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The development of practical and flexible vaccines to target liver stage malaria parasites
would benefit from an ability to induce high levels of CD8 T cells to minimal peptide
epitopes. Herein we compare different adjuvant and carrier systems in a murine model
for induction of interferon gamma (IFN-γ) producing CD8 T cells to the minimal immuno-
dominant peptide epitope from the circumsporozoite protein (CSP) of Plasmodium berghei,
pb9 (SYIPSAEKI, referred to as KI). Two pro-inflammatory adjuvants, Montanide and
Poly I:C, and a non-classical, non-inflammatory nanoparticle based carrier (polystyrene
nanoparticles, PSNPs), were compared side-by-side for their ability to induce potentially
protective CD8T cell responses after two immunizations. KI in Montanide (Montanide + KI)
or covalently conjugated to PSNPs (PSNPs-KI) induced such high responses, whereas
adjuvanting with Poly I:C or PSNPs without conjugation was ineffective. This result was
consistent with an observed induction of an immunosuppressed environment by Poly I:C
in the draining lymph node (dLN) 48 h post injection, which was reflected by increased
frequencies of myeloid derived suppressor cells (MDSCs) and a proportion of inflammation
reactive regulatory T cells (Treg) expressing the tumor necrosis factor receptor 2 (TNFR2),
as well as decreased dendritic cell (DC) maturation. The other inflammatory adjuvant,
Montanide, also promoted proportional increases in the TNFR2+ Treg subpopulation, but
not MDSCs, in the dLN. By contrast, injection with non-inflammatory PSNPs did not
cause these changes. Induction of high CD8 T cell responses, using minimal peptide
epitopes, can be achieved by non-inflammatory carrier nanoparticles, which in contrast to
some conventional inflammatory adjuvants, do not expand either MDSCs or inflammation
reactive Tregs at the site of priming.
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INTRODUCTION
Malaria affects over 200 million people annually, resulting in over
half a million deaths with most mortality coming from infections
with Plasmodium falciparum, and developing a malaria vaccine
has become a major global effort (Arama and Troye-Blomberg,
2014). The most advanced malaria vaccine development focuses
on the pre-erythrocytic stage, at which sporozoite parasites enter
the circulation after a mosquito bite and then rapidly enter and
infect hepatocytes. CD8 T lymphocytes, particularly those capa-
ble of producing interferon gamma (IFN-γ), can mediate effective
sterile liver-stage immunity (Schneider et al., 1999; Doolan and
Martinez-Alier, 2006; Krzych et al., 2014). Developing a CD8 T
cell inducing liver-stage vaccine would be beneficial to further
avoid the clinical symptoms of malaria, such as fever, associated
with subsequent blood stages of infection, as well as preventing
transmission and the sexual development of parasites (Arama and
Troye-Blomberg, 2014). Whole irradiated sporozoites are effec-
tive CD8 T cell inducing vaccines (Doolan and Martinez-Alier,
2006), and immunity to a dominant circumsporozoite protein

(CSP) CD8 T cell epitope of P. berghei, named pb9 (sequence
SYIPSAEKI), can mediate protection in murine animal models
(Schneider et al., 1999).

Unfortunately, synthetic and recombinant vaccines have been
less effective at inducing CD8 T cells, particularly in humans
(Arama and Troye-Blomberg, 2014). The choice of adjuvant and
the delivery system for the selected antigens will play a major
role in the ability of vaccines to induce CD8 T cell immunity.
Minimal CD8 T cell peptide epitopes offer production, stabil-
ity, and flexibility advantages in vaccine formulation (Plebanski
et al., 2006). Herein we compare side by side two adjuvants with
proven capacity to promote CD8 T cell responses, Montanide (a
water in oil emulsion) and Poly I:C (TLR3 agonist). Both have
been used in various clinical trials as adjuvants in human vaccines
against specific diseases (Aucouturier et al., 2002; Bonhoure and
Gaucheron, 2006; Trumpfheller et al., 2008; Longhi et al., 2009;
Mbow et al., 2010). Given cerebral malaria pathology is associated
with inflammation (Postels and Birbeck, 2013), the use of novel
nanovaccine technologies which induce CD8 T cell immunity
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without conventional pro-inflammatory signals also offers a con-
ceptual advantage. Based on our previous studies, such inert
nanoparticles coated with a target antigen of choice can promote
high levels of immunity in the absence of inflammation or added
extrinsic adjuvants, even to peptide based antigens (Fifis et al.,
2004a,b; Xiang et al., 2013). Responses are as high as experimental
gold standards for antibody production (e.g., Freunds adjuvant)
and CD8 T cell induction [e.g., ex-vivo antigen pulsed dendritic
cells (DCs)], and better than a range of conventional inflammatory
experimental adjuvants (Fifis et al., 2004a).

The size of the nanoparticle is a key factor, with even small devi-
ations away from the optimal size range of 40–50 nm causing major
decreases in immunogenicity (Fifis et al., 2004a; Mottram et al.,
2007). We herein compared Montanide and Poly I:C, represent-
ing two pro-inflammatory adjuvants, against such nanoparticle
based vaccines for delivery of the minimal pb9 CD8 T cell epitope.
Moreover, we speculated that inflammatory responses during the
priming phase of immunity could further result in the activation
of the immune-suppressive mechanisms that arise to control such
inflammation, but may interfere with efficient CD8 T cell stimula-
tion. In this context, it is known that enhancing cross-presenting
DC frequency and function, and preventing myeloid derived sup-
pressor cells (MDSCs) accumulation promotes antigen specific
immune responses (Ohkusu-Tsukada et al., 2011). It has also been
suggested that Poly I:C is capable of increasing antigen specific
effector T cells over regulatory T cells (Treg), enhancing immunity
(Perret et al., 2013). Hence, as well as comparing the magnitude of
the CD8 T cell responses induced by the different adjuvants, this
study evaluates the ability of Montanide, Poly I:C, and nanopar-
ticles to promote the induction of inflammation reactive Tregs
and the expansion of MDSCs, compared to effector T cells and
stimulatory antigen presenting types such as DCs.

MATERIALS AND METHODS
MICE
Six to eight weeks old BALB/c mice were purchased from Monash
Animal Services (MAS) Melbourne, VIC, Australia. The studies
presented here were approved by the Alfred Medical Research
and Education Precinct (AMREP) Animal Ethics Committee,
Melbourne, VIC, Australia.

NANOVACCINE FORMULATIONS
Conjugation of malaria peptide antigens to nanoparticles was
based on the previous described method (Xiang et al., 2013) with
a slight modification. Briefly, carboxylated polystyrene nanopar-
ticles (PSNPs; Polysciences Inc, Warrington, PA, USA) of 40 nm
(∼40–50 nm) at a final of 1% solids were activated in a mixture
containing 2-N-Morpholino-ethanesulfonic acid (MES; 50 mM
final, pH = 7), and 1-ethyl-3-(3-dimethylaminopropryl) car-
bodiimide hydrochloride (EDC; 4 mg/ml final). Malaria peptide
SYIPSAEKI (KI; Mimotopes, Melbourne, VIC, Australia; 1 mg/ml
final) was also added to the conjugation mix and together incu-
bated on a rotary wheel at room temperature for approximately
4 h. Following antigen incubation, the conjugation reactions
were then quenched by adding excess glycine (7 mg/ml final)
and further incubated for 30 min. The free, unconjugated pep-
tide antigens, and other excess conjugation agents, were removed

by dialysis (10–14 kDa molecular weight cut-off (MWCO) mem-
brane; Viskase, Darien, IL, USA) against phosphate buffered
solution (PBS, pH = 7.2) at 4◦C overnight. Conjugation efficiency
and final sizes of the nanovaccine formulation (e.g., PSNPs-
KI) were determined by Bicinchoninic acid assay (BCA; Thermo
Fisher Scientific, Rockford, IL, USA) and dynamic light scatter-
ing instruments (Zetasizer; Malvern Instruments, Worcestershire,
UK), respectively, following the manufacture’s instruction.

OTHER VACCINE ADJUVANT AND IMMUNIZATIONS
Other vaccine adjuvants such as Montanide ISA 720 (70% v/v
final, Tall Bennett Group, USA), Polyinosinic–polycytidylic acid
sodium salt (Poly I:C; 25 μg/mouse final, Sigma Aldrich, St. Louis,
MO, USA) were also used in this study. The adjuvant effect of
these vaccine formulations were tested in vivo by immunization
of mice and measuring for IFN-γ production by ELISpot assay
(Xiang et al., 2006). Briefly, adjuvant mixed KI formulations (e.g.,
KI + Montanide; KI + PolyI:C; KI + PSNPs) at the desired final
concentrations (∼25 μg KI/mouse) and nanoparticle conjugated
KI (PSNPs-KI at 1% solid of PSNPs) formulations were injected
into mice intradermally (i.d.) at the base of the tail. 14 days after
the last immunization, mice were sacrificed and splenocytes were
isolated and assayed for IFN-γ production via ELISpot assay.

ELISPOT ASSAY
Antigen specific CD8 T cell responses were evaluated by IFN-γ
ELISpot assay (Xiang et al., 2006). Briefly, 96 well multiscreen fil-
ter plates (MSIP plates, Millipore, Billerica, MA, USA) were coated
with 5 μg/ml final (100 μl/well) of anti-mouse IFN-γ (AN18,
MABTech, Stockholm, Sweden) in PBS, and incubated overnight
at 4◦C. Following overnight incubation, the wells were washed
and blocked with RPMI 1640 (Gibco, Life Technologies, Carls-
bad, CA, USA), supplemented with 10% fetal calf serum (FCS;
Gibco, Life Technologies), 100 units/ml penicillin, 100 μg/ml
streptomycin, 2 mM L-glutamine, 1 M Hepes, and 0.1 mM 2-
mercaptoethanol, for a minimum of 1 h. Splenocytes from mice
(immunized with or without vaccine formulations as listed above)
were added in triplicate wells (1 × 107 cells/ml, 50 μl/well),
along with the recall antigen (peptide SYIPSAEKI at different
doses, 50 μl/well). Media alone control, or concanavalin A (ConA;
Amersham Biosciences, Uppsala, Sweden; final 1 μg/ml) were
also used, as negative or positive controls, respectively. All mice
produced high levels of IFN-γ in response to ConA, with SFU
often above the threshold for accurate counting (data not shown),
indicating adequate cell viability and functionality. Cells with anti-
gens were incubated in a 37◦C incubator filled with 6% CO2

for a minimum of 16 h. Plates were then washed five times in
PBS, biotinylated detection antibody anti-IFN-γ (R4-6A2-Biotin,
MABTech; 1 μg/ml in PBS 0.5% FCS, 100 μl/well) was added
and followed by further incubation at room temperature for
2 h. Plates were then washed again, as above, and streptavidin-
alkaline phosphatase enzyme conjugate (ALP; 1 μg/ml in PBS
0.5% FCS, 100 μl/well; MABTech) was added, followed by a fur-
ther 1.5 h incubation at room temperature. After a final wash
in PBS and followed by water, the spots were developed using
a colorimetric AP kit (Bio-Rad, Philadelphia, PA, USA) follow-
ing the manufacturer’s instructions. Spots were counted by an
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AID ELISpot Reader System (Autoimmun Diagnostika GmbH,
Germany).

FLOW CYTOMETRY
For phenotypic analysis of cells by flow cytometry, inguinal lymph
node cells were isolated 48 h after immunization with the adju-
vants alone. 2 × 106 cells/sample were stained for 15 min at room
temperature with 30 μl of antibody cocktails, including antibodies
with different fluorochromes at different concentrations based on
prior optimizations. Antibodies used in the present study include;
anti-CD11c V450 (HL3), anti-CD11b PeCy7 (M1/70), anti-Gr-
1 (Ly6C and Ly6G) PerCP Cy5.5 (RB6-8C5), anti-CD3 AF700
(500A2), anti-CD4 BV605 (RM4-5, Biolegend, San Diego, CA,
USA), anti-CD8 BV650 (53-6.7, Biolegend), anti-CD25 PeCy7
(PC61), anti-FoxP3 APC (MF23), and anti-CD120b (TNFR2) PE
(TR75-89). All antibodies were from BD Biosciences (NJ, USA)
except where specifically indicated. Following incubation, cells
were washed with 100 μl PBS/2% FCS (FACS buffer). Stained
cells were fixed with 1% (v/v) paraformaldehyde (PFA, Sigma
Aldrich) and acquired using an LSRII flow cytometer (BD Bio-
sciences) located at the AMREP Flow Cytometry Core Facility
(Melbourne, VIC, Australia). Data was analyzed using FlowJo
software (version10, Treestar, USA).

STATISTICAL ANALYSIS
Statistical analysis was done by ANOVA analysis, with post hoc
Tukeys multiple comparison tests or Fisher’s LSD test, or unpaired
t-tests, using Graphpad Prism software (version 6, San Diego, CA,
USA). Statistical significance was determined as p < 0.05. Group
sizes are indicated in the figure legends. All values are expressed as
mean ± SD.

RESULTS
PEPTIDE COVALENTLY BOUND TO, BUT NOT MIXED WITH, PSNPs
INDUCES CD8 T CELLS
Peptide delivery by nanoparticles (either mixed or conjugated)
was compared for immunogenicity in vivo using BALB/c mice.
To generate the conjugated nanovaccine, the immune-dominant
CD8 T cell peptide epitope of the CSP protein, SYIPSAEKI (KI),
from P. berghei was covalently attached to carboxylated polystyrene
nanoparticles (PSNPs, 40–50 nm) using an optimized covalent
conjugation protocol as previously described (Xiang et al., 2013).
As shown in Table 1, the average size of the PSNPs-KI formu-
lation was 47.97 ± 2.64 nm, and the polydispersity index (PdI)
was very low (0.07 ± 0.03), indicating the successful formula-
tion of a uniformly dispersed nanoparticle formulation with a
narrow size distribution range (Figure 1). The antigen loading

Table 1 | Characterization of SYIPSAEKI conjugation to PSNPs

(PSNPs-KI) for size, polydispersity, and peptide loading*.

Formulation Size (nm) Polydispersity

index (PdI)

Peptide molecules

per particle

PSNPs-KI 47.97 ± 2.64 0.07 ± 0.03 1032.6 ± 147.8

*Data presented as mean ± SD, n = 4 repeated conjugations.

FIGURE 1 | Size distribution for PSNPs-KI formulations. SYIPSAEKI
peptides were covalently conjugated to PSNPs, and the final sizes were
measured by dynamic light scattering instruments (Zetasizer).

was 0.32 ± 0.09 mg/ml, which represented 1032.6 ± 147.8 peptide
molecules per particle (Table 1). The number of peptide molecules
per particle was comparable to previous studies with a model pep-
tide antigen, SIINFEKL, where potent responses were observed at
that loading (Xiang et al., 2013).

Mice were immunized twice, 14 days apart, with SYIP-
SAEKI peptide either alone (KI alone), mixed with the PSNPs
(PSNPs + KI), or covalently conjugated to the PSNPs (PSNPs-KI)
at the dosage of ∼25 μg of KI/mouse/injection. As results show in
Figure 2A, neither the “KI alone” nor the “PSNPs + KI” treatment
groups showed induction of KI specific CD8 T cell responses,
assessed by IFN-γ ELISpot after two immunizations. However,
when mice were immunized with KI conjugated to PSNPs (PSNPs-
KI), significant (p < 0.001) levels of KI specific IFN-γ producing
CD8 T cells were induced, even at the smallest amount of recall
antigen concentration (0.25 μg/ml). Increasing the recall antigen
concentration did not further enhance the overall antigen specific
IFN-γ responses, suggesting the recall of high affinity T cells. These
results also show that this specific malaria antigen peptide needs
to be covalently conjugated to its carrier nanoparticles to induce
potent immune responses. Moreover, it shows that this system can
utilize minimal CD8 T cell epitopes, without added CD4 T cell
epitopes, and still induce levels of immune responses previously
associated with powerful ‘Prime-boost’ immunization modalities
and sterile protection against sporozoite challenge (Plebanski et al.,
1998).

Given the PSNPs-KI formulation induced potent immune
responses with two immunizations; we further tested formula-
tion potency in a single dose immunization regime. As shown
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FIGURE 2 | Antigen specific CD8T cell responses induced by SYIPSAEKI

peptide vaccines in combination with PSNPs. Mice (BALB/c) were
immunized with SYIPSAEKI peptide mixed with or conjugated to PSNPs
intradermally at the base of tail. 14 days after the last immunization, spleen
cells were collected and assessed for IFN-γ production by ELISpot assay. (A)

KI peptides conjugated to, but not mixed with, PSNPs induced high levels of

KI specific CD8 T cell responses after two immunizations (2 weeks apart).
Data presented as mean ± SD of SFU/million cells from each group (n = 3
mice/group). (B) Immunogenicity of PSNPs-KI formulation after one
immunization (n = 4 mice per group). Data presented as mean ± SD of
SFU/million cells (pooled for each group) from the triplicated wells in ELISpot
assay. Statistical analysis was performed via ANOVA, ***p ≤ 0.001.

in Figure 2B, after one immunization, PSNPs-KI formulations
induced good antigen specific CD8 T cell responses, significantly
higher than naïve controls (p < 0.001, Figure 2B). Recall T cells
were elicited in ELISpot at both 2.5 and 0.05 μg/ml, suggesting
high affinity T cells were induced already in the initial priming
phase.

PSNPs-KI AND MONTANIDE INDUCE THE HIGHEST CD8 T CELL
RESPONSES
To benchmark the immunogenicity of PSNPs-KI compared to
other types of conventionally adjuvanted experimental formula-
tions capable of inducing CD8 T cell responses, we further tested
Montanide and Poly I:C with KI side by side with PSNPs-KI. Strong
and comparable KI specific CD8 T cell responses were detected in
mice immunized with “PSNPs-KI” and “Montanide + KI” for-
mulations (Figure 3). The magnitude of the KI specific IFN-γ
production by both these formulations was significantly higher
(p < 0.001) than that from mice immunized with KI alone or
“Poly I:C + KI” (Figure 3). Despite the literature indicating that
Poly I:C is a potent CD8 T cell response inducer (Nordly et al.,
2011), Poly I:C mixed with KI formulation didn’t promote the
induction of IFN-γ producing CD8 T cells above that induced
with peptide alone, after two immunizations.

POLY I:C, BUT NOT PSNPs OR MONTANIDE, IS ASSOCIATED WITH A
LACK OF DC MATURATION 48 H POST INJECTION WITH THE ADJUVANT
ALONE
To further understand how the potent CD8 T cell responses could
be induced by a single CD8 T cell epitope when conjugated to
PSNPs in the absence of a CD4 T cell helper epitope, as well as to
compare the non-specific action mode of other adjuvants alone in
the induction of cell activation, we investigated the level of DC acti-
vation in the local draining lymph node (dLN). This was done by

FIGURE 3 | Induction of SYIPSAEKI specific CD8T cells by different

adjuvants. BALB/c mice were immunized twice, intradermally, 2 weeks
apart, with SYIPSAEKI peptides incorporated with respective adjuvants.
14 days after the last immunization, spleen cells were collected and
assessed for IFN-γ production by ELISpot assay. Data presented as
mean ± SD of SFU/million cells from each group (n = 3 mice/group).
Statistical analysis was performed via ANOVA, ***p ≤ 0.001.

assessing the expression levels of MHCII, CD40, CD80, and CD86
on the CD11c+ DCs, from the inguinal lymph node, after the
injection of PSNPs, Montanide or Poly I:C in vivo, in the absence
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of antigen. We hypothesized that there would be efficient CD86
induction on DC, making them highly capable of activating CD8 T
cells (Clarke, 2000; Steinman et al., 2003; Maroof et al., 2009). The
critical time-period for CD8 T cell expansion is between 48 and
72 h post priming, a period of repeated transient contact between
T cells and DC (Henrickson et al., 2008). Increases in suppressor
cells would be expected to follow initial inflammation induced by
adjuvants, which usually peaks at 12–24 h post administration.
Therefore, between 24 and 72 h immunosuppressive mechanisms
would be expected to come into play. We assessed DC frequency
and expression of co-stimulatory molecules in adjuvant dLN 48 h
after injection with the adjuvants alone. Results in Figure 4A (gat-
ing strategy) and Figure 4B show that the overall frequency of
DCs (Gr-1− CD11c+ cells) remained the same in the dLN 48 h
post injection with all three types of carrier/adjuvants. There was
a significant increase in the expression of CD80 in the dLN DCs

after treatment by both PSNPs and Montanide (p < 0.001 and
p < 0.05, respectively, Figure 4C). Furthermore, there was a signif-
icant increase in expression levels of CD86 on CD11c+ cells for all
adjuvants tested (p < 0.001 compared to PSNPs, and p < 0.01 com-
pared to Montanide and Poly I:C treatment, Figure 4C), implying
DCs were potentially being activated even in the absence of a CD4
T cell helper epitope. CD11c+ DCs in the Montanide group fur-
ther showed an increase in the expression of CD40, compared
to the naïve and PSNPs groups (p < 0.05, Figure 4D). How-
ever, surprisingly, DCs in the Poly I:C treated group showed
significantly lower levels of expression of MHCII compared to all
other treatment groups (p < 0.05 compared to naïve, p < 0.01
compared to PSNPs and p < 0.001 compared to Montanide
treatment, Figure 4D), suggesting these DCs were at a differ-
ent state of maturation, and/or activation, upon treatment with
Poly I:C.

FIGURE 4 | Dendritic cell activation in dLNs after injection with PSNPs,

Montanide, and Poly I:C. Mice (BALB/c) were injected once intradermally at
the base of tail with the different adjuvants alone. 48 h after injection, mice
were sacrificed, local (inguinal) dLNs were harvested and the levels of
CD11c+ DCs and various activation markers were assessed by flow

cytometry. (A) gating strategy; (B) frequency of GR-1−CD11c+ cells;
(C) Mean fluorescent intensity (MFI) of CD80 and CD86 on GR-1−CD11c+
cells; (D) MFI of CD40 and MHCII on GR-1−CD11c+ cells. Data presented as
mean ± SD of MFI for each group of treatment (n = 3 mice/group). Statistical
analysis was performed via t -tests, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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PSNPs AND MONTANIDE INDUCE AN ENVIRONMENT THAT
ENCOURAGES STIMULATORY DCs, WHEREAS POLY I:C PROMOTES
SUPPRESSIVE MDSCs 48 H POST INJECTION WITH THE ADJUVANTS
ALONE
The balance between DCs and MDSCs in the priming lymph
node would be predicted to influence the level of immunity sub-
sequently induced by vaccines. We further assessed the MDSC
and CD11c+ DC populations in the dLN 48 h after injection
(Figure 5A). Whilst PSNPs and Montanide maintained a normal
MDSC to DC ratio in the dLN (Figure 5B), surprisingly, Poly I:C
promoted a significantly higher ratio of MDSCs to DCs, compared
to all other groups (p < 0.01, Figure 5B). Further analysis of the
subsets within MDSCs, based on their level of Gr-1 expression,
showed that Poly I:C significantly increased the ratio of MDSCs
expressing intermediate levels of Gr-1 (monocytic or suppressive
MDSC, moMDSC; Kong et al., 2013) over DC, moMDSC/CD11c,
when compared to naïve, Montanide or PSNPs treated groups
(p < 0.01, Figure 5C). There was also a significant increase in the
ratio of MDSC expressing high levels of Gr-1 (granulocytic MDSC,
gMDSC; Kong et al., 2013) to DC (gMDSCs/CD11c) for all treat-
ments (p < 0.01 compared to naïve and PSNPs, and p < 0.05
compared to Montanide treatment, Figure 5D), however, the
magnitude of this increase was not as high as the increased ratio of

moMDSC/CD11c cells. Hence Poly I:C induced an environment
abundant in suppressive (monocytic) phenotype MDSC in the
dLN within a short time frame, whereas PSNPs and Montanide
did not promote increases in such MDSCs.

POLY I:C AND MONTANIDE PROMOTE THE INDUCTION OF TNFR2+ TREG
CELLS
Inflammatory, tumor necrosis factor (TNF) inducing, adjuvants
such as Montanide and Poly I:C, have the potential to stabilize
FoxP3 expression on Treg that express the TNF receptor 2 (TNFR2;
Chen and Oppenheim, 2011). TNFR2 has also previously been
found to identify the most highly active and immunosuppres-
sive Treg subset (Govindaraj et al., 2014). We speculated that
pro-inflammatory adjuvants could therefore increase the Treg
to T effector ratio in the dLN, and if this occurred during the
T cell priming phase, it could potentially interfere with effec-
tive CD8 T cell induction. We further analyzed the Treg and
T effector cells in the dLN (Figure 6A), and found that whilst
there was no overall increase in total Treg to T effector cell ratio
(CD25+FoxP3+ to CD25−FoxP3− cells; Figure 6B), Poly I:C
and Montanide significantly increased the frequency of TNFR2+
Treg (FoxP3+CD25+TNFR2+ cells) compared to TNFR2− Treg
(FoxP3+CD25+TNFR2− cells) in the dLN 48 h post injection,

FIGURE 5 | Differential expression of GR-1+ MDSCs and DCs in the

local dLN. Mice (BALB/c) were injected once intradermally at the base of
the tail with the different adjuvants alone. 48 h after injection, mice were
sacrificed, local (inguinal) dLNs were harvested and levels of GR-1+
MDSCs and DCs, and their ratios, were assessed by flow cytometry.

(A) gating strategy; (B) ratio of GR-1+ MDSCs: CD11c+ cells; (C) ratio of
moMDSCs: CD11c+ cells; (D) ratio of gMDSCs: CD11c+ cells. Data
presented as mean ± SD of ratio for each group of treatment (n = 3
mice/group). Statistical analysis was performed via t -tests, *p ≤ 0.05,
**p ≤ 0.01.
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FIGURE 6 | Differential expression of CD4+ Treg and effector T cells in

the local dLN. Mice (BALB/c) were injected once intradermally at the
base of tail with the different adjuvants alone. 48 h after injection, mice
were sacrificed, local (inguinal) dLNs were harvested and the levels of
CD4+ Treg and effector T cells, and their ratios, were assessed by flow

cytometry. (A) gating strategy; (B) ratio of FoxP3+CD25+: FoxP3−CD25−
cells; (C) ratio of FoxP3+CD25+TNFR2+: FoxP3+CD25+TNFR2− cells.
Data presented as mean ± SD of ratio for each group of treatment
(n = 3 mice/group). Statistical analysis was performed via t -tests,
*p ≤ 0.05.

compared to the naïve and PSNPs groups (p < 0.05, Figure 6C).
PSNPs maintained the balance of TNFR2+ to TNFR2− Treg
subpopulations.

DISCUSSION
The side-by-side comparison of three different adjuvant systems
for the induction of highly responsive CD8 T cells to a minimal
peptide epitope antigen from CSP of P. berghei demonstrated that:
(1) Non-inflammatory and inflammatory vaccines can elicit sim-
ilarly high levels of immune responses, (2) Non-inflammatory
nanovaccines require the minimal CD8 T cell epitope peptide to
be covalently attached to the nanoparticle carrier, suggesting pep-
tide delivery in vivo is key for antigenic stimulation, (3) Vaccines
can prime high levels of CD8 T cells by delivering the minimal
CD8 T cell epitope, without helper CD4 epitopes, (4) Inflamma-
tory, but not non-inflammatory, adjuvants result in the induction
of TNFR2+ Treg in dLNs during a timeframe consistent with the
priming of an immune response, and (5) Together with the induc-
tion of enhanced numbers of suppressor moMDSC, such findings
may explain the particularly poor capacity of Poly I:C to induce
CD8 T cell immune responses.

Both“Montanide + KI” and“PSNPs-KI” formulations induced
a similar magnitude of response after two immunizations, reach-
ing the minimum threshold IFN-γ production levels determined
to be required for sterile protection in the P. berghei challenge
model (Plebanski et al., 1998). Given a threshold of 100 spots was

required to start seeing sterile protection in about 74% of ani-
mals in previous studies (Plebanski et al., 1998), it is likely that
the 200 spots achieved by the nanovaccines would also be pro-
tective, although it will be important to confirm this formally.
The potentially protective IFN-γ levels produced in this study
merit additional validation in further direct challenge studies.
There may be additional advantages in using a non-inflammatory
nanoparticle approach over Montanide. Montanide is a viscous
combination of adjuvant with peptide, creating a depot at the
injection site with the antigen, associated with some pain and local
inflammation. As well as increasing compliance with vaccination,
the use of a non-inflammatory adjuvant system that substantially
drains to the lymph nodes, may, in the case of immunization of
individuals in malaria endemic areas, help minimize the risk of
triggering inflammatory feedback loops, such as those associated
with cerebral malaria. Previous studies have shown nanoparticle
based vaccines do not need to engage conventional inflammatory
pathways to induce adaptive immunity (Karlson Tde et al., 2013;
Xiang et al., 2013), and act by selectively targeting DCs, particularly
CD8+ DCs, directly in the local lymph nodes (Fifis et al., 2004a;
Mottram et al., 2007; Xiang et al., 2013), as well as by promoting
uptake by DC in the periphery followed by subsequent migration
via the afferent lymphatics (Gamvrellis et al., 2013). The critical
factor identified that promotes CD8+ DCs targeting was found
to be particle size (40–50 nm; Fifis et al., 2004a; Mottram et al.,
2007). The fact that mixed-in nanoparticles in this study did not
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act as conventional adjuvants, and hence the carrier activity of the
nanoparticles was sufficient and necessary to induce high levels of
immune responses, predicts that nanoparticle carriers of the cor-
rect size to target CD8+ DCs in vivo (made of non-inflammatory
materials) would also be capable of inducing high levels of immu-
nity. Given the explosion in nanomaterials and delivery systems,
this appears to be a promising and timely finding.

It was surprising to find that the “Poly I:C + KI” formulation
was unable to induce similarly high CD8 T cell responses when
compared side-by-side with the “Montanide + KI” and “PSNPs-
KI” formulations. This could be mechanistically explained by the
new finding that Poly I:C promotes dramatic increases in the ratio
of MDSCs to DCs, including moMDSCs, in the LNs draining
the injection site, within a timeframe capable of interfering with
local CD8 T cell priming. Moreover, whereas the frequency of
DCs remained the same in the dLN 48 h post injection with
either PSNPs, Montanide or Poly I:C, there were significantly
lower levels of MHCII expression on DCs treated with Poly I:C.
Down-regulation of some activation markers on DCs has been
associated in the literature with increases in suppressor MDSC
frequencies and their subsequent apoptosis (Shen et al., 2014).
MDSCs can suppress effector T cell responses directly, or by pro-
moting the expansion of Tregs in the presence of IFN-γ (Kong
et al., 2013).

Together our results suggest that non-inflammatory nanopar-
ticles 40–50 nm or Montanide can be used to induce potent CD8
T cell responses, even when used with purely a minimal CD8
T cell peptide epitope. Generally, the results herein also sug-
gest a new paradigm for highly immunogenic vaccines, which
could instead of delivering pro-inflammatory danger signals, be
designed to ‘keep under the radar’ to deliver antigen to cross-
priming CD8+ DCs whilst avoiding the expansion of some key
immunosuppressive and inflammation reactive cell populations.
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