014). In
Gram-positive bacteria, tyrosine kinases
consist of a transmembrane modulator
protein and a cytosolic kinase protein
(Grangeasse et al., 2012). B. subtilis
encodes two protein tyrosine kinase/
modulator couples, PtkA/ TkmA, and

EpsB/ EpsA. Interestingly, the simulta-
neous deletion of either both kinase or
modulator genes totally abolished extra-
cellular polysaccharide production causing
a biofilm defect. The single mutants did
not phenocopy the kinase or modula-
tor double mutant and were still able to
produce exopolysaccharides. However,
colony structure and pellicle formation
was affected in the single mutants (Gerwig
et al., 2014) suggesting that both kinase
systems contribute in a distinct way to
biofilm formation. The loss of the EpsB
kinase reduced wrinkle formation and
the production of extracellular polysac-
charides, but did not destroy the rough
colony surface, which is indicative of the
formation of fruiting bodies for sporula-
tion (Elsholz et al., 2014; Gerwig et al.,
2014). Thus, EpsB does not seem to affect
sporulation. In contrast, loss of the EpsB
homolog PtkA did not affect extracellu-
lar polysaccharide production but instead
drastically reduced sporulation in biofilm
cells thus leading to a loss of the rough
appearance of the outer region of the
colonies (Kiley and Stanley-Wall, 2010;
Gerwig et al., 2014). These observations
indicate that the protein tyrosine kinases
EpsB and PtkA influence cell differentia-
tion of B. subtilis at different levels: EpsB
acts downstream of the central regulator of
cell differentiation, Spo0A, whereas PtkA
is likely to act upstream of Spo0A (see
Figure 1).

In principle, the stochastic phos-
phorylation state of the Spo0A protein
determines to which promoters the pro-
tein binds and consequently if cells
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FIGURE 1 | Schematic overview how the bacterial tyrosine kinases PtkA

and EpsB control cell differentiation at different levels. The PtkA kinase
controls sporulation and biofilm matrix expression by acting upstream of the
central regulator of cell differentiation Spo0A by an unknown mechanism. In

contrast, the EpsB kinase acts downstream of the Spo0A protein and
controls exopolysaccharide production by phosphorylation of the
glycosyltransferase EpsE. Arrows indicate activating effects, T-bars inhibitory
effects. EPS, extracellular polysaccharides; P, phosphate group.

differentiate into a spore or become
a matrix producer. High levels of
phosphorylated Spo0A induce spore
development, whereas medium levels
lead to matrix production (Fujita and
Losick, 2005; Fujita et al., 2005). Of course,
Spo0A phosphorylation is highly regu-
lated: it receives its phosphoryl groups
via a complex phosphorelay system con-
sisting of several sensor kinases and the
Spo0F and Spo0B phosphotransferases.
The phosphorelay is activated in response
to multiple triggers such as the potas-
sium concentration, plant polysaccharides
and oxygen availability that are sensed
by the Kin family sensor kinases (López
et al., 2009; Beauregard et al., 2013;
Kolodkin-Gal et al., 2013, see Figure 1).
This highly complex regulatory network
controlling the phosphorylation state of
the central regulator of cell differenti-
ation Spo0A allows the integration of
many different signals into the phos-
phorelay. Furthermore, the phosphorelay
provides multiple potential targets for
post-translational control by the PtkA
tyrosine kinase.

HOW DO THE TYROSINE KINASES PtkA
AND EpsB INFLUENCE CELL
DIFFERENTIATION?
In order to influence sporulation effi-
ciency as shown by Kiley and Stanley-Wall
(2010), PtkA most likely has to affect
the phosphorelay that governs the phos-
phorylation state of the Spo0A protein.
Since PtkA is a tyrosine kinase it seems
likely that this influence involves post-
translational tyrosine phosphorylation
rather than acting e.g., on transcriptional
level. Unfortunately, the most difficult
question has not yet been solved: what is
the phosphorylation target of the PtkA
kinase and how can we identify it?

In order to explain altered biofilm
formation and the sporulation defect of
the ptkA mutant, Kiley and Stanley-Wall
(2010) conducted an intensive search for
possible phosphorylation targets but failed
to identify one. Deletion of the long-
known PtkA targets (the UDP-Glucose
dehydrogenases Ugd and TuaD) did not
exert an effect on biofilm formation.
Moreover, several other targets proposed
by large-scale phosphoproteomics and

other studies (Macek et al., 2007; Jers et al.,
2010) were not of relevance. Therefore, it
remains unclear how PtkA affects biofilm
formation and sporulation. Unfortunately,
a recent phosphoproteome study did not
reveal obvious targets related to the phos-
phorelay (Ravikumar et al., 2014), except
the regulator of transition phase genes
AbrB was found to be phosphorylated
on a tyrosine residue. However, the phys-
iological relevance of this phosphoryla-
tion is unclear, and serine phosphorylation
of AbrB was observed in another study
(Kobir et al., 2014). Clearly, more work is
required to dissect the potential control of
AbrB activity by phosphorylation.

A more obvious problem for the
identification of tyrosine phosphorylated
proteins with the potential to control
biofilm formation and sporulation is that
most published data relates to cells har-
vested from exponentially growing cul-
tures rather than from biofilms. Moreover,
the studies were performed with strains
derived from a domesticated strain that
does not produce robust bofilms. Thus, it
is reasonable to assume that not all of the
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proteins that might be relevant for biofilm
formation and sporulation are expressed
under these conditions. Furthermore, reg-
ulatory phosphorylation is a rapid method
for adapting cellular processes to envi-
ronmental changes. Thus, it seems safe
to assume that not all phosphorylations
are present permanently. Interestingly, all
currently identified tyrosine phosphory-
lation reactions with functional relevance
have been found by attempts other than
large-scale phosphoproteomics analyses.
Examples include the regulator of unsatu-
rated fatty acid synthesis FatR (Derouiche
et al., 2013), single stranded DNA-binding
proteins (Mijakovic et al., 2006) and
the glycosyltransferase EpsE, a target of
the tyrosine kinase EpsB (Elsholz et al.,
2014). With the exception of UDP-glucose
dehydrogenase Ugd (by Macek et al.,
2007), none of these proteins were identi-
fied in the latest large-scale phosphopro-
teome experiments (Macek et al., 2007;
Ravikumar et al., 2014). In conclusion,
identification of the PtkA phosphorylation
target and explanation of the sporulation
defect of the mutant remains elusive but
it is tempting to speculate that the highly
complex network for the control of Spo0A
is affected by the PtkA kinase. Since cross-
phosphorylation of kinases is an estab-
lished concept in eukaryotes and hints
supporting this idea in prokaryotes are
emerging (Baer et al., 2014; Shi et al., 2014)
phosphorylation of phosphorelay proteins
is a highly attractive hypothesis.

The second level of regulatory tyro-
sine phosphorylation is provided by the
EpsB kinase that phosphorylates the glyco-
syltransferase EpsE (Elsholz et al., 2014).
The kinase and the phosphorylation tar-
get are both encoded in the eps operon for
exopolysaccharide production. Hence, the
regulation of the two corresponding genes
is similar. The eps operon is only strongly
expressed if the SinR anti-activator pro-
tein is inhibited by either of its antago-
nists SinI and SlrR under biofilm forming
conditions (Kearns et al., 2005; Newman
et al., 2013; Winkelman et al., 2013). This
observation implies that EpsB-mediated
phosphorylation might not have a global
effect and that the phosphorylated tar-
get is among the proteins expressed under
biofilm forming conditions that are also
subject to repression by SinR. Indeed,
deletion of the epsB gene only affects

exopolysaccharide production but leaves
sporulation unaffected (Gerwig et al.,
2014). Strikingly, deletion of the gene for
the EpsE glycosyltransferase leads to a
complete loss of exopolysaccharide pro-
duction and complex colony formation,
whereas deletion of the gene for the EpsB
kinase has a milder effect (Guttenplan
et al., 2010). Therefore, it is tempting to
speculate that PtkA can partially take over
the function of EpsB. However, this has not
been demonstrated experimentally.

FUNCTIONAL CROSS-TALK BETWEEN
TYROSINE KINASE/ MODULATOR
COUPLES
Straight signal transduction is an impor-
tant issue for many conserved multi-
component signal transduction system
families and has been extensively stud-
ied for two-component regulatory systems
and phosphotransferase system-controlled
RNA-binding antitermination proteins.
These systems have evolved to avoid non-
cognate interactions either by restricting
the interactions with non-cognate proteins
partners, ligands, and target molecules.
Moreover, differential gene expression of
the non-cognate components has been
observed to prevent non-productive cross-
talk (Schilling et al., 2006; Szurmant
and Hoch, 2010; Hübner et al., 2011;
Podgornaia and Laub, 2013).

However, this might be different for
regulatory tyrosine phosphorylation, as
suggested for the interplay between EpsB
and PtkA. In yeast (Shi et al., 2014) and
bacterial two-hybrid studies the TkmA
modulator and the EpsB kinase inter-
act with each other, whereas the EpsA
modulator and the PtkA kinase do not
interact. Additionally, a genetic analysis
of a potential cross-talk in the laboratory
strain 168 revealed that simultaneous loss
of PtkA and EpsA does not affect sta-
ble pellicle formation, whereas simultane-
ous deletion of the genes for EpsB and
TkmA inhibited stable pellicle formation.
These observations further support a func-
tional connection between the two sys-
tems. However, confirmation of this result
was not obtained in the background of the
NCIB3610 wild type strain. Although the
functional relevance of the TkmA/EpsB
cross-talk remains unclear, similar obser-
vations come from Staphylococcus aureus
that also contains two similar tyrosine

kinase/ modulator couples. In this case, the
Cap5A1 modulator protein of one couple
and the Cap5B2 protein tyrosine kinase of
the other couple show functional cross-
talk suggesting that interplay between dif-
ferent tyrosine/ modulator couples might
not be limited to B. subtilis (Soulat et al.,
2007).

OUTLOOK
The detection of a regulatory interplay
between protein tyrosine phosphorylation
and classical sensing via the phosphore-
lay in the control of cell differentiation
in B. subtilis is one of the most exciting
results of recent studies. This is under-
lined by the observation of extensive links
between the different signal transduction
systems that involve post-translational
modifications (van Noort et al., 2012; Shi
et al., 2014) One main task for future
work is the identification of phosphory-
lation targets of the tyrosine kinase PtkA
in order to get a better understanding of
its implication in biofilm formation and
sporulation. To demonstrate that PtkA
affects cell differentiation upstream of the
central regulator Spo0A, the phosphory-
lation state of Spo0A has to be analyzed
in a ptkA deletion mutant. Furthermore,
large-scale phosphoproteomics under
biofilm-promoting conditions could help
to identify potential tyrosine phospho-
rylated targets. Additional tasks are the
identification of substances that can be
sensed by the PtkA modulator protein
TkmA and to further dissect the poten-
tial cross-talk between the two known
tyrosine kinase/ modulator couples EpsB/
EpsA and PtkA/ TkmA in B. subtilis.
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