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The Gram-positive model bacterium Bacillus subtilis contains two glutamate dehydro-
genase-encoding genes, rocG and gudB. While the rocG gene encodes the functional
GDH, the gudB gene is cryptic (gudBCR ) in the laboratory strain 168 due to a perfect
18 bp-long direct repeat that renders the GudB enzyme inactive and unstable. Although
constitutively expressed the GudBCR protein can hardly be detected in B. subtilis as it is
rapidly degraded within stationary growth phase. Its high instability qualifies GudBCR as a
model substrate for studying protein turnover in B. subtilis. Recently, we have developed a
visual screen to monitor the GudBCR stability in the cell using a GFP-GudBCR fusion. Using
fluorescent microscopy we found that the GFP protein is simultaneously degraded together
with GudBCR.This allows us to analyze the stability of GudBCR in living cells. By combining
the visual screen with a transposon mutagenesis approach we looked for mutants that
show an increased fluorescence signal compared to the wild type indicating a stabilized
GFP-GudBCR fusion. We observed, that disruption of the arginine kinase encoding gene
mcsB upon transposon insertion leads to increased amounts of the GFP-GudBCR fusion
in this mutant. Deletion of the cognate arginine phosphatase YwlE in contrast results in
reduced levels of the GFP-GudBCR fusion. Recently, it was shown that the kinase McsB is
involved in phosphorylation of GudBCR on arginine residues. Here we show that selected
arginine-lysine point mutations of GudBCR exhibit no influence on degradation.The activity
of McsB and YwlE, however, are crucial for the activation and inhibition, respectively, of a
proteolytic machinery that efficiently degrades the unstable GudBCR protein in B. subtilis.
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INTRODUCTION
Posttranslational modifications of proteins allow bacteria to con-
trol several important cellular processes. Phosphorylation is such
a posttranslational modification event that can severely affect
the function of a protein, which is targeted by a specific kinase
(Pawson and Scott, 2005; Jers et al., 2008; Kobir et al., 2011).
In bacteria, phosphorylation of enzymes and of enzyme regu-
lators is important for the re-direction of fluxes through central
metabolic pathways (LaPorte and Koshland, 1983; Cozzone and
El-Mansi, 2005; Niebisch et al., 2006). Moreover, posttranslational
modification of RNA- and DNA-binding transcription factors by
phosphorylation may result in induction or repression of gene
expression (Bird et al., 1993; Stülke et al., 1997; Jung et al., 2012;
Mascher, 2014).

In the past years, several studies revealed that beside serine,
threonine, histidine, and cysteine also amino acids like tyro-
sine and arginine are phosphorylated in bacteria (Meins et al.,
1993; Hoch, 2000; Deutscher and Saier, 2005; Macek et al.,
2007; Kobir et al., 2011). For instance, the activity of the UDP-
glucose dehydrogenase in the Gram-positive model bacterium
Bacillus subtilis is controlled by reversible phosphorylation of
a tyrosine residue (Mijakovic et al., 2004). Phosphorylation of
tyrosine residues has also been shown to be important for con-
trolling the activity of DNA-binding proteins (Mijakovic et al.,

2006; Derouiche et al., 2013). Recently, phosphoproteomic studies
revealed that phosphorylation of arginine residues is an emerg-
ing posttranslational modification, which is implicated in general
stress response in B. subtilis (Elsholz et al., 2012; Schmidt et al.,
2014; Trentini et al., 2014). The kinase responsible for arginine
phosphorylation in B. subtilis was shown to be McsB (Fuhrmann
et al., 2009). Under normal growth conditions McsB is bound
and inhibited by the ClpC ATPase subunit of the ClpCP pro-
tease complex and/or the activator of McsB kinase activity, McsA.
At the same time, the DNA-binding transcription factor CtsR
represses the genes of the CtsR-regulon (Derré et al., 1999). In
contrast, if the bacteria encounter heat stress, ClpC preferen-
tially interacts with misfolded proteins and releases McsB, which
finally targets CtsR for degradation (Kirstein et al., 2005). Inac-
tivation of CtsR results in upregulation of genes that encode
proteins of a central protein quality network. The proteins of
this network include chaperones, proteases, and adaptor pro-
teins that improve the recognition of substrates by proteases
(Elsholz et al., 2010a; Battesti and Gottesmann, 2013). Recent
findings indicate that the detachment of CtsR from the DNA
provoked by heat seems to be mediated by an intrinsic protein
domain that senses heat rather than by McsB-dependent phospho-
rylation of arginine residues (Elsholz et al., 2010b). By contrast,
upon oxidative stress, McsA does not longer bind to and inhibit
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McsB, which subsequently removes CtsR from the DNA (Elsholz
et al., 2011). Thus, the way of how the DNA-binding activity of
CtsR is controlled by oxidative stress and by heat is strikingly
different.

In recent global phosphoproteomic studies using a B. sub-
tilis ywlE mutant strain lacking the cognate phosphatase YwlE
of the kinase McsB, several arginine phosphorylation sites were
detected (Elsholz et al., 2012; Schmidt et al., 2014; Trentini et al.,
2014). Two phosphorylatable arginine residues in the ClpC pro-
tein were shown to be important for McsB-dependent activation
of the ATPase subunit of the ClpCP protease complex (Elsholz
et al., 2012). In the same study it has been shown that the arginine
kinase McsB and the cognate phosphatase YwlE may influence the
expression of different global regulons. However, the impact of
arginine phosphorylation on the physiology of B. subtilis is not
yet fully understood. Analyses of the dynamic changes in the argi-
nine phosphoproteome in response to heat and oxidative stress
revealed that only a minor fraction of the phosphorylation sites
were differentially modified (Schmidt et al., 2014).

We are interested in the regulation of glutamate metabolism
in B. subtilis. In addition to de novo synthesis of the important
amino group donor glutamate, the bacteria may use glutamate
as a source of carbon and nitrogen (for a recent review see
Gunka and Commichau, 2012). Utilization of glutamate requires
expression of the rocG and gudB genes encoding the catabolically
active glutamate dehydrogenases (GDHs) RocG and GudB, respec-
tively (Belitsky and Sonenshein, 1998; Gunka et al., 2013). Some
isolates of B. subtilis like the “wild” ancestor strain NCIB3610
indeed synthesize two active GDHs allowing the bacteria to use
glutamate as the single source of carbon and nitrogen (Zeigler
et al., 2008; unpublished results). In the domesticated B. subtilis
strain 168 only the rocG gene encodes a functional GDH (Belit-
sky and Sonenshein, 1998; Zeigler et al., 2008). In this strain,
the gudBCR gene is cryptic (CR) due to a perfect 18 bp-long
direct repeat (DR). This occurs in the part of the gene encod-
ing the active center of the enzyme (Belitsky and Sonenshein,
1998). The GudBCR is enzymatically inactive and also subject to
rapid proteolytic degradation, especially when the bacteria starve
for nutrients, which is the case when bacteria enter stationary
phase (Gerth et al., 2008; Gunka et al., 2012, 2013). Although
ClpP was shown to slightly affect GudBCR stability (Gerth et al.,
2008), other factors that are involved in the recognition and
degradation of the protein are unknown. Interestingly, McsB
was shown to phosphorylate the inactive GudBCR protein on
four arginine residues (Elsholz et al., 2012). It is tempting to
speculate that this phosphorylation serves as a label that directs
the inactive GudBCR protein to the proteolytic machinery (see
below).

In the present study, we apply a visual screen that is based on
a GFP-GudBCR fusion to monitor the GudBCR stability in vivo.
By applying microscopical and biochemical techniques, we found
that GFP and GudBCR are simultaneously degraded. Thus, the
visual screen is suitable to analyze the cellular amount of GudBCR.
To identify novel factors that are involved in GudBCR degradation,
we combined the visual screen with a transposon mutagenesis
approach. Afterward we looked for mutants that show an increased
fluorescence, indicating increased amounts of the GFP-GudBCR

fusion. Among the transposants we found one insertion in the
mcsB gene encoding the arginine kinase McsB. Moreover, inacti-
vation of the cognate phosphatase YwlE resulted in a decreased
fluorescence of a strain synthesizing the GFP-GudBCR fusion. The
possible mechanisms of how the activity of the kinase McsB and
the cognate phosphatase YwlE affect the amount of the GudBCR

protein are discussed.

MATERIALS AND METHODS
CHEMICALS, MEDIA, AND DNA MANIPULATION
The oligonucleotides were purchased from Sigma-Aldrich (Ger-
many) and are listed in Table 1. B. subtilis chromosomal DNA
was isolated using the DNeasy Blood & Tissue Kit (Qiagen, Ger-
many). Plasmids were isolated from Escherichia coli using the
Nucleospin Extract Kit (Macherey and Nagel, Germany). PCR
products were purified using the PCR Purification Kit (Qiagen,
Germany). Phusion DNA polymerase, restriction enzymes and T4
DNA ligase were purchased from Thermo Scientific (Germany)
and used according to the manufacturer’s instructions. Other
chemicals and media were purchased from Sigma-Aldrich (Ger-
many), Carl Roth (Karlsruhe, Germany) and Becton Dickinson
(Heidelberg, Germany). Sequencing of DNA was performed by
the SeqLab Sequence Laboratories (Göttingen, Germany).

BACTERIAL STRAINS, GROWTH CONDITIONS, AND CONSTRUCTION OF
MUTANT STRAINS
B. subtilis strains (Table 2) were grown in LB and SP medium,
respectively. LB and SP plates were prepared by the addition
of 17 g agar/l (Roth, Germany) to LB and SP (8 g nutrient
broth/l, 1 mM MgSO4, 13 mM KCl, supplemented after steril-
ization with 2.5 μM ammonium ferric citrate, 500 μM CaCl2,
and 10 μM MnCl2), respectively. When required, media were
supplemented with antibiotics at the following concentrations:
ampicillin (100 μg/ml), kanamycin (10 μg/ml), chlorampheni-
col (5 μg/ml), lincomycin/erythromycin (25/2 μg/ml), tetracyclin
(12.5 μg/ml), and spectinomycin (150 μg/ml). B. subtilis was
transformed with plasmid and chromosomal DNA according to
a previously described two-step protocol (Kunst and Rapoport,
1995).

CONSTRUCTION OF PLASMIDS
The plasmids for complementation of the ywlE and mcsB muta-
tions in B. subtilis were constructed as follows. The ywlE and
mcsB genes were amplified by PCR from chromosomal DNA
using the oligonucleotide pairs LS92/LS93 and LS97/LS98, respec-
tively (Table 1). The PCR products were digested with the
enzymes BamHI and PstI and ligated to the plasmid pBQ200
that was cut with the same enzymes. The plasmids harboring
the ywlE and mcsB genes and their native ribosome-binding sites
were designated pBP183 and pBP186, respectively. Expression
of the genes is driven by the constitutively active PdegQ pro-
moter (Martin-Verstraete et al., 1994). The quadruple gfp-gudBCR

mutant (designated as gfp-gudBCR-mut), encoding the GudBCR

protein in which the arginine residues 56, 83, 421, and 423 were
replaced by lysine, was constructed by the Multiple-mutation
reaction (MMR; Hames et al., 2005). The mutated gudBCR allele
was amplified with the oligonucleotide pair KG188/LS96 and the
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Table 1 | Oligonucleotides used in this study.

Name Sequence Purpose

KG166 5′-GCGGGATACGTTTTCACC direct repeat analysis

KG167 5′-CACCGCCATATGGAAGATC direct repeat analysis

KG180 5′-TTTGTATAGTTCATCCATGCCATGTGTAATC Construction of plasmid pBP187

KG181 5′-ACATGGCATGGATGAACTATACAAA ATGGCAGCCGATCGAAACACCG Construction of plasmid pBP187

KG184 5′-AAAGAATTCTCATTATATCCAGCCTCTAAAACGCG Construction of plasmid pBP4

KG185 5′- TTTGGATCCCATTCAGCTTTCAGAAAGCTTACAGCGAATC Construction of plasmid pBP4

KG188 5′-AAACAATTGCATTCAGCTTTCAGAAAGCTTACAGCGAATC Construction of plasmid pBP184

KG190 5′-AAAGAATTCAAAGGAGGAAACAATCATGAGTAAAGG AGAAG AACTTTTCACT Construction of plasmid pBP187

LS92 5′-AAAGGATCCAATAGAGAAAAATAAGGGGTGA CTGACATGGATATTA Construction of plasmid pBP183

LS93 5′-TTTCTGCAGTTATCTACGGTCTTTTTTCAGCTGTTTTGCCAG Construction of plasmid pBP183

LS94 5′-P-TAACGGTAAAAATACCTGTTAAGATGGACGAC GGTTCAGTAAAG Construction of plasmid pBP184

LS95 5′-P-AACGAAAGGCGGGATAAAGTTTCACCCGAACGTAACA Construction of plasmid pBP184

LS96 5′-TTTGGATCCTTATATCCAGCCCTTAAACTTCGAAGCTT CAGCCATTTTG Construction of plasmid pBP184

LS97 5′-AAAGGATCCGTACAGATAGTGAGGAGGAACAGGAGTAA Construction of plasmid pBP186

LS98 5′-TTTCTGCAGTCATATCGATTCATCCTCCTGTCTTTTCCC Construction of plasmid pBP186

pIC333_seq up 5′-AAGAGCGCCCAATACGCAAACCGCC Sequencing transposon plasmids

pIC333_seq down 5′-TTTGCATGCTTCAAAGCCTGTCGGAATTGG Sequencing transposon plasmids

Table 2 | Bacillus subtilis strains used in this study.

Name Relevant genotype Reference or sourcea

168 trpC2 Laboratory collection

BP25 trpC2 Δ gudB::aphA3 amyE::(gfp-gudBCR cat) pBP8 → GP1160

BP26 trpC2 ΔgudB::aphA3 amyE::(gfp-gudB cat) pBP9 → GP1160

BP69 trpC2 ΔgudB::aphA3 mcsB::Tn10 spc amyE::(gfp-gudBCR cat) pIC333 → BP25

BP74 trpC2 ΔgudB::aphA3 ywlE::tet amyE::(gfp-gudBCR cat) GP1459 → BP25

BP75 trpC2 ΔgudB::aphA3 ywlE::tet amyE::(gfp-gudB cat) GP1459 → BP26

BP98 trpC2 ΔgudB::aphA3 amyE::(gfp-gudB cat) clpC::spc clpC::spc → BP25

BP99 trpC2 ΔgudB::aphA3 amyE::(gfp-gudB cat) clpP::tet clpP::tet → BP25

BP230 trpC2 ΔgudB::aphA3 amyE::(gfp-gudBCR R56K, R83K, R421K, R423K cat) pBP187 → GP1160

BP231 trpC2 ΔgudB::aphA3 mcsB::Tn10 spc amyE::(gfp-gudBCR R56K, R83K, R421K, R423K cat) BP69 → BP230

BP311 trpC2 ΔgudB::aphA3 mcsB::Tn10 spc amyE::(gfp-gudB cat) pBP45 → BP26

GP1160 trpC2 ΔgudB::aphA3 Gunka et al. (2012)

GP1459 trpC2 ΔywlE ::tet BDO01 → 168

aArrows indicate construction by transformation.

mutagenic oligonucleotides LS94, LS95, and LS96 using plas-
mid pBP4 as a template. The MMR product was digested with
the enzymes MfeI and BamHI, and ligated to the plasmid pAC5
that was cut with the enzymes EcoRI and BamHI. The result-
ing plasmid was designated as pBP184. This plasmid was used
to amplify the promoterless quadruple gudBCR mutant allele by
PCR using the oligonucleotide pair KG181/LS96. The gfp gene

containing the ribosome-binding site of the B. subtilis gapA gene
was amplified by PCR from plasmid pBP8 using the oligonu-
cleotide pair KG180/KG190. The gfp and gudBCR genes were fused
by PCR using the external oligonucleotides KG190 and LS96, the
PCR product was digested with BamHI and EcoRI, and ligated
to the plasmid pBP7 that was cut with the same enzymes. The
resulting plasmid pBP187 contains the native gudB promoter and
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integrates in single copy into the amyE locus. Replacement of the
arginine codons in the gfp-gudBCR gene was confirmed by DNA
sequencing. All cloning procedures were performed with the E.
coli strain DH5α (Sambrook et al., 1989).

TRANSPOSON MUTAGENESIS
For transposon mutagenesis of the B. subtilis strain BP25, we used
the mini-Tn10 delivery vector pIC333 (Steinmetz and Richter,
1994) as described previously (Chauvaux et al., 1998). The trans-
posants were grown on SP agar plates for 48 h at 42◦C and
the intensity of the GFP signal was evaluated by stereo fluores-
cence microscopy. For the determination of the site of mini-Tn10
insertion, we made use of the fact that the integrated DNA
fragment does not contain any EcoRI restriction sites. The chro-
mosomal DNA of the mutants was digested with EcoRI and
re-ligated. The ligation mixture was used to transform E. coli
DH5α (Sambrook et al., 1989). For all mutants that were further
analyzed, we obtained plasmids conferring spectinomycin resis-
tance (Table 3). The insertion sites of the mini-Tn10 transposon
were determined by DNA sequencing of the plasmids using the
oligonucleotides pIC333_seq up and pIC333_seq down.

WESTERN BLOTTING
For Western blot analyses, proteins present in 20–50 μg of cell
free crude extracts were separated by 12.5% SDS PAGE and
transferred onto polyvinylidene difluoride membrane (BioRad,
Germany) by semi-dry electroblotting. Anti-GFP (PromoKine,
Germany; MBL, Japan), anti-YwlE, anti-McsB, and anti-GapA
polyclonal antibodies were diluted 1:10.000, 1:1000, 1:5.000, and
1:30.000, respectively, and served as primary antibodies. The anti-
bodies were visualized using anti-rabbit immunoglobulin alkaline
phosphatase secondary antibodies (Promega, Germany) and the

Table 3 | Plasmids used and constructed in this study.

Name Purpose Reference or source

pIC333 Transposon mutagenesis Steinmetz and Richter

(1994)

pAC5 Integration of DNA into the amyE

locus

Martin-Verstraete et al.

(1992)

pBQ200 Complementation studies Martin-Verstraete et al.

(1994)

pBP4 PgudBCR -gudBCR in pAC5 This work

pBP7 PgudBCR in pAC5 Gunka et al. (2013)

pBP8 gfp-gudBCR in pBP7 Gunka et al. (2013)

pBP45 Transposon plasmid mscB This work

pBP183 Expression of ywlE This work

pBP184 Expression of gudBCR (R56K R83K

R421K R423K)

This work

pBP186 Expression of mcsB This work

pBP187 Expression of gfp-gudBCR (R56K

R83K R421K R423K)

This work

CDP-Star detection system (Roche Diagnostics, Switzerland) as
described previously (Commichau et al., 2007).

FLUORESCENCE MICROSCOPY
For fluorescence microscopy, cells were grown in SP medium to
optical densities as indicated, and analyzed on agarose microscopy
slides. Fluorescence images were obtained with an Axioskop 40
FL fluorescence microscope, equipped with digital camera Axio-
Cam MRm and AxioVision Rel (version 4.8) software for image
processing (Carl Zeiss, Göttingen, Germany) and Neofluar series
objective at x 100 primary magnification. The applied filter set
was eGFP HC-Filterset (band-pass [BP] 472/30, FT 495, and long-
pass [LP] 520/35; AHF Analysentechnik, Tübingen, Germany) for
GFP detection. Pictures of B. subtilis colonies were taken with
a stereo fluorescence microscope Lumar.V12 (Zeiss, Jena, Ger-
many) equipped with the ZEN lite 2011 (blue edition) software.
The applied filter set was Lumar 38 for eGFP detection (Zeiss,
Jena, Germany). Images were taken at room temperature and an
exposure time of 1 s.

MONITORING GFP-GudBCR LEVELS IN GROWING CULTURES
Cellular amounts of the GFP-GudBCR fusion protein were deter-
mined by monitoring the fluorescence (excitation 489/9.0 nm,
emission 509/9.0 nm) in a growing bacterial culture using the
Synergy MX II multimode microplate reader (BioTek). For this
purpose, 4 ml LB medium were inoculated with the precultures
to an OD600 of 0.1. The cultures, that had an approximate OD600

of 1.0, were used to inoculate a 96 well plate (Corning, Sigma)
containing 180 μl medium per well. To avoid evaporation, the
outermost wells were filled with 200 μl sterile water. The plates
were incubated for a maximum of 10 h at 37◦C and fast shak-
ing speed. OD600 was measured every 10 min throughout the
experiment. Background fluorescence of the parental strains was
subtracted from the raw fluorescence of all gfp fusion strains at
the same OD600. The cellular amounts of the GFP-GudBCR fusion
protein correspond to the fluorescence divided by the OD600 at
each time point.

RESULTS
A STABLE SCREENING SYSTEM FOR IDENTIFYING FACTORS INVOLVED
IN GudBCR DEGRADATION
The fact that also the GFP-GudBCR protein is degraded (Gunka
et al., 2012, 2013) qualifies it as a substrate to uncover the pro-
teolytic machinery. Before identifying factors that contribute
to GudBCR degradation, we constructed the rocG plus strain
BP25 that is genetically stable (Gunka et al., 2012) and synthe-
sizes the active GDH RocG as well as the inactive GFP-GudBCR

fusion. To test if the GFP-GudBCR fusion protein is degraded
in this strain, we compared the fluorescence signal of cells to
those of strain BP26 harboring the active gfp-gudB fusion. As
shown in Figure 1A, while the bacteria with the active GFP-
GudB fusion were strongly fluorescent, the fluorescence signal
of bacteria synthesizing the inactive GFP-GudBCR protein was
reduced. Thus, the inactive GFP-GudBCR fusion is also degraded
in the new strain background. We also tested whether the two
strains can be distinguished from each other by monitoring
the fluorescence emitted by colonies that were grown on rich
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FIGURE 1 | Fluorescence of strains BP25 (gfp-gudBCR) and BP26

(gfp-gudB) synthesizing the GFP-GudBCR and GFP-GudB proteins,

respectively, at the single cell (A) and at the colony level (B); transposon

mutagenesis to identify factors involved in GFP-GudBCR degradation (C).

For single cell analysis the bacteria were grown in SP medium. Exposure
time, 5 s; scale bar, 5 μm. To monitor fluorescence of colonies the strains
were grown in SP medium, mixed and appropriate dilutions were propagated
on SP plates, which were incubated for 24 h at 37◦C. Exposure time, 1 s.

medium agar plates. For this purpose, the strains BP25 (gfp-
gudBCR) and BP26 (gfp-gudB) were grown in liquid medium,
mixed in a 1:1 ratio and appropriate dilutions were propagated
on SP plates to allow growth of individual colonies. By visual
inspection of the plates using a stereo fluorescence microscope
we found several colonies that were grown close to each other
and showed different fluorescence signals (Figure 1B). We then
re-streaked some of the colonies showing different fluorescence
signals on agar plates to obtain individual colonies. Next, we
performed colony PCRs and confirmed that the higher and
lower fluorescence signals were due to the presence of the gfp-
gudB and gfp-gudBCR alleles, respectively. In conclusion, the
visual screen seems to be suitable to look for mutants, lack-
ing factors that enhance or decrease proteolytic degradation of
GFP-GudBCR.

IDENTIFICATION OF MscB CONTRIBUTING TO GudBCR DEGRADATION
To identify factors that are involved in degradation or stabiliza-
tion of GudBCR, we performed a transposon mutagenesis with
strain BP25 (gfp-gudBCR) using the mini-Tn10 delivery vector
pIC333 (Steinmetz and Richter, 1994). Afterward, we screened for
mutants that show an altered fluorescence signal using a stereo flu-
orescence microscope (Figure 1C). Appropriate dilutions of the
transposants were propagated on SP plates that were incubated
for 48 h at 42◦C. By visual inspection of about 8000 transposants
we could identify one mutant that showed no fluorescence sig-
nal, whereas a second mutant showed an increase in fluorescence
intensity. While the first mutant had obviously lost the ability to
synthesize GFP because the transposon was inserted into the gfp
gene, the mutant showing increased fluorescence had integrated
the transposon at position 580 into the arginine kinase encoding
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mcsB gene (Fuhrmann et al., 2009). This transposon mutant was
designated as BP69. A re-evaluation of the fluorescence signal
of single cells and of a colony of the mcsB transposon mutant
revealed that the cellular amount of the GFP-GudBCR fusion
was increased when compared to that of the parent strain BP25
(Figures 2A,B). The lack of McsB also resulted in the formation
of large aggregates of the GFP-GudBCR fusion protein at the cell
poles (Figure 2A), an observation that can be made when aggre-
gation prone proteins are synthesized in bacteria (Rokney et al.,
2009; Villar-Pique et al., 2012). In conclusion, using transposon
mutagenesis in combination with a visual screen, we identified
the arginine kinase McsB being a novel factor that contributes to
GudBCR degradation.

McsB AND YwlE ARE INVOLVED IN GudBCR STABILITY
To underpin the role of arginine phosphorylation in the degrada-
tion of the GudBCR protein, we inactivated the ywlE gene in the
strain BP25 (gfp-gudBCR). In case the arginine phosphatase YwlE
counteracts the function of its cognate kinase McsB, we expected
to observe that single cells as well as colonies of the ywlE mutant
BP74 would show a reduced fluorescence. This was indeed the case

for single cells of the ywlE mutant strain in comparison to cells
of the mcsB mutant and parent strains BP69 and BP25, respec-
tively (Figure 2A). Although less pronounced, fluorescence of
the ywlE mutant was also reduced at the level of single colonies
(Figure 2B). However, a quantification of the fluorescence of the
GFP-GudBCR fusion protein monitored in growing cultures in
the ywlE mutant strain clearly demonstrates that the phosphatase
YwlE affects GudBCR stability (see below, Figure 3A).

Next, we confirmed that the kinase McsB and the phosphatase
YwlE affect the cellular levels of the GFP-GudBCR fusion protein.
For this purpose, we cultivated the parent strain BP25 as well as
the mcsB and ywlE mutant strains BP69 and BP74, respectively,
in SP medium until stationary phase (the OD600 was around 3.0)
and analyzed the amounts of the GFP-GudBCR fusion protein
by Western blotting using GFP-specific antibodies. As shown in
Figure 2C, in strain BP69 lacking McsB the cellular amount of
the GFP-GudBCR fusion protein was strongly increased. By con-
trast, the inactivation of the ywlE gene resulted in a decrease of
GFP-GudBCR levels. In conclusion, the semi-quantitative Western
Blot analyses are in perfect agreement with the fluorescence
microscopical studies.

FIGURE 2 | Evaluation of the GFP-GudBCR/GFP-GudB levels by

fluorescence microscopy and Western blotting. For fluorescence
microscopic analyses of single cells (A) the parental strain B25 (gfp-gudBCR )
and the strains BP69 (gfp-gudBCR mcsB) and BP74 (gfp-gudBCR ywlE ) were
grown in SP medium. For bright field and fluorescence microscopy the
exposure times were 150 ms and 5 s, respectively. For the evaluation of the
GFP-GudBCR level by stereo fluorescence microscopy (B) the bacteria were
grown in SP medium until stationary growth phase and 10 μl of cell

suspensions with an approximate OD600 of 1 were dropped on a SP plate.
The plate was incubated for 24 h at 37◦C. Exposure time, 1 s; scale bar, 5 μm.
For Western blot analysis (C) the strains B25 (gfp-gudBCR ), BP69
(gfp-gudBCR mcsB) and BP74 (gfp-gudBCR ywlE ) as well as the isogenic
strains BP26 (gfp-gudB), BP311 (gfp-gudB mcsB) and BP75 (gfp-gudB ywlE )
expressing the active gfp-gudB fusion were grown in SP medium and 30 μg
of the cell free crude extracts were loaded onto a 12.5% SDS PAGE. The
fusion proteins were detected using GFP polyclonal antibodies.
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FIGURE 3 | Complementation of the mcsB and ywlE mutations. To
verify the complementation of the mcsB and the ywlE mutations in vivo
(A), the strains BP69 (gfp-gudBCR mcsB) and BP74 (gfp-gudBCR ywlE ),
and the isogenic strains BP69-pBP186 and BP74-pBP183 expressing mcsB
and ywlE from the overexpression vector pBP200 were grown in SP
medium and the relative cellular levels of the GFP-GudBCR fusion is
reflected by the GFP signal divided by the OD600. The parental strain

BP25 (gfp-gudBCR ) served as a control. All strains entered stationary
phase around 6 h of growth. The maximum deviation of the series of
representative data shown here was <30%. For the Western blot analysis
(B) the bacteria were cultivated in SP medium. 40 μg and 50 μg of the
cell free crude extracts were loaded onto a 12.5% SDS PAGE for the
detection of the YwlE and McsB proteins, respectively, using polyclonal
antibodies.

McsB AND YwlE DO NOT INFLUENCE THE CELLULAR LEVELS OF THE
ACTIVE GudB PROTEIN
Subsequently, we wanted to answer the question of whether McsB
and YwlE do also influence the cellular amounts of the enzymat-
ically active GFP-GudB fusion protein lacking the duplication of
three amino acids in the active center of the enzyme. For this
purpose, we cultivated the parent strain BP26 (gfp-gudB) syn-
thesizing the active GFP-GudB fusion and the isogenic mcsB and
ywlE mutant strains BP311 and BP75 (Table 2), respectively, in
SP medium until stationary phase (OD600 of about 3.0). After-
ward, we quantified the amount of the GFP-GudB protein by
Western blotting using antibodies specific for GFP. As shown in
Figure 2C, irrespective of the absence of either McsB or YwlE
all strains synthesized similar amounts of the active GFP-GudB
fusion protein. In conclusion, only the cellular amount of the
inactive GFP-GudBCR but not that of the active GFP-GudB fusion
protein is significantly affected by McsB.

COMPLEMENTATION OF THE mcsB and ywlE MUTATIONS
For complementation studies of the mcsB and ywlE mutant
strains BP69 and BP74, respectively, we constructed the plasmids
pBP186 (mcsB) and pBP183 (ywlE). Both plasmids are deriva-
tives of the non-integrative overexpression plasmid pBQ200 and
gene expression is driven by the constitutively active PdegQ pro-
moter (Martin-Verstraete et al., 1994). The plasmids pBP186 and
pBP183 were introduced into the corresponding mutant strains
by transformation. Next, we compared the cellular amounts of the
GFP-GudBCR fusion protein in the mcsB and ywlE mutant strains
BP69 and BP74, respectively, with those of the isogenic comple-
mentation strains by monitoring the fluorescence, which reflects
the cellular amounts of the GFP-GudBCR fusion protein during
growth of the bacteria. The parent strain BP25 (gfp-gudBCR)

served as a control. As shown in Figure 3A, the emitted fluo-
rescence of all cultures was similar during exponentially growth.
In the stationary phase the fluorescence signal was much higher
in the mcsB mutant strain BP69 when compared to that of the
parent strain BP25. By contrast, inactivation of the ywlE resulted
in a strong decrease of the fluorescence signal. Overexpression of
the mcsB and ywlE genes in the mcsB and ywlE mutant strains
BP69 and BP74, respectively, restored the fluorescence signal in
the stationary phase almost to the extent of the parent strain.
Western blot experiments using antibodies specific for McsB and
YwlE confirmed overexpression of the arginine kinase and the
phosphatase from the complementation plasmids in the mcsB and
ywlE mutant strains BP69 and BP74, respectively (Figure 3B). In
conclusion, the cultivation experiments to detect the cellular levels
of the GFP-GudBCR fusion protein are in good agreement with the
previous experiments showing that the lack of the McsB and YwlE
results in elevated and reduced levels, respectively, of the inac-
tive GDH. Moreover, together with the Western blot experiments
the cultivation experiments also revealed that the mcsB and ywlE
mutations can be complemented by expressing the mcsB and ywlE
genes from plasmids.

McsB SEEMS TO ACT INDEPENDENTLY OF ClpC and ClpP ON GudBCR

DEGRADATION
The mcsB gene lies immediately upstream of the clpC gene in the
ctsR mcsA mcsB clpC operon. Since the mcsB mutation can be
complemented, it can be ruled out that enhanced cellular levels
of the GFP-GudBCR fusion are a consequence of a polar effect of
the transposon insertion into the mcsB gene leading to a reduced
clpC expression and a lower proteolytic activity. However, the
lower proteolytic activity in the mcsB mutant strain might be due
to the missing of McsB-dependent activation of the ClpC-ClpP
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protease complex. To exclude this possibility, we compared the
cellular amounts of the GFP-GudBCR fusion in the background
of the clpC and clpP mutant strains BP98 and BP99, respectively,
to that of the parent strain BP25 (gfp-gudBCR). For this purpose,
we grew the bacteria in SP medium and collected samples from
exponential and stationary phases and performed Western blot
analyses (Figure 4). The strain BP26 (gfp-gudB) as well as the
mcsB and ywlE mutant strains BP69 and BP74, respectively, served
as controls. As expected, in contrast to the inactive GFP-GudBCR

fusion protein the active GFP-GudB variant was more abundant
during exponential and stationary phase. Moreover, as observed in
the previous experiments, the GFP-GudBCR levels were increased
and decreased in the mcsB and ywlE mutants, respectively (see
also Figure 2C). Finally, the GFP-GudBCR levels in the clpC and
clpP mutant strains BP98 and BP99, respectively, were similar to
that of the parent strain BP25 (gfp-gudBCR). Using GapA and GFP
antibodies, we show that only the GFP-GudBCR fusion but not
GapA was degraded in stationary growth phase samples. Thus,
McsB is involved in GudBCR degradation in a rather ClpP and
ClpC-independent manner.

REPLACEMENT OF PHOSPHORYLATION SITES DOES NOT AFFECT
McsB-DEPENDENT GudBCR DEGRADATION
In a recent phosphoproteome analysis it has been shown that
the inactive GudBCR protein is phosphorylated on the arginine
residues at positions 56, 83, 421, and 423 (Elsholz et al., 2012). To
evaluate whether phosphorylation of these sites is important for
the degradation of the GFP-GudBCR protein, we replaced the argi-
nine by the structurally similar amino acid lysine and monitored
the amount of the GudBCR variant in vivo. For this purpose the
parent strain BP25 (gfp-gudBCR), the mcsB mutant strain BP69
(mcsBgfp-gudBCR), the quadruple GFP-GudBCR mutant strain
BP230 (gfp-gudBCR-mut (R56K R83K R421K R423K)), and the
isogenic mcsB mutant strain BP231 (mcsBgfp-gudBCR-mut (R56K
R83K R421K R423K)) were cultivated in SP medium. Simultane-
ously, the cellular levels of the fusion proteins were determined by
monitoring the fluorescence during bacterial growth. As shown in
Figure 5, the fluorescence measurements revealed that the cellu-
lar levels of the fusion proteins in strains BP25 (gfp-gudBCR) and
BP230 (gfp-gudBCR-mut (R56K R83K R421K R423K)) was much

lower in comparison to those of the isogenic mcsB mutant strains
BP69 (mcsB gfp-gudBCR), and BP231 (mcsB gfp-gudBCR-mut
(R56K R83K R421K R423K)). In conclusion, these observations
suggest that phosphorylation of the arginine residues 56, 83, 421,
and 423 sites is rather not important for the degradation of the
inactive GudBCR protein.

DISCUSSION
In the present study, we found that the inactivation of the mcsB
arginine kinase gene resulted in stabilization of the inactive GDH
GudBCR during stationary growth phase of B. subtilis. Thus, beside
its role in controlling the degradation of the DNA-binding tran-
scription factor CtsR (Elsholz et al., 2010b) and delocalization of
proteins involved in the development of transformability of B. sub-
tilis (Hahn et al., 2009), McsB activity also mediates degradation
of GudBCR. Moreover, we found that the arginine phosphatase
YwlE counteracts the function of McsB and prevents degradation
of GudBCR.

There are several possibilities how McsB and YwlE might stim-
ulate and prevent GudBCR degradation, respectively. As it has
been reported previously for the proteolytic degradation of CtsR
(Elsholz et al., 2012), McsB-dependent activation of the ATPase
subunit ClpC of the ClpCP protease complex by phosphorylation
of two specific arginine residues could also be crucial for GudBCR

degradation. However, according to our Western blot analysis ClpP
and ClpC appear apparently not involved in GudBCR degrada-
tion. Recent global phosphoproteomic studies have revealed that
in the absence of YwlE several proteins, among them the GudBCR

protein are phosphorylated on arginine residues (Elsholz et al.,
2012; Schmidt et al., 2014; Trentini et al., 2014). These studies
prompted us to address the question of whether the phosphory-
lation of GudBCR by McsB could serve as a label for proteolysis.
However, although the cellular levels of the GudBCR quadruple
mutant, in which the arginine residues 56, 83, 421, and 423 were
replaced by lysine residues, were slightly increased, the protein
was still degraded in a McsB-dependent manner when the bacteria
entered stationary phase (see Figure 5). Thus, the degradation of
GudBCR seems to be rather indirectly influenced by McsB. Finally,
an unknown proteolytic machinery that remains to be identified
might be responsible for the degradation of the misfolded and

FIGURE 4 | McsB acts independently of ClpC and ClpP. For the
Western blot analysis the parental strain BP25 (gfp-gudBCR ) and the
strains BP26 (gfp-gudB), BP69 (gfp-gudBCR mcsB), BP74 (gfp-gudBCR

ywlE ), BP98 (gfp-gudBCR clpC ), and BP99 (gfp-gudBCR clpP ) were

cultivated in SP medium until the indicated optical densities (OD600).
30 μg of the cell free crude extracts were loaded onto a 12.5% SDS
PAGE for the detection of the GFP and GapA proteins using polyclonal
antibodies.
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FIGURE 5 | Impact of McsB on the cellular levels of the GFP-GudBCR

and GFP-GudBCR(R56K, R83K, R421K, R423K) proteins. The strains BP25
(gfp-gudBCR ), BP69 (gfp-gudBCR mcsB), BP230 (gfp-gudBCR-mut ), and
BP231 (gfp-gudBCR-mut mcsB) were cultivated in SP medium and the
relative cellular levels of the GFP-GudBCR fusion is reflected by the GFP
signal divided by the OD600. The parental strain BP25 (gfp-gudBCR ) served
as a control. All strains entered stationary phase around 6 h of growth. The
maximum deviation of the series of representative data shown here was
<30%.

inactive GDH GudBCR. On one hand the activity of the proteolytic
machinery might be controlled by McsB-dependent phosphory-
lation of an unknown adaptor protein that specifically recognizes
GudBCR and directs the protein to the protease for degradation.
On the other hand McsB could be important for the activation
of one of the AAA+ proteases or other unknown proteases that
remain to be identified. One could also envision that McsB acts
itself as the adaptor that mediates proteolysis of the GudBCR pro-
tein. The interaction between McsB and GudBCR could result
in coincidental phosphorylation of the GDH. This could also be
the case for the other arginine phosphorylations of the B. subtilis
proteome (Elsholz et al., 2012).

As described above it is interesting to note that only the domes-
ticated B. subtilis strains 160, 166, and 168, of which the latter one
is used worldwide in basic research and in industry, harbor the
gudBCR gene that is enzymatically inactive and unstable (Zeigler
et al., 2008). It has been suggested that the gudBCR allele appeared
as a consequence of X-ray mutagenesis and subsequent adapta-
tion for rapid growth of the bacteria in minimal medium lacking
the amino group donor glutamate (Burkholder and Giles, 1947).
This hypothesis is supported by the observation that a strain that
synthesizes in addition to RocG also the enzymatically active GDH
GudB is rapidly outcompeted by the laboratory strain 168 (rocG
gudBCR) when exogenous glutamate is not available (Gunka et al.,
2013; Stannek et al., 2014). Obviously, the presence of both, RocG
and GudB is disadvantageous for the bacteria because the catabolic
GDHs degrade the endogenously produced glutamate, which is
needed in anabolism. Thus, under laboratory growth conditions
a permanent selective pressure must act on the bacteria, which
prevents the accumulation of mutants that have spontaneously
mutated the cryptic gudBCR gene and synthesize in addition to
RocG the functional GDH GudB. Moreover, the selective pressure
acting on the B. subtilis strain 168 might be an explanation for the
observation that the cryptic gudBCR gene is stably inherited since
the bacterium has been domesticated. Recently, it has been shown

that bacteria rapidly loose genes and reduce their genome sizes
when adapted to specialized environments. This might also be
observed in the laboratory by experimental evolution of bacterial
cell populations (Koskiniemi et al., 2012; Lee and Marx, 2012).
Therefore, it is somewhat surprising that B. subtilis affords to
waste energy by permanently synthesizing an inactive enzyme that
is subject to rapid degradation. However, under certain growth
conditions it must be advantageous for B. subtilis to harbor the
cryptic gudBCR gene that, when activated by spontaneous muta-
genesis (Gunka et al., 2012), encodes a functional GDH. Indeed,
a derivative of the B. subtilis 168 expressing rocG and gudB can
use glutamate as a singly source of carbon and nitrogen (Gunka
et al., 2013). Thus, under very specific nutritional conditions bac-
teria that are endowed with high-level GDH activity have a strong
selective growth advantage.

In the future it will be interesting to identify additional factors
that are involved in the rapid degradation of the enzymatically
inactive GDH GudBCR. This goal might be achieved by monitor-
ing the cellular amounts of the GFP-GudBCR fusion protein in
a mutant collection that have inactivated all non-essential genes
by targeted gene deletion or by a next time saturated transposon
mutagenesis. The identification of novel factors that are involved
in GFP-GudBCR proteolysis might be facilitated by monitoring
growth and fluorescence over time because the fusion protein
seems to be preferentially degraded in stationary phase. More-
over, it will be interesting to address the question whether arginine
phosphorylation influences the physiological functions of other
proteins in B. subtilis.
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