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Communities of methanogens, anaerobic methanotrophic archaea and aerobic methan-
otrophic bacteria (MOB) were compared by profiling polymerase chain reaction (PCR)-
amplified products of mcrA and pmoA genes encoded by methyl-coenzyme M reductase
alpha subunit and particulate methane monooxygenase alpha subunit, respectively, in
sediments of northern South China Sea (nSCS) and Mai Po mangrove wetland. Community
structures representing by mcrA gene based on 12 clone libraries from nSCS showed
separate clusters indicating niche specificity, while, Methanomicrobiales, Methanosarci-
nales clades 1,2, and Methanomassiliicoccus-like groups of methanogens were the most
abundant groups in nSCS sediment samples. Novel clusters specific to the SCS were
identified and the phylogeny of mcrA gene-harboring archaea was updated. Quantitative
polymerase chain reaction was used to detect mcrA gene abundance in all samples: similar
abundance of mcrA gene in the surface layers of mangrove (3.4∼3.9 × 106 copies per
gram dry weight) and of intertidal mudflat (5.5∼5.8

6
× 106 copies per gram dry weight) was

observed, but higher abundance (6.9 × 10 to 1.02 × 108 copies per gram dry weight) was
found in subsurface samples of both sediment types. Aerobic MOB were more abundant
in surface layers (6.7∼11.1 × 105 copies per gram dry weight) than the subsurface layers
(1.2∼5.9 × 105 copies per gram dry weight) based on pmoA gene. Mangrove surface
layers harbored more abundant pmoA gene than intertidal mudflat, but less pmoA genes
in the subsurface layers. Meanwhile, it is also noted that in surface layers of all samples,
more pmoA gene copies were detected than the subsurface layers. Reedbed rhizosphere
exhibited the highest gene abundance of mcrA gene (8.51 × 108 copies per gram dry
weight) and pmoA gene (1.56 × 107 copies per gram dry weight). This study investigated
the prokaryotic communities responsible for methane cycling in both marine and coastal
wetland ecosystems, showing the distribution characteristics of mcrA gene-harboring
communities in nSCS and stratification of mcrA and pmoA gene diversity and abundance
in the Mai Po Nature Reserve.
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INTRODUCTION
Methane is a significant greenhouse gas drawing increasingly
attention from the public recently as its contribution to global
warming effect accounts for nearly 20% according to the previ-
ous research (Cicerone and Oremland, 1988) and it induces more
powerful greenhouse effects than carbon dioxide (Forster et al.,
2007). Studies evaluating the methane emission and consumption
in anoxic environments indicate that methane generation from
the decomposition of organic matter in low temperature zone
account for 20% of the total global methane source (Rice, 1993).
Small amount of net methane emission from oceanic anoxic envi-
ronment accounted for only 2% of the total atmospheric source,
suggesting that it is a dynamic balance of methane consumption
mediated by anaerobic oxidation of methane (AOM) serving as
a methane sink (Reeburgh, 1976). Anaerobic methanotrophic

(ANME) archaea apparently mediated AOM process in the forms
of tight aggregates surrounded by sulfate-reducing bacteria (SRB)
responsible for methane-based sulfate reduction (Boetius et al.,
2000). When sulfate is not available or limited, for example, above
the sulfate-methane transition zone (SMTZ), evidence showed
humic substances or oxidized manganese could also serve as
alternative electron acceptors (Lovley et al., 1996; Beal et al., 2009).

In terrestrial ecosystems, natural wetland is one of the
important emission sources, supplying almost 20% of the total
global methane emission (Cicerone and Oremland, 1988), espe-
cially in coastal and estuarine areas due to the eutrophication effect
resulting from high concentrations of organic matter. Gas bubbles
can be obviously visible in these areas, indicating their appropri-
ate environmental conditions for methane production (Fleischer
et al., 2001).
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Methanogenesis is an important process in the carbon cycling,
serving as the final step of decomposition of organic matter under
anaerobic conditions when most of the electron acceptors are
limited (Thauer, 1998). Methanogens occur widely producing
methane in anoxic habitats, such as wetland, wastewater treat-
ment plants, digestive tracts of cattle and humans, and marine
sediments (Liu and Whitman, 2008; Li et al., 2009). Recent stud-
ies showed that methanogenesis attributed to a large fraction of
methane formed and accumulated in anoxic conditions, includ-
ing petroleum reservoirs (Katz, 2011; Mbadinga et al., 2011, 2012;
Wang et al., 2011, 2012a,b, 2014).

All known methanogens could be divided into three types
according to substrate utilization: CO2 reduction, methyl-
containing compounds, and acetate, but all requiring the final
step of methane synthesis catalyzed by the methyl-coenzyme
M reductase (MCR; Liu and Whitman, 2008). Generally,
methanogens are presently divided into five orders: Methanobac-
teriales, Methanococcales, Methanomicrobiales, Methanosarcinales,
and Methanopyrales according to their phylogenetic distance, mor-
phological characteristics, phospholipid compositions, etc. (Liu
and Whitman, 2008).

Recent analysis of ANME systematics is based on phylogenetics
of 16S rRNA and mcrA (methyl-coenzyme M reductase alpha sub-
unit) genes. Three major clusters are designated to be ANME-1, 2
and 3, in which ANME-1 has been viewed as a ubiquitous cluster
because of its close association with SRB and large genetic distances
from the other two groups (Orphan et al., 2001, 2002; Hallam
et al., 2003). On the other hand, mcrA gene has been classified into
ANME-a, b, c, d, e, and f phylotypes. Recently, two newly identified
mcrA gene subgroups designated as ANME-g and ANME-h have
been established, in which, group g is regarded as representatives
specifically adapted to terrestrial freshwater (Takeuchi et al., 2011).
Through the parallel phylogenetic comparison of 16S rRNA gene
and mcrA gene, corresponding relationships have been established
as follows: mcrA subgroups a-b and g-h, c-d, f to be in ANME 1,
2c, 3 subtypes, respectively, while mcrA subgroup e was postulated
to be in ANME-2a (Hallam et al., 2003; Lösekann et al., 2007).

Recently, mcrA gene has been frequently used as an excellent
genetic marker to trace the distribution pattern of methanogens
in ecosystems, because it is relatively conservative and directly cat-
alyzes biochemical functions (Hallam et al., 2003). Not only in
detecting the existence and abundance of methanogens in nat-
ural environments could it be applied, but it also could serve
as the central monitoring tool on the performance of anaero-
bic digester within various interdependent microbial processes
(Alvarado et al., 2014). Potentially common characteristics of
methanogenic metabolism in the specialized niche implied that
there might be a phylogenetic relationship between methanogens
and ANME (Zehnder and Brock, 1979). Based on genomic anal-
ysis of AOM in methanogens and ANME, a genetically equivalent
enzyme, a counterpart as methyl-coenzyme M (CoM) reduc-
tase in methanogenic pathway, might be involved in the reverse
methanogenic metabolism (Krüger et al., 2003; Shima and Thauer,
2005). Genome-based research substantiated almost all typi-
cal genes involved in methane production in selective groups
of ANME, indicating that the potential evolutionary divergence
imposed by disparate habitat adaptations may result in related

but different methanogenic and methane-consuming metabolic
pathways (Hallam et al., 2004).

Combination of observation and metagenetic analysis unrav-
eled a close functional similarity and phylogenetic homology
between mcrA genes of methanogens and ANME (Hallam et al.,
2004). Additionally, the typical polymerase chain reaction (PCR)
primers used for detection based on mcrA gene of methanogens
could also be engaged for ANME detection (Hales et al., 1996;
Hallam et al., 2003). It is possible to quantitatively detect the abun-
dance and diversity of methanogens and ANME using mcrA gene
as a biomarker (Nunoura et al., 2006, 2008).

Aerobic methanotrophic activity in the oxic layer of wetland
serves as an important methane sink. It is believed that more
than half of methane produced in the anaerobic layers of wet-
land was consumed in the aerobic layers, for example, rhizosphere
and oxidized soil–water interface (Le Mer and Roger, 2001).
Genes encoding particulate forms of methane monooxygenase
(pMMO) are present in almost all aerobic methanotrophic bac-
teria (MOB) with minor exception (Theisen and Murrell, 2005)
and often used as a biomarker to detect and quantify MOB in
the past decades (McDonald and Murrell, 1997). Methane cycling
associated microorganisms including methanogens and aerobic
methanotrophs in several different environments had been char-
acterized and metabolic relatedness of these two groups was highly
connected along efflux pathway from deep anoxic layer to upper
oxic layer, which could help explain methane flux dynamics in
natural environments. For instance, community structures and
distribution pattern of mcrA and pmoA genes-harboring popula-
tions vertically from oxygenated upper layer to anoxic deep water
layer were assessed in freshwater meromictic Lake Pavin, where
pmoA gene phylogeny showed that majority of active MOB in the
oxic layer of water column were Methylobacter with high possibil-
ity for consuming nearly all methane from the deeper anoxic layer.
In addition, in anoxic sediment of Lake Pavin, hydrogenotrophic
and acetotrophic methanogens shared the equivalent existence and
could be the reason of active methanogenesis rates, meanwhile,
the water column also represented methane production and its
methanogenic community was exclusively composed of hydro-
gentrophs (Biderre-Petit et al., 2011). Another study on spatial-
temporal variations of the abundance of mcrA and pmoA genes
together with the 16S rRNA gene of bacteria and archaea was car-
ried out and showed a similar fluctuation from a Japanese wetland
and mcrA gene abundance negatively correlated with dissolved
organic carbon and positively correlated with peat temperature.
Moreover, its first attempt to investigate biomass variation in
200 cm depth testified stable and perennial existence of mcrA gene
in deep layer and suggested that potential effects of peat temper-
ature and peat supply should be taken into concise consideration
(Akiyama et al., 2011). In terms of pmoA gene abundance in peat
bog, nearly anoxic layer under 50 cm depth showed no existence;
however, under detectable pmoA gene abundance only during
spring thaw period in oxic layer suggested in situ peat temperature
would be the most influential factor and detailed dynamics within
these months could be of valuable explanation to methanotrophic
process in peat bog environments (Akiyama et al., 2011).

Naturally occurring community of methanogens and ANME
assembly and function in wetland area, coastal intertidal zone,
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pristine ocean, and methane seeps has been reported before.
Comprehensive studies on the mcrA gene-harboring communities
under different environmental conditions and their distributions
with other methane cycling microorganisms may provide addi-
tional details on niche specificity of methanogens and methan-
otrophs. A study was initiated attempting to explore biodiversity
and community composition pattern of methanogens and ANME
in shallow and deep marine sediments from the northern South
China Sea (nSCS) and the coastal Mai Po Nature Reserve for a
comparative analysis. In the study, the transition of methanogen
community structures in shallow marine surface sediments along
the gradient from Pearl River Estuary to deep pristine nSCS was
ascertained. Moreover, responses of community structures to
niche specificity were delineated by analysis of mcrA gene-based
communities from all the samples in this study.

MATERIALS AND METHODS
SAMPLING AND PHYSIOCHEMICAL PROPERTIES
The geographic information of sampling area of this study is sum-
marized in Figures 1 and S1. Sediments from nSCS were collected
during SCS Open Cruise in July 2008 and sediments from inter-
tidal mudflat, mangrove, and reedbed rhizosphere were collected
from Mai Po Nature Reserve located in the northwestern New Ter-
ritory, Hong Kong. Physiochemical parameters of sampling sites
from nSCS are shown in Table 1 according to previous research
(Cao et al., 2011a,b). Those samples from Mai Po Nature Reserve
were retrieved from our unpublished data and presented in Table
S1. Physiochemical parameters of one portion of the samples were
immediately measured and the remaining portion was frozen at –
20◦C for long-term storage. As for samples from Mai Po, pH value,
redox value, and water content were obtained after transported
back to laboratory within an hour. The remainings were measured
according to description elsewhere (Cao et al., 2011c). All samples
were assigned labels according to its collected sites individually.

DNA EXTRACTION AND PCR AMPLIFICATION, CLONING LIBRARY
CONSTRUCTION
All genomic DNA of collected samples used in this study were
extracted with the SoilMaster DNA Extraction Kit (Epicenter
Biotechnologies, Madison, WI, USA) strictly following the man-
ufacturer’s instruction. The extracted genomic DNA was used to
run agarose gel electrophoresis with Gel Red (Biotium Inc., USA)
to evaluate the integral quality of extraction and preliminary esti-
mation of DNA concentration. Primers for mcrA gene were chosen
as following: shorter primer pairs including forward primer which
encompassed a mixture of primer ME3MF: ATGTCNGGTG-
GHGTMGGSTTYAC and ME3MF-e: ATGAGCGGTGGTGTCG-
GTTTCAC with the concentration ratio of 250:1 and reverse
primer ME2r’: TCATBGCRTAGTTDGGRTAGT; longer primer
pairs including forward primer ME1: GCMATGCARATHGG-
WATGTC and reverse primer ME2r’ (Narihiro and Sekiguchi,
2011).

The PCR reaction mixture with a final volume of 50 μl con-
tained: 2 μl of template DNA (30∼50 ng/μl), 1 μl of bovine serum
albumin aiming to potentiate synthesizing accuracy (100 mg/ml,
Roche), 10 μl of 5× GoTaq Flexi Buffer (Promega) and 4 μl of
Mg2+ (25 mM, Promega), 1.5 μl of dNTPs (2 mM, Invitrogen),

5 μl of each forward and reverse primers (20 μM), and 0.25 μl
of GoTaq Flexi polymerase (5 U/μl, Promega). Gradient PCR
method was used to optimize the suitable annealing tempera-
ture and 59.5◦C was chosen as the suitable annealing temperature
because it is the lowest temperature to avoid non-specific ampli-
cons and capable of obtaining the highest yield. Double identical
PCR reactions were conducted for each sample to obtain more
amplicons from potential templates and also minimize arbitrary
aberrations from one experiment.

Polymerase chain reaction products of each case were purified
with QiagenII Gel Extraction Kit (Qiagen, Hilden, Germany) fol-
lowing the guidance of manufacturer’s instruction. Then, clones
were constructed into PMD-18T vector (Takara, Japan). The insert
fragment sequences were amplified by M13F and M13R primer
pairs, and then delivered for sequencing on a 3730xl DNA analyzer
(Applied Biosystems, Foster City, CA, USA).

QUANTITATIVE PCR
Abundance was measured with q-PCR to detect the copy num-
ber of targeted gene in each sample. PCR reagent mixture
contained 1 μl of DNA template, 0.5 μl of 100 mg/ml BSA,
1 μl of each primer and 10 μl of SYBR Premix (Roche) in
each reaction with a total volume of 20 μl for q-PCR using
methodology provided by its manufacturer. For mcrA and
pmoA gene, primer pairs ME3MF+ME3MF-e (250:1), ME2r’
and A189F: GGNGACTGGGACTTCTGG, mb661R: CCGGMG-
CAACGTCYTTACC (Kolb et al., 2003) were employed to amplify
targets. Successive 10 fold dilutions of plasmid of PMD-18T
inserted with mcrA gene from one clone E704S-53 and pmoA gene
from one clone of 1B-B sample were operated on the machine to
generate a standard curve.

SEQUENCES AND PHYLOGENETIC ANALYSIS
Obtained sequences were firstly checked to filter out meaningless
ones and chimeras. All qualified ones were aligned by Clustal W
given by MEGA5.05 together with those from previously reported
methanogens and ANME groups archaea retrieved from GenBank
to build phylogenetic permutation. Subsequently, MEGA5.05 was
used to construct phylogenetic trees as the following default
settings: neighbor-joint criterion, p-distance model algorithm,
bootstrap value 1000 times for resampling. A less related arbitrary
sequence should be used as a criterion for out-group to generate
rootless phylogenetic tree.

Operational taxonomic units (OTUs) divided in the whole
assemblages were gained through implementations of online soft-
ware Fastgroup II (http://fastgroup.sdsu.edu/; Yu et al., 2006).
Meanwhile, OTU rarefaction curves and related non-parametric
estimate indices, such as Chao1 and the Shannon diversity index,
were also calculated by Fastgroup II based on 5% nucleotide
sequence cutoff dissimilarity. Online software, Unifrac, was
employed to conduct Principal coordinates analysis (PCoA) and
Jackknife environment clusters analyses to evaluate relation-
ships between environmental similarity patterns and phylogenetic
structure. Uploaded documents were adjusted to meet the require-
ment given by the instruction. Relative abundance was depicted
via bar chart through Microsoft Excel. Log-normalized heatmap
and attached dendrogram was used to show abundance and cluster
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FIGURE 1 | Geographic locations of sampling sites in the northern South China Sea (nSCS). This illustration was made with Ocean Data View 4.0
software (http://odv.awi.de/). Methane reef location and prospective methane hydrate harboring places were circled with dash lines.

Table 1 | Physiochemical parameters and location information together with mcrA gene diversity and richness indices of sediments collected

from South China Sea.

Sampling

site

Sampling

position

Seawater

depth (m)

Temperature

(◦C)

Depth

(mbsf)

pH

value

(‰)

Salinity Number

of valid

sequences

OTU Coverage Chao1 Shannon–

Wiener

index

E401B 21◦31N/119◦59E 3300 2.5 3.7 NK 34.39 47 15 0.9362 15.9 2.4664

E407B 18◦29N/120◦00E 1900 2.0∼4.0 1 NK 34.56 48 13 0.8750 23 2.1579

CF5B 19◦55N/115◦13E 1153 2.0∼4.0 7.5 NK 34.56 47 13 0.9362 12 2.0751

08CF7S 22◦70N/119◦17E 1301 2.0∼4.0 0∼0.1 NK NK 46 11 0.9783 10.25 2.0846

E702S 19◦38N/115◦13E 2370 2.9 0∼0.1 7.5 34.58 42 13 0.9048 15.67 2.3181

E704S 20◦15N/114◦44E 175 13.5 0∼0.1 7.77 34.57 45 12 0.9111 14.25 2.2733

E706S 20◦44N/114◦15E 79 18.9 0∼0.1 8.01 34.39 46 7 0.9783 7.5 1.6134

E707S 21◦00N/113◦60E 80 18.5 0∼0.1 8.08 34.36 47 1 1.0000 –1 0

E708S 21◦14N/113◦45E 70 19.5 0∼0.1 8.18 34.32 50 5 0.9600 7 0.5837

E709S 21◦29N/113◦30E 40 21.3 0∼0.1 8.21 34.21 53 10 0.9623 11 1.948

E510S 19◦30N/111◦16E 100 20.2 0∼0.1 7.54 34.44 50 17 0.8000 67 2.3425

E201S 22◦51N/116◦48E 30 21.4 0∼0.1 8.2 34.32 46 18 0.8043 49 2.5833

Mbsf, meters below seafloor; NK, not known.
Sampling position, seawater depth, temperature, depth, pH value, salinity data are extracted from the previous published information (Cao et al., 2011a, 2012).
E401B, E407B, and CF5B samples were referred to marine subsurface samples, the rest were marine surface samples.
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similar samples across phylogenetic profiles by extracted R script
from skiff in CloVR under Rstudio environment (Angiuoli et al.,
2011).

As for the relationship between the physiochemical parameters
and microbial community composition and abundance, Canon-
ical correspondence analysis (CCA) and Redundancy analysis
(RDA) were conducted by the software CANOCO 4.5. Pearson
moment correlation analysis was also employed to depict the rela-
tionships between physiochemical factors and abundance of mcrA
gene via Microsoft Excel.

SEQUENCES ACCESSION NUMBERS
Accession numbers were obtained from GenBank database from
KF595310 to KF596336 after depositing mcrA gene sequences into
NCBI.

RESULTS
PHYSICOCHEMICAL CHARACTERISTICS OF THE SEDIMENT SAMPLES
Three major groups of samples in this study can be categorized
by the depths and sampling sites: deep South China Sea, shallow
South China Sea and coastal Mai Po wetland. There are man-
grove, mudflat and reedbed in the coastal wetland. The geographic
locations of samples from nSCS are showed in Figure 1. E401B,
E407B, and CF5B were collected from the subsurface close to
Taiwan Island, Luzon Island and center position of nSCS, respec-
tively. E702S, E704S, E706S, E707S, E708S, and E709S formed a
gradient line with anthropogenic pollution from the Pearl River
Estuary to the nSCS. E702S is regarded as a deep-sea sample and
the rest are shallow sea surface samples. E201S is coastal surface
sample located east to the Pearl River Delta and E510S is coastal
sample near Hainan Island. 08CF7S is a surface sample in the sur-
rounding part of Taiwan Strait. Temperature of different sampling
sites in nSCS decreased when the depth increased as shown in
Table 1.

The intertidal mudflat and mangrove samples were collected
at Site 1 and Site 3 in Mai Po Nature Reserve (Figure S1). Sur-
face samples and subsurface samples were collected from a depth
of 0–2 and 23–25 cm in mangrove rhizosphere and mudflat in
March 2012. In addition, reedbed samples were also collected to a
depth of 20 cm. Physiochemical properties of them are shown
in Table S1. Generally, surface samples had lower pH, higher
nitrate concentration than subsurface samples. Redox potential
of surface samples was higher than that of subsurface samples in
mangrove while it had a reverse trend in mudflat. Nitrate and
ammonium concentration patterns were consistent for Site 1 and
Site 3 of intertidal zone and mangrove samples. Reedbed rhizo-
sphere had the lowest redox and highest ammonium among all
samples.

AMPLICONS IN SOUTH CHINA SEA
Two rounds of PCR were engaged to retrieve amplicons from sedi-
ments in E401B, E407B, and CF5B using shorter PCR primer pairs
(Table S2), successful functional gene clone libraries were obtained
for E407B and CF5B. Nested PCR was used to amplify mcrA gene
of the rest samples and effective PCR products and mcrA gene
clone libraries from all the 12 SCS samples were established (Table
S2). The abundance of mcrA gene was below the detection limit

when conducting q-PCR assays on samples of SCS. The ubiqui-
tous and low abundance of mcrA gene in this study of the nSCS
could be confirmed, and 1027 valid sequences were retrieved from
21 heterogeneous samples (Table 1).

ABUNDANCE OF mcrA AND pmoA GENES IN COASTAL WETLAND
Abundance of mcrA gene was evenly distributed between intertidal
mudflat and mangrove samples at Mai Po wetland by qPCR ampli-
fication and quantification. It was 3.4∼3.9 × 106 copies per gram
dry weight and 5.5∼5.8 × 106 copies per gram dry weight for Site
1 and Site 3 of both layers, respectively (Figure 2), but subsurface
sediments of sample 1B-B contained higher abundance of mcrA
gene than the others. Extremely high mcrA gene abundance was
detected in reedbed sample (L1), consistent with the high organics
and less oxygen available with low redox potential. Abundance in
subsurface samples had generally 1–3 orders of magnitude higher
mcrA gene abundance than those in surface samples.

On the other hand, pmoA gene distribution and abundance
observed from qPCR showed a reverse pattern as that for mcrA
gene. Abundance of pmoA gene was 1–3 orders of magnitude
lower than mcrA gene in corresponding samples, indicating the
dominant role of mcrA genes in all samples. Mangrove samples
harbored fewer pmoA genes than intertidal mudflat samples when
examined at the same depth, whereas mangrove surface samples
harbored more pmoA genes than that of mudflat. The most abun-
dant pmoA gene was detected at site L1 among all the samples.
The ratio of subsurface gene abundance to surface (B/S ratio) of
both mcrA gene and pmoA gene was mainly determined by gene
abundance in subsurface samples because that of surface samples
did not show any significant change (Figures 2C,D).

PHYLOGENY OF THE RETRIEVED METHANOGENS AND ANME mcrA
GENES
Sequences were assigned to all known orders of methanogens
except for Methanopyrales and Methanococcales, indicative of
rather diverse community in sediments from nSCS (Figure S2).
Methanomicrobiales clade was the largest monophyletic one com-
prising of sequences from Mai Po and South China Sea in two
major branches. One was Fen-like cluster, which was named by
the predominant sequences previously found in peatland (Galand
et al., 2002), containing three clones from mangrove and inter-
tidal zone. This is in accordance with the fact that this cluster is
of freshwater origin as both mangrove and intertidal zones from
this study could be regarded as low salinity habitat. In the paral-
lel alignment with other samples, clones from mangrove shared
their branch with clones from Pearl River Estuary (Jiang et al.,
2011) and Marennes-Oleron Bay sediment (Roussel et al., 2009)
and those from intertidal mudflat clustered with clones from tidal
creek sediments (Edmonds et al., 2008) which were of low salinity
environments.

The other large branch of Methanomicrobiales was comprised
of sequences from all samples except for E707S. From the per-
centage diagram of methanogens in each sample (Figure 3),
Methanomicrobiales group occupied a large proportion in sam-
ples from Mai Po Nature Reserve and deep-sea sediments. Shallow
sea sediments, E708S and E707S showed low diversity of site speci-
ficity, dominated by Methanosarcinales Clade 2. On the contrary,
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FIGURE 2 | Abundance of mcrA gene (A) and pmoA gene (B) of intertidal mudflat and mangrove sediment samples. Quantitative PCR gene copies in
subsurface (bottom) and surface sediments are expressed in ratio as red dots (C,D). Error bards are vertical lines as standard deviations of three independent
experiments.

other shallow sea samples were dominated by Methanomicrobiales.
The phylogeny of this clade showed rather heterogeneous without
noticeable site-specific cluster except for two proposed SCS spe-
cific clusters (SCS Clusters 1 and 2) mainly occupied with South
China Sea derived sequences.

Sequences in the clade of order Methanosarcinales were divided
into two parallel clusters. In cluster 1, ANME mcrA group f was
included. Three kinds of samples all harbored sequences belong-
ing to this anaerobic methanotrophs cluster, which was ANME 3
subtype (Lösekann et al., 2007).

The phylogenetic topology structure had minor changes when
incorporating comparable sequences from other niches as sug-
gested in Figure S2, while in both cases the order Methanosarcinales
could generally be divided into two clusters. Cluster 1 contained a
large branch consisting of sequences from Mai Po and shallow SCS
sediment samples together with sequences from Marennes-Oleron
Bay, pristine tropical mangrove (Taketani et al., 2010), Pearl River
Estuary, tidal creek sediment and a distantly located clone from
E407B. In cluster 2, most of the sequences were from Mai Po Nature
Reserve with five clones from E201S and nine clones from 08CF7S,
which were relatively distinct from others, forming two subclusters
with sequences from Marennes-Oleron Bay, Shimokita Peninsula
subsurface sediment (unpublished data) and brackish lake sed-
iment (Banning et al., 2005) indicating their similarity of ocean
origin.

For ANME Group e, both clone library and qPCR data sup-
ported that samples from mangrove Site 1 contained Group e
ANME (Figures S2 and S3). This mangrove site was the only one
contained sequences in the RC-I cluster (Lueders et al., 2001).
The nearest sequences were from Pearl River Estuary and tidal
creek and all above indicated a unique composition pattern at this
mangrove site.

When considering Methanosarcinales Clade 2, one distantly
located branch and Clusters 3 and 4 constituted this clade. Clus-
ter 3 was composed of SCS sequences and two clones from Mai
Po. Few sequences from pristine tropical mangrove and brack-
ish lake sediment were also included in this cluster. Cluster 4
was composed of three different niches of samples. The cultured
methanogens were mainly from Methanosaeta genus, indicating
its distinct classification position in the order Methanosarci-
nales. Clone E709S-49 and five clones from E510S formed a
unique cluster deeply branched between Methanosarcinales Clade
2. From the blast result, only clones from Jiulong River and
basalts samples from Lonar saline soda lake were obtained shar-
ing 90% similarities in amino acid sequences. Regarding to
their marine origin, this cluster might be distributed mainly in
marine.

The Methanosphaera cluster contained one branch exclusively
occupied by sequences from Mai Po with high bootstraps value
separated from the cultured Methanosphaera stadtmanae. In
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FIGURE 3 | Visualized mcrA gene-harboring archaea composition,

abundance and distribution pattern in each sample. (A) Proportional
barchart based on the clone numbers of each group mcrA harboring
archaea in each sample; (B) Log-normalized heatmap made by Rstudio
based on the proportion data of clone numbers of each group mcrA
gene-harboring archaea in each sample. Dendrogram was used to

cluster most resembling archaea groups on horizontal axis, most
similar sample in respect of community composition on vertical axis.
Depicted color key indicated the log-transformed values of abundance
percentage values in each sample. This heatmap was generated by
extracted R script from skiff module in CloVR software under Rstudio
environment.

order to reduce the phylogenetic tree of this branch, most sim-
ilar sequences from GenBank database with similarity values
from 92 to 99% were obtained and the results indicated that
sequences from this clade have high similarity with those from
municipal wastewater sludge digester and sewage. Methanosphaera
cluster was strictly limited to the substrates of hydrogen and
methanol, and mainly found as gastrointestinal tract origin (Liu
and Whitman, 2008) and also, together with the discrepancy
on phylogenetic position more closely related to Methanococcales
based on mcrA gene (Figure 4) other than that based on 16S rRNA
gene which falls into the Methanobacteriales order and their coc-
coid shapes other than rod shapes shared by the rest in the order, all
makes it mysterious to address its taxonomic relatedness between
those two orders above (Luton et al., 2002). Combining with the
geographic location of the Mai Po Nature Reserve at the estuarine

area of the Pearl River, the evidence of Methanosphaera cluster
methanogens found in environment might serve as a bioindica-
tor of municipal wastewater input in a similar way as anammox
bacteria (Cao et al., 2012; Li et al., 2013).

Methanomassiliicoccus genus was newly identified methanogen
genus distinct from Thermoplasmatales, and sharing the closest
relationship with non-methanogenic “Candidatus Aciduliprofun-
dum boonei” (Dridi et al., 2012). In this study, some sequences
could be categorized into the Methanomassiliicoccus-like cluster.
Cluster 5 formed a monophyletic clade, consisting of sequences
from Mingjiang River (unpublished data) and Jiulong River estu-
ary (Li et al., 2012), two rivers flowing toward East China Sea area.
The sequences within Cluster 5 from this study showed 89–97%
similarity at amino acid level. Cluster 6 was the most distinctive
cluster divided by highly supportive bootstrap value, sharing the
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FIGURE 4 |The radical phylogenetic tree was constructed by the

MrBayes 3.2.1 vision based on CIPRES Science Gateway V. 3.3 server

(http://www.phylo.org/). In total 800 mcrA gene sequences from this study
and referred GenBank database was used to build the alignment with 174
amino acid sites including empty sites. The Markov chain Monte Carlo running
generation setting was given as 1000000 and 100% majority rule was utilized
to conduct a consensus tree. The tree was finally rooted by the out-group of

Methanopyrus cluster and its branches were transformed by the proportional
method. Scale bar was generated to indicate the phylogenetic distance as
changes per amino acid position. The line weight of each branch was
determined according to posterior probabilities given by Bayesian interference
phylogeny. Each known clade was annotated by distinctive color according to
the reference sequences. Consensus ratios of 174 aligned amino acid sites
were shown by bar chart on the top right part.

highest 86% amino acid similarity with ever known sequences,
suggesting unique phylogeny against others.

All the other defined groups were labeled in the whole phyloge-
netic tree such as newly raised Thermoplasmatales clade proposed
to be an additional order and other ANME group methanoar-
chaea. The study performed the most comprehensive illustration
on all lineages in the Class Methanomicrobia.

Radical phylogenetic tree revealed subclade distance between
major groups of methanoarchaea. Three parts of groups
were dispersed when rooted by Methanopyrus cluster, which
were (i) Methanosarcinales clade including previously identified
ANME Group c to f, grouped with monophyletic RC-I clus-
ter; (ii) Methanomicrobiales clade which buried Fen-like cluster
inside; (iii) Order Methanobacteriales, Methanococcales, genus
Methanopyrus, Methanomassiliicoccus, new proposed uncultured
Thermoplasmatales as seventh order of methanoarchaea and

ANME Group a-b, g-h together with unknown deeply branch-
ing Guaymas cluster. The consensus ratios distribution pattern
of mcrA gene coding amino acid reflected certain proportions
contributed more on diversification (Figure 4).

DIVERSITY OF METHANOGENS AND ANAEROBIC METHANOTROPHS
BY mcrA GENE
Sequences obtained in the clone libraries were grouped into 269
OTUs at nucleotide similarity threshold of 95%. Rarefaction
curves indicated relatively high coverage indices among all sam-
ples of this study (Figure S4). The composition of each group of
archaea harboring mcrA gene is presented in Figure 3 together
with heatmap of the log-normalized percentage of each group in
each sample.

Shannon–Wiener and Chao1 indices were given together with
OTU numbers and valid sequence numbers (Tables 1 and S1).
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FIGURE 5 | (A) Weighted Jackknife sample cluster analysis was conducted by
setting the minimum sample counts as 42, permutation numbers as 1000.
Finally, the clustering results were shown in (A). Different node colors
showed different confidence values of each cluster; (B) Weighted 3D PCoA

ordination diagram was made by the Fast Unifrac online software package
and then illuminated as 3D scatter plots diagram by KiNG 2.21 software
(http://kinemage.biochem.duke.edu/software/king.php) with principal
coordinate explanation valued labeled.

Comparisons between each sample with diversity indices showed
that Shannon–Wiener and Chao1 indices were higher in Mai Po
samples (mean value ca. 14.8 and 2.3) than in marine samples
except for E201S and E510S samples (mean value ca. 11.6 and
1.8; Figure S5). The highest Shannon–Wiener index values were
observed with shallow marine samples E201S and E510S among all
marine samples. Meanwhile, along the gradient from Pearl River
Estuary to nSCS, E706, E707, E708, and E709 samples showed
relatively low richness and evenness compared with other marine
samples. However, coastal reedbed rhizosphere showed low rich-
ness and evenness values among freshwater samples (Figure S5).
Lower Shannon–Wiener indices of E707, E708, and L1 samples
were possibly due to the predominant species occupied resulting
in uneven distribution of each mcrA clone library (Figure 3). In the
Mai Po Nature Reserve, the surface samples harbored more diverse
and even mcrA communities than subsurface samples from both
intertidal sediments and mangrove.

mcrA GENE-HARBORING COMMUNITY STRUCTURE AND
CLASSIFICATION
The Unifrac-based PCoA was carried out to delineate any dif-
ferences of environmental heterogeneity by analyzing mcrA gene
phylogeny among all samples. The weighted Unifrac-based Jack-
knife samples clustering method suggested the community rela-
tionship based on the permutation method to show the confidence
at the nodes recovered (Figure 5). For E707S and E708S, they
located along the PC2 axis separated from others. Their mcrA gene
communities were dominated by Methanosarcinales Clade 2 and
showed low diversity value and uneven distribution pattern. The
Mai Po samples grouped less concentrated than the marine sam-
ples, indicative of relatively more diverse pattern showing in the
coastal ecosystem. Pearl River Estuary sample was grouped with
Mai Po samples in Jackknife samples cluster, suggesting closer
relatedness, while mcrA gene community in Pearl River Estuary
represented a transition between Mai Po and nSCS area. Reedbed

rhizosphere sample was separated from other Mai Po samples and
its community structure was classified more closely to marine sam-
ples on account of both weighted PCoA and Jackknife sample
clustering analysis.

DIVERSITY AND DISTRIBUTION OF mcrA GENE IN WETLAND
Two CCA dimensions represented two major axes which yielded
the most variance explanatory percentage (32.6%) between mcrA
genes containing archaeal group composition (Figure 3) and envi-
ronment variables (Figure 6A). And axis 1 together with axis 2
accounted for 77.9% cumulative variance percentage of mcrA con-
taining archaeal groups and environments. Subsurface samples
and surface samples from both mangrove and intertidal mud-
flat were relatively apart and formed two assemblages according
along axis 1. Coordinates of subsurface samples showed in a
compact manner, while surface samples scatter along axis 2. L1
sample was separately located indicating different distribution
pattern against other sites. Depth and pH values were positively
correlated with axis 1, serving as dominating variables which influ-
enced subsurface microbial community. Surface sediment would
be more susceptible to perturbations of natural and anthropogenic
activities, resulting in alterative physiochemical environmental
conditions which alter microbial community. Redox potential
values were negatively correlated with depth (showing –0.44 cor-
relative coefficient), and pH values changes were concomitant
with the increasing of depth (showing 0.48 correlative coeffi-
cient). The three parameters mentioned above showed closed
relationship with community structures of these two assemblages,
suggesting the stratified environmental condition between the
subsurface and surface largely influenced the community com-
position. L1 was collected from reedbed with abundant organic
matter and anaerobic condition possessing both methanogenesis
and methane-utilization. Its methanogenic community obtained
unique composition and abundance pattern distinguished from
mangrove and intertidal zones according to this research. No
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FIGURE 6 | (A) Gradient analysis diagram was drawn by direct Canonical
Correlation Analysis method and biplot scaling type by 1000 times setting
of Monte-Carlo permutation test to analyze the relationship between
sample groups and environmental factors. (B) Gradient analysis was
conducted by redundancy analysis (RDA) method and biplot scaling type by
1000 times setting of Monte-Carlo permutation test to show connection
between richness and abundance data and environmental factors.

noticeable parameters in this study were found to account for
its distribution in the CCA ordination plots, whereas, consid-
erably large humic compounds, anoxic and low redox potential
would be certain factors affecting its richness and uniqueness of
methane cycling microorganisms. More comprehensive physio-
chemical parameters detecting and analyzing model should be
elaborated to tell the accurate shaping effects under different
environmental conditions.

Regarding to the RDA ordination plots (Figure 6B), depth val-
ues were the most influential effects on the abundance of mcrA
gene abundances. All surface samples from different locations
obtained low abundance. Additionally, Pearson moment cor-
relation analysis indicated that OTU numbers and abundance
were positively correlated with depth significantly (Table S3).
Meanwhile, Shannon–Wiener index positively related with redox
values.

DISCUSSION
COMMUNITY STRUCTURE AND METHANOARCHAEA IN MARINE
SAMPLES
Three subsurface samples from nSCS (E401B, E407B, CF5B)
belonging to the deep sea were clustered together according to

Jackknife cluster analysis (Figure 5), consistent with their simi-
larity in major community compositions (Figure 3). Subsurface
samples were grouped together despite of their different geo-
graphic locations. E407B with a relatively shallow depth below
sea floor separated slightly from the other two subsurface sam-
ples, but close to surface samples, representing an intermediate
between two sampling depths. This might contribute to evi-
dence on methanoarchaea distribution affected by depth below
seafloor.

Deep-sea surface sample E702S and marginal coastal sea sur-
face sample E709S were grouped closely with subsurface samples
with similar community composition. E702S was located in the
slope of the continental shelf to pristine deep sea, while E709S was
the nearest sampling site to Pearl River Delta, representing a more
terrestrially affected environment. Unlike the obvious community
transition along the slope from Pearl River Delta to nSCS deep
sea area on ammonia oxidizers (ammonia-oxidizing archaea and
beta ammonia-oxidizing bacteria; Cao et al., 2011a), E702S and
E709S shared less similarity in water temperature, depth and pH
values, however, grouped the closest compared with others, sug-
gesting that methanoarchaea communities were not as responsive
as ammonia oxidizers to decrease from coast to ocean along the
continental shelf.

Samples E201S and E510S were coastal surface samples located
in distant geographic points, but they shared the largest similar-
ity with each other. And E704S was also from shallow marginal
coastal sea surface, grouped together with the above two samples.
Another deep-sea surface sample 08CF7S was characterized as an
out-group in surroundings of this clade. This phenomenon could
be interpreted that environments divide by surface and subsurface
layers share resembling conditions which differentiate community
groups rather than the actual geographical locations.

There was an evidence that biogenic originated methane
hydrates have been discovered from Shenhu area which located at
the southeast of Dongsha Islands (Wu et al., 2011). According to
the previous definition (Zhong et al., 2006), site E702S and CF5B
were located in this area, which harbored worm tube contain-
ing carbonate nodules as evidence of moderate micro-gas venting.
Meanwhile, Jiulong methane reef near Taiwan Island and Bijia’nan
Basin near Luzon Island were found to be potential locations har-
boring gas hydrate (Youhai et al., 2001; Chen et al., 2005; Han et al.,
2008). Based on above information, maps illuminating prospective
gas hydrate reservoir area were elaborated (Zhou et al., 2009; Dang
et al., 2013). Hence, sites E401B and E407B could be possibly ones
for prospective gas hydrates due to their locations in these areas.
Other information of methane hydrate and methane seep distribu-
tion feature in the nSCS area indicated that low supply of methane
was common and occurred recently at those prospective methane
hydrate areas (Zhong et al., 2006; Wu et al., 2011). Taken all these
into consideration, all prospective methane hydrate samples could
be grouped as potential methane rich environments and actually
clustered close to form a clade in Jackknife cluster tree expect
E709S site, leading to a proposed hypothesis that relatively higher
methane concentration might be the result of potential biogenic
gas or hydrate form’s methane caused by featured methanogenic
archaeal communities, which mainly depend on categories and
abundance of accessible methanogenic substrates. Accordingly,
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E709S sampling site was not yet physically testified but highly pre-
sumed to be methane rich area because it has close affinity with
E702S in community structure.

Site E706S was distinguished from other marine samples and
this may be the result of its niche specific environmental condi-
tions. Community composition in freshwater sample L1 showed
its uniqueness and uneven feature of low diversity value and pre-
dominated by archaea order Methanomicrobiales when compared
with Mai Po samples. As far as the other two marine samples
E707S and E708S were concerned, they were composed majorly
by Methanosarcinales clade 1 group archaea, and demonstrated
the lowest diversity indices among all marine samples. Those
unique features made the two samples forming a distinctive cluster
separated from the rest marine samples in the Jackknife cluster dia-
gram. From the other shallow samples’ community composition,
we could find that Methanosarcinales clade 1 and clade 2 together
constituted the majority. The community transition of these two
marine samples could be a result of substrate changes to the dom-
inated methyl containing compounds which were thought to be
mainly consumed by species under Methanosarcinales clade 1 (The
most related known genus in GenBank database is Methanococ-
coides, which entirely depend on methylotrophic nutrition; Liu
and Whitman, 2008).

In attempt to detect amplify mcrA genes or methanogen related
16S rRNA genes from deep sea drilling samples, Methanobacteri-
ales and Methanosarcinales species have been discovered, however,
as stated methanogens could be a very small population located in
the hydrate-bearing sites at Cascadia and Peru Margins (Inagaki
et al., 2006). Moreover, the small sized of methanogen groups in
archaeal clones also resulted in the undetectable of methanogens
in Nankai Trough (Reed et al., 2002), while evidence of a new iso-
lated methanogen species from Nankai Trough in the same time
suggested the clear existence (Mikucki et al., 2003). Amplification
method should be responsive for those deviations especially for
small groups of methanogens (Reed et al., 2002; Hu et al., 2011).

Overall, in nSCS, widespread methanogens were retrieved in
shallow and deep sea sediments. The majority of methanogen
in those samples by mcrA gene contained: Methanomicro-
biales, Methanosarcinales clade 1,2 and Methanomassiliicoccus-like
groups.

Methanomassiliicoccus was firstly found in human gut micro-
biome (Dridi et al., 2012; Borrel et al., 2013), while, in this study,
clusters of Methanomassiliicoccus-like groups with high similarity
composing of nSCS sediments and estuaries toward East China
Sea gave us new insights of these important methanogens. To
our knowledge, this is the first time to comprehensively analyze
methanoarchaea community composition from marine sediment
samples.

COMMUNITY STRUCTURE AND DIVERSITY OF METHANOARCHAEA IN
WETLAND
Mai Po Nature Reserve samples were collected by the strategy of
sampling sites, sediment types, and different depth layers. From
the physiochemical parameters detected based on this strategy,
pH values of mangrove samples were always lower than those of
mudflat; those of surface samples were always lower than those of
subsurface. The main reason might be the effects of seawater. It

is usually thought that sea water is slightly alkaline, and intertidal
mudflat might be more influenced by seawater than mangrove
field, because intertidal mudflat is without any plantations and
near coast. In addition, overlying layers could be more dynamically
influenced by rainwater, so subsurface samples were more alkaline
than the surface ones.

In general view, mangrove samples obtained higher redox
potentials than mudflat samples. This could be resulting from res-
piration effect of mangrove roots which will transport plenty of
oxygen into rhizosphere. At the same time, NH4

+ concentration
was also testified to be much less in mangrove subsurface samples
than others. It might be due to absorption activity of mangrove
roots and associated nitrifying microbes (Glaser et al., 2010; Wang
et al., 2013). In addition, reedbed rhizosphere sample was also
included in this study, which was alkaline, anaerobic and had a high
concentration of NH4

+. Previous studies claimed that reedbed
rhizospheric methane oxidation should account for 80% of total
oxidation in the emergent plant period but with relative lower
efficiency than surface oxidation, indicating that reedbed rhizo-
sphere could serve as a unique environment of methane oxidation
process in low oxygen condition (van der Nat and Middelburg,
1998). Different physiochemical environments distinguished by
three parallel sampling factors covered major compositions in Mai
Po Nature Reserve, which will surely reflect different mcrA gene
community and abundance among this area and help to ascertain
which factors counted for the differences.

From the analysis of Jackknife clustering, we could easily find
that samples were majorly separated into two parts in accordance
with the sample sites: site 1 and site 3. As for each site, it is also
obvious to point out that different layer harbored more similar
communities. For example, site 1 cluster was composed with 1B-
S and 1M-S groups and surrounded by subsurface samples. Site
3 cluster was comprised of the group of 3B-B and 3M-B firstly,
and then with additional surrounded by surface samples. This
phenomenon suggested that different sampling site conditions
influenced the community most and different depths were the
second important factor.

Surface samples were the top layer and influenced by vari-
able environments, such as those imposed by intertidal ecology
and occasional weather change and bioturbation. CCA showed
that surface samples represented a more dispersed pattern result-
ing from relatively more variable environmental conditions in the
surface (Figure 6A). This could interpret higher methanoarchaea
community diversity values observed in the surface samples both
in mangrove and intertidal mudflat samples. And on the other
hand, subsurface layer samples usually acquired low oxygen and
low redox potential, especially in the reedbed rhizosphere sample,
representing much less diversity patterns.

In contrast to our results, previous investigation on mcrA gene
abundance showed that the abundance ranging from 2.75 × 105

copies per gram sediments to 1.83×106 copies per gram sediments
in nSCS (Dang et al., 2013). But another attempt in detecting the
mcrA gene abundance in subseafloor sediments from northern
and southern SCS obtained negative results even though different
PCR annealing temperatures were tested (Hu et al., 2011).

With respect to mcrA abundance, mcrA gene copies were much
higher in subsurface samples than surface samples. There were
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other references indicated that MLf and MLr primer pairs from
Luton et al. (2002) could also amplify the isoenzyme encoding
gene mrtA of Metahanobacteriales and Methanococcales (Friedrich,
2005; Nettmann et al., 2008), however, due to the fact that no mrtA
genes appeared in the phylogenetic reconstruction of mcrA gene
amplified by the same ME3MF and ME3MF-e and ME2r’ primer
pairs, this possibility of non-specific amplification could be rather
small. At the same time, litter relatedness between mcrA gene abun-
dance and sample type was found suggesting that no noticeable
feature on the abundance pattern shared by the two sampling sites.
This is in line with community character indicated by Jackknife
clustering analysis. Pearson moment correlation analysis suggested
that depth was positively correlated with log10 value of abundance
and negatively correlated with OTU numbers. Taken all together,
those above could be a consequence of distinctive niche phys-
iochemical conditions at each site. Lower layer had low oxygen
concentration and low redox potential in intertidal mudflat sed-
iments, which was suitable for anoxic microorganisms such as
methanoarchaea to grow. At the same time, lower layer environ-
ment may also activate growth of some predominant groups of
methanoarchaea which in turn attenuate its diversity profile (this
phenomenon was testified previously in Figure 3. Methanomicro-
biales generally occupied around 50% of the entire community
in intertidal mudflat subsurface samples). As for the lower layer
mangrove samples, they were sampled from rhizosphere of man-
groves. Exudates and detritus from mangrove roots could supply
substrates for methane generation and relatively high oxygen con-
dition reversely limited the proliferation of methanoarchaea. As a
result, it could be more dynamic in terms of the mcrA abundance
in mangrove rhizosphere.

METHANOTROPHS ABUNDANCE IN DIFFERENT DEPTHS
As for pmoA abundance information, depth and sediment site
both affected the amount. Mangrove samples harbored more
pmoA gene copies than intertidal mudflat, and surface sam-
ples harbored more pmoA gene copies than subsurface samples.
These patterns were shared, irrespective of sampling sites. It
should be noted that subsurface samples harbored fewer pmoA
gene copies, but the surface samples had more abundant pmoA
gene at the same site. This could be the first report in consid-
eration of abundance distribution of the pmoA gene in coastal
wetland in relation to depth as far as the up-to-date references
concerned. Methane efflux and uptake should be in accordance
to flux transport from subsurface to surface, and the total net
methane flux differences could be relatively insignificant in man-
grove and intertidal mudflat on the basis of former study (Chen
et al., 2010) and methane production will be comparatively sta-
ble from the same sampling sites which share similar spatial
and temporal variances (Allen et al., 2007). As a result, whole
subsurface and surface methanotrophic community abundance
will be also at a stable level if there is no considerable discrep-
ancy in methane oxidation activity between cells, meaning that
higher pmoA gene abundance in surface than subsurface should
be evident.

Further studies are necessary to detect in situ methane oxida-
tion rate because this phenomenon could be common in coastal
wetland irrespective of sediment type. Abundance of pmoA gene

was also detected in peat soil samples collect from different rhi-
zosphere from Zogie wetland of Tibetan plate (Yun et al., 2012),
ranging from 107∼108 gene copies and transcripts copies per gram
dry soil. Our results from Mai Po Nature Reserve were comparable
with other quantitative data of pmoA gene in non-vegetation peat
soil from Zogie wetland (Yun et al., 2010), flooded rice field (Kolb
et al., 2003) and forest soil (Kolb et al., 2005), ranging in the level
of 106 copies per gram dry soil.

DISTRIBUTION OF ANME IN nSCS AND WETLAND
In the ANME f group divided by the mcrA phylogeny which is
buried in the large cluster of Methanosarcinales clade 1, shal-
low and deep marine samples together with Mai Po samples all
contributed minor parts of sequences in this clade. Whereas,
the ANME e group was only detected in the Mai Po samples,
specifically in the 1B site surface and subsurface layers (Figure
S3). Previously study confirmed the evidence that ANME-1 and
ANME-2a were divided according to 16S rRNA gene found in
the Pearl River Estuary (Jiang et al., 2011), while ANME-2a pre-
dominately in the ANME group. Jiulong River estuary sediments
were also investigated in the 16S rRNA, 16S rRNA gene, and mcrA
gene based phylogeny, testifying ANME-2a was also the represen-
tative ANME group despite of its minor composition in the whole
archaeal communities (Li et al., 2012).

Our results indicated that in the Mai Po mangrove marsh,
ANME e (ANME-2a) group was the major ANME group based
on retrieved clone numbers and semi-quantitative PCR (supple-
mental materials) while small proportion of ANME f (ANME-3)
was also detected, implying multiple phylotypes of ANME partic-
ipating in AOM process. On the other hand, ANME f (ANME-3)
sequences were detected from shallow and deep marine samples
from nSCS with few clones, directly verifying the qPCR results
of ANME f group distribution in nSCS (Dang et al., 2013). First
mcrA gene evidences of ANME f which are congruent phylogenet-
ically with 16S rRNA genes in ANME-3 was unveiled in HMMV
sediments under the sulfide-oxidizer mats (Niemann et al., 2006).
Other single findings of ANME-3 were also found in cold seeps
with high gas hydrate or active seepage of gas under the predomi-
nated population of ANME-1 and ANME-2 (Orphan et al., 2001;
Knittel et al., 2005) and sporadic 16S rRNA gene evidences were
also shown in the previous studied samples such as incubated cold
methane seep samples from Monterey Canyon, Eel River Basin and
sulfide chimney in Mothra Vent Field on the Juan de Fuca Ridge
(Knittel et al., 2005).

Here, we gave an indication of ANME-3 group archaea
existence in marine sedimentary samples and coastal intertidal
mudflat, which normally believed to harbor moderate or low AOM
rate (Knittel and Boetius, 2009). SMTZ is a main specific niche for
marine sediments and coastal water column, where methane pro-
duced below and synergistic produced sulfate or ambient sulfate
overlapped in this zone, resulting in minimum yield of energy
in AOM. In contrast to those in methane seeps with high AOM
rate, these groups of ANME-3 form adaptive mechanism under
energetically less favorable conditions (Knittel and Boetius, 2009).
More available PCR primer sets could be applied to detect minor
ANME mcrA genes within methanogen community, so that more
detail analysis could be delineated (Zhou et al., 2014).
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Based on methyl-coenzyme M reductase alpha subunit (mcrA)
genes, community and diversity patterns in nSCS marine sed-
iments and Mai Po Nature Reserve have been revealed and a
comparison to other environments was made. In general, Mai Po
wetland sediments have higher diversity than marine sediments,
but the community diversity was not significantly correlated with
the depth of the marine samples. In Mai Po wetland, the surface
layer showed higher diversity but lower abundance than the sub-
surface layer. Additionally, conditions at different layers exercise
effects on the mcrA gene diversities and community composition.
We also measured the quantity of aerobic methanotrophs by means
of detection of pmoA gene abundance, and found that mangrove
samples harbors more pmoA gene copies than intertidal mudflat
samples in the surface layer while fewer pmoA gene copies in the
subsurface layer. Besides, the total pmoA gene abundance was rela-
tively stable when adding surface and subsurface samples together.
However, due to the possible presence of mcrA and pmoA genes
could be inactive in methane cycling microorganisms, analysis on
transcript abundance of each gene in the future should be carried
out to reflect their real activity (Alvarado et al., 2014).

To summarize, the marine and coastal wetland served as
energetic and variable environmental habitats for activity of
methanoarchaea with different distribution patterns and func-
tional groups. Their relationship between in situ physiochemical
parameters and community composition and geographic distri-
bution still needs higher resolution measurement technique and
strategies to unravel. However, our results are indicative of sub-
strate compounds and depth distinction may effectively lead to
structural and functional differences.
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