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H5N1 influenza viruses with high lethality are a continuing threat to humans and poultry.
Recently, H5N1 high-pathogenicity avian influenza virus (HPAIV) has been shown to
transmit through aerosols between ferrets in lab experiments by acquiring some mutation.
This is another deeply aggravated threat of H5N1 HPAIV to humans. To further explore the
molecular determinant of H5N1 HPAIV virulence in a mammalian model, we compared
the virulence of A/Duck/Guangdong/212/2004 (DK212) and A/Quail/Guangdong/90/2004
(QL90). Though they were genetically similar, they had different pathogenicity in mice,
as well as their 16 reassortants. The results indicated that a swap of the PB2 gene
could dramatically decrease the virulence of rgDK212 in mice (1896-fold) but increase the
virulence of rgQL90 in mice (60-fold). Furthermore, the polymerase activity assays showed
that swapping PB2 genes between these two viruses significantly changed the activity of
polymerase complexes in 293T cells. The mutation Ser715Asn in PB2 sharply attenuated
the virulence of rgDK212 in mice (2710-fold). PB2 segment promotes high-pathogenicity
of H5N1 avian influenza viruses in mice and 715 Ser in PB2 plays an important role in
determining high virulence of DK212 in mice.
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INTRODUCTION
Recent research has confirmed that obtaining human receptor
binding specificity and enhancing the polymerase activity enabled
the H5N1 virus to achieve aerosol transmission between ferrets
(Herfst et al., 2012; Imai et al., 2012). This may allow novel
H5N1 virus to become the next pandemic. H5N1 HPAIV is
a continued threat to public health (Chen et al., 2004, 2005,
2006; Li et al., 2010; Wan et al., 2011). Therefore, it is perti-
nent to continue studying the pathogenesis mechanism of H5N1
HPAIV.

Several genes are confirmed as contributing to the virulence
and replication of H5N1 viruses. The PB2 and NS genes play an
important role in determining the pathogenicity of the influenza
virus to a host. Specific adaptation of polymerases was important
in determining viral host range and virulence (Hatta et al., 2007;
Neumann et al., 2007). Mutations occurring at key positions in
PB2, such as 158, 271, 627, and 701, could significantly enhance
the replication of H5N1 influenza A virus in mammalian cells as
well as pathogenicity and transmission in animal models (Hatta
et al., 2001; Li et al., 2005; Gao et al., 2009; Bussey et al., 2010;
Zhou et al., 2011). The virus’ capability to inhibit α/β-interferon
production obviously affected its level of virulence to its host. The
length of NS1 protein or mutation at position 92/42 affected the
virulence of viruses in mice and pigs by inhibiting production of
host interferon (Seo et al., 2002; Quinlivan et al., 2005; Jiao et al.,
2008). The PB1-F2 Asn66Ser variant also reduced the production
of host IFN α/β (Conenello et al., 2007). In addition, mutations
at receptor binding sites and disappearance of N-glycosylation

motif in HA protein affected the binding feature and virulence
(Hatta et al., 2001; Maines et al., 2006; Chen et al., 2007; Tumpey
et al., 2007; Yen et al., 2007a; Gao et al., 2009; de Wit et al., 2010).
Mutations in the M1 and NA genes could possibly promote viral
replication in mammalian cells and enhance the lethality of the
virus in mice (Yen et al., 2007b; Fan et al., 2009; van Wielink et al.,
2012).

However, the mammalian pathogenic mechanism of H5N1
HPAI virus is still not clear. In this study, we explored the molec-
ular determinants of different virulence in mice between DK212
and QL90, by engineering single segment swap reassortant viruses
and single amino acid mutation viruses using reverse genetics
technology.

MATERIALS AND METHODS
VIRUS, SEQUENCE, AND MOUSE
DK212 and QL90 and high-pathogenicity H5N1 influenza viruses
were isolated from ducks/quails in China, purified and propa-
gated in 9- to 11-day-old specific-pathogen-free (SPF) embry-
onic hen eggs, and stored at −80◦C. Viral RNA was extracted
from allantoic fluid with the RNeasy Mini kit (Qiagen) and
reverse transcribed with Superscript III (Invitrogen) by using
the primer of 12 units. PCR amplification was performed using
a set of special primers (Hoffmann et al., 2001). PCR prod-
ucts were purified using the PCR Purification Kit (Promega)
and sequenced by Shanghai Invitrogen Biotechnology Co., Ltd.
Sequenced data were compiled with the SEQMAN program of
Lasergene7 (DNASTAR). According to the characteristics of the
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Table 1 | Amino acid differences between DK212 and QL90.

Gene Difference and position of amino acids

PB2 Glna39bLysc Thr339Lys Arg340Lys Gly368Arg Ile649Val Thr684Ala Ser715Asn –d

PB1 Arg353Lys – – – – – – –

PA Leu261Phe Asn296Ser Glu327Gly Thr337Ala Val354Ile Lys544Glu Asn648Ser Ser653Pro

HA Ser100Asn Ala143Thr Leu154Gln Pro157Ser Thr172Ala Lys205Arg Asn289Ser –

NP – – – – – – – –

NA – – – – – – – –

M1 Met59Ile – – – – – – –

M2 Pro25Leu Ser31Asn Glu66Ala Asn82Ser – – – –

NS1 Val129Phe Tyr133Phe Asp166Gly Asn201Ser – – – –

NS2 Met14Val Met49Val Ile83Val Thr115Ala – – – –

aThe amino acid at corresponding position of DK212.
bThe position at which amino acids of the two viruses is different.
cThe amino acid at corresponding position of QL90.
d The protein sequence of DK212 is same to that of QL90.

HA antigen, DK212 belonged to Clade 9 (Sun et al., 2011), and
QL90 was in Clade 1. The two viruses shared the same NA and NP
genes but displayed 36 differences at the amino acid level in other
six genes (Table 1). Six-week-old, female SPF BALB/c mice were
purchased from the Laboratory Animal Center of South China in
Guangzhou.

GENERATION OF VIRUSES
The cDNA of genes from DK212 or QL90 were amplified by a
set of primers (Supplementary Tables 1, 2), and inserted into
a pHH vector using ESP3I enzyme cutting sites. Single muta-
tions were introduced into the PB2 gene by QuikChange II XL
Site-Directed Mutagenesis (Agilent Technologies) with a set of
primers (Supplementary Table 3). Viruses were rescued by using
an eight-plasmid reverse genetics system (Hoffmann et al., 2000).
The viruses obtained from cloned DK212 or QL90 cDNA were
designated rgDK212 and rgQL90, respectively. The viruses bear-
ing the PB2, PB1, PA, HA, NA, NP, M, or NS gene of QL90
and the other seven genes of DK212 were designated 212-90PB2,
212-90PB1, 212-90PA, 212-90HA, 212-90NP, 212-90NA, 212-
90M, and 212-90NS, respectively. The viruses bearing the PB2,
PB1, PA, HA, NA, NP, M, or NS gene from DK212 and the
remaining genes from QL90 were designated 90-212PB2, 90-
212PB1, 90-212PA, 90-212HA, 90-212NP, 90-212NA, 90-212M,
and 90-212NS, respectively. Mutant DK212 viruses containing a
substitution of the PB2 amino acid residue at position Gln39Lys,
Ile649Val, Thr684Ala, and Ser715Asn were designated 212-
Gln39Lys, 212-Ile649Val, 212-Thr684Ala, and 212-Ser715Asn.
Likewise, mutant QL90 viruses were designated 90-Lys39Gln, 90-
Val649Ile, 90-Ala684Thr, and 90-Asn715Ser, respectively. Rescued
viruses were then sequenced to conclude that there was no
unwanted mutation.

PATHOGENICITY OF VIRUSES TO MICE
To evaluate the pathogenicity of these viruses in mice, 6-week-
old, female SPF BALB/c mice were randomly divided into groups
of 8 mice. After being lightly anesthetized with CO2, the mice
were intranasally inoculated with the corresponding viruses, at

a dose of 106 EID50 in a 0.05 mL volume. Additionally, five
mice inoculated with 0.05 mL PBS served as negative controls.
Three mice in each group were euthanized at 3 days post-
inoculation (DPI) to determine virus titers in their brain, spleen,
kidneys and lungs, as previously described (Chen et al., 2004).
Virus titers were calculated as means ± standard deviation in
log10EID50/gram of tissue by using SPASS (Version 11.5), and
the data were analyzed using a One-Way repeated-measure anal-
ysis of variance (ANOVA) followed by Turkey and Duncan’s
multiple comparison test. The remaining mice were investigated
daily for 14 days to observe weight loss and mortality. Variation
of body weight was detected according to previous study (Li
et al., 2005; Jiao et al., 2008; Fan et al., 2009). Briefly, eight
mice in group were weighed and then the total weight was
divided by eight to get mean weight during 1–3 post infec-
tion days (DPI). After 3 DPI, total alive mice in the group
were weighed and then divided the number of live mice to get
meant weight. The mean body weight at time point minus the
mean body weight at 0 DPI and then the result was divided
the original mean body weight go get the percentage of weight
loss. To detect the 50% mouse lethal dose (MLD50) of viruses,
seven groups of five mice each were infected with 10-fold serial
dilutions, from 1 EID50 to 106 EID16

50. These mice were daily
investigated and weighed for 14 days. Mice which lost more
than 30% of their body weight were euthanized. MLD50 were
calculated using the Reed-Muench method (Reed and Muench,
1938).

POLYMERASE ACTIVITY ASSAY
To detect the polymerase activity of viruses, the plasmid
pMD18T-NP-LUCI was constructed. In a brief explanation, the
luciferase gene flanked with the non-coding region of NP of
DK212 was amplified, using pGL-3 control (Promega) as tem-
plate, by primer L-NPFL-NPR. It was then cloned into pMD18-T.
293T cell was cultured in a 12-well plate overnight. When
the monolayer formed approximate 90%, they were transfected
with 0.4μg of pHH-NP, pHH-PA, pHH-PB1, and pHH-PB2,
and 0.1μg of pMD-18T-NP-LUCI, as well as 0.1μg pRL-SV40
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(Promega) as an internal control. After transfection for 24h,
cell lysate was prepared and the luciferase yield was tested
by using the dual-luciferase reporter assay system (Promega),
with a single tube luminometer (Promega). Relative activity
of the polymerase was normalized to Renilla gene expression.
The results were calculated as means ± standard deviations
from three independent experiments, using SPASS (Version
11.5).

BIOSAFETY AND ANIMAL HANDLING
The laboratory and mice experiments were carried out under
BSL-3 conditions in compliance with biosafety committee of
South China Agriculture University approved protocols. The han-
dling of mice was performed in accordance with experimental
animal administration and ethics committee of South China
Agriculture University approved guideline.

RESULTS
THE VIRULENCE OF DK212 WAS STRONGER THAN QL90 TO BABL/c
MOUSE
To compare the pathogenicity of DK212 and QL90, mice were
intranasally infected with the corresponding virus at a dose of 106

embryo infective dose 50 (EID50). DK212 quickly caused 23.97%
body weight loss and killed all mice by 7 DPI at a dose of 106

EID50. Virus was isolated from the brain, spleen, kidney, and lung,
with a mean titer between 1.67 and 6.25 log10EID50 on 3 DPI.
Furthermore, the virus titer of DK212 was higher than that of
QL90 in the brain and kidney (p < 0.05). Although QL90 caused
25.54% body weight loss and killed all the mice at 10 DPI in a dose
of 106 EID50, the virus only replicated in the spleen and lungs
with a mean titer between 3 and 5.83 log10EID50 (Figures 1A,B
and Table 2). The MLD50 of DK212 was 1.5 log10EID50, while
the MLD50 of QL90 was 4.167 log10EID50 (Table 3). The
virulence of DK212 in mice was 464-fold higher than that
of QL90.

The pathogenicity of the rescued viruses was similar to that
of the wild-types. rgDK212 caused 26.36% body weight loss and
killed all the mice at 4 DPI at a dose of 106 EID50, and replicated
in four organs with a titer of 2.25–6.58 log10EID50. Meanwhile,
rgQL90 caused 10.36% body weight loss and caused 100% of
the mice to die by 9 DPI at a dose of 106 EID50 (Figures 1A,B).
rgQL90 only replicated in the spleen and lungs with a mean titer
of 2.5 log10EID50 and 5.25 log10EID50, respectively (Table 2).
The MLD50 of rgDK212 was 1.17 log10EID50 and the MLD50

of rgQL90 was 4.17 log10EID50 (Table 3). rgDK212 and rgQL90
exhibited similar properties to their original viruses in terms of
viral replication and MLD50.

THE SWAP OF PB2 COULD DRAMATICALLY DECREASE THE VIRULENCE
OF DK212 IN MICE
To detect the pathogenicity of a virus-bearing single segment
swap, mice were intranasally infected with the corresponding
virus at a dose of 106 EID50. Virus 212-90PB2 only caused 16.15%
body weight loss and caused 60% mice to die (Figures 2A,B).
The 212-90PB2 was only detected in the lungs, and the titer was
significantly lower than that of rgDK212 (Table 2). The MLD50

of 212-90PB2 virus was 1896-fold lower than that of DK212

FIGURE 1 | Lethality and weight variation of BABL/c mice caused by

DK212, QL90, rgDK212, and rgQL90. (A) Weight variation of BABL/c
mouse during the 14 days post-inoculation. The mean weight variation of
the mice infected with DK212, QL90, rgDK212, and rgQL90 at the doses of
106 EID50. (B) Death patterns of the mice infected with DK212, QL90,
rgDK212, and rgQL90 with the doses of 106 EID50.

(Table 3). The PB2 of DK212 was crucial to its high virulence in
mice.

THE SWAP OF PA–NA AND M COULD SLIGHTLY DECREASE THE
VIRULENCE OF DK212 IN MICE
Besides PB2, the swap of PA–NA and M slightly attenuated the
virus. 212-90PA, 212-90NA, and 212-90M caused 26.85–28.44%
body weight loss and killed all mice by 8–10 DPI. Most viruses
caused a systemic infection and then replicated. The mean titer
was 1.08–5.75 log10EID50 and the MLD50 was between 2.045
and 2.375. The virulence of these viruses was attenuated 7.55–
16.14 folds as compared to rgDK212 (Tables 2, 3). Notably, the
212-90M virus displayed no replication in the brain and lower
replication in the kidneys and lungs (p < 0.05).

THE SWAP OF PB1, NP AND NS MAINTAINS THE VIRULENCE OF DK212
IN MICE
The chimeric viruses 212-90PB1, 212-90NP, and 212-90NS
caused 27.46–29.43% body weight loss and killed all mice by 7–
8 DPI. Similar to DK212, these three chimeric viruses replicated
in four organs and the mean titer was 1.58–6.75 log10EID50. The
replication titer of 212-90NS in the kidneys was higher than that
of rgDK212 (p < 0.05). The MLD50 values of these three viruses
were between 1.167 and 1.35, and maintained similar virulence to
rgDK212.
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Table 2 | Virus titers in organs of BABL/c mice at 3 days

post-intranasal inoculation of viruses.

Viruses 3 days post i.n. inoculation

(log10 EID50/tissue/0.1 mL) ± SD

Brain Spleen Kidney Lung

DK212 2.58 ± 0.29a 1.67 ± 1.15a 2.92 ± 0.29a 6.25 ± 0

rgDK212 2.33 ± 0.63 3.5 ± 0.66 2.25 ± 0.5 6.58 ± 0.52

212-90PB2 <b <b <b 4.75 ± 0.5b

212-90PB1 1.58 ± 1.01 2.92 ± 0.76 2.75 ± 0.43 6.42 ± 0.76

212-90PA 1.83 ± 0.88 4.08 ± 0.29 2.42 ± 0.76 5.67 ± 0.38

212-90HA 1.25 ± 0.43 1.92 ± 0.58b <b 6.58 ± 0.29

212-90NP 1.92 ± 1.15 3.17 ± 0.14 2.75 ± 0.5 5.58 ± 1.26

212-90NA 1.25 ± 0.43 2.42 ± 1.04 2.83 ± 0.52 5.75 ± 0.43

212-90M <b 1.08 ± 0.14b 1.42 ± 0.72b 5.42 ± 0.29b

212-90NS 2.92 ± 0.29 3 ± 0.75 3.17 ± 0.14c 6.75 ± 0

212-Gln39Lys 1.25 ± 0.43 3.83 ± 0.14 3.08 ± 0.14d 7 ± 0

212-Ile649Val 2.17 ± 1.13 2.75 ± 1.39 2.17 ± 0.14 6.92 ± 0.14

212-Thr684Ala 1.75 ± 0.66 2.67 ± 1.18 1.08 ± 0.14e 6.92 ± 0.14

212-Ser715Asn 1.33 ± 0.58 3.25 ± 1.9 2.08 ± 0.76 6.67 ± 0.38

QL90 < 3 ± 1.52 < 5.83 ± 0.52

rgQL90 < 2.5 ± 1.39 < 5.25 ± 0.43

90-212PB2 < 2.75 ± 0.87 < 5.25 ± 0.43

90-212PB1 < <f < 4.08 ± 0.14f

90-212PA < 2.83 ± 1.59 1.92 ± 1.59 5.25 ± 0.5

90-212HA 1.42 ± 0.72 3.67 ± 0.38 2.33 ± 0.95g 6.17 ± 0.14g

90-212NP < 2.17 ± 1.01 < 5.08 ± 0.14

90-212NA < 3.75 ± 0.43 1.92 ± 0.29 5.75 ± 0.5

90-212M 1.08 ± 0.14 2.92 ± 1.01 1.75 ± 0.5 5.42 ± 0.29g

90-212NS 1.83 ± 0.88g 3.08 ± 0.76 1.58 ± 1.01 6.17 ± 0.52g

90-Lys39Gln < <h < 5.08 ± 1.04

90-Val649Ile < <h < 5.75 ± 0.5

90-Ala684Thr < 1.33 ± 0.58 1.08 ± 0.14 4.92 ± 0.14

90-Asn715Ser < <h < 3.58 ± 0.58h

“<” means no virus was detected from the undiluted sample in three embry-

onated hen eggs. Virus titers are expressed as means ± standard deviation in

log10EID50/tissue/0.1 mL.
aThe titer of DK212 is higher than that of QL90(P < 0.05).
bThe titer of chimeric viruses is lower than that of rgDK212 (P < 0.05).
cThe titer of chimeric viruses is higher than that of rgDK212 (P < 0.05).
d The titer of mutants is higher than that of rgDK212 (P < 0.05).
eThe titer of mutants is lower than that of rgDK212 (P < 0.05).
f The titer of chimeric viruses is lower than that of rgQL90 (P < 0.05).
gThe titer of chimeric viruses is higher than that of rgQL90 (P < 0.05).
hThe titer of mutants is lower than that of rgQL90 (P < 0.05).

THE SWAP OF HA SLIGHTLY INCREASED THE VIRULENCE OF DK212 IN
MICE
The chimeric virus 212-90HA caused 28.23% body weight loss
and killed all mice at 6 DPI. Although the MLD50 of 212-90HA
was 0.375, which is 6.19-fold higher than rgDK212, 212-90HA
replicated in the brain, spleen and lung, Mean titer was 1.25–6.58
log10EID50 and the replication titer in the spleen was lower than
rgDK212 (p < 0.05).

THE SWAP OF PB2 OBVIOUSLY INCREASED THE VIRULENCE OF QL90 IN
MICE
The 90-212PB2 virus caused 17.53% body weight loss and killed
all the mice at 8 DPI at a dose of 106 EID50 (Figures 2C,D).

Table 3 | The MLD50 of the wild-type viruses and their chimeric

viruses as well as mutants.

Viruses MLD50 Viruses MLD50

(log10EID50) (log10EID50)

DK212 1.5 QL90 4.167

rgDK212 1.167 rgQL90 4.17

212-90PB2 4.445 90-212PB2 2.4

212-90PB1 1.167 90-212PB1 3.445

212-90PA 2.045 90-212PA 6.25

212-90HA 0.375 90-212HA 4.167

212-90NP 1.375 90-212NP 4.445

212-90NA 2.167 90-212NA 4.167

212-90M 2.375 90-212M 4.276

212-90NS 1.167 90-212NS 2.045

212-Gln39Lys 3.6 90-Lys39 Gln 4.75

212-Ile649Val 2.464 90-Val649 Ile 5.25

212-Thr684Ala 3.75 90-Ala684Thr 5

212-Ser715Asn 4.6 90-Asn715Ser 4.625

The 50% mouse lethal dose (MLD50) was evaluated by infecting groups of five

mice with 10-fold serial dilutions, from 1 EID50 to 106 EID50. Mice were investi-

gated dailyand weighed for 14 days. Mice that lost body weight over 30% were

euthanized. MLD50 were calculated with Reed-Muench method.

Although 90-212PB2 had similar replication patterns as rgQL90,
the virulence of 90-212PB2 was 58.88(101.77)-fold higher than
that of rgQL90 (Tables 2, 3).

THE NS GENE OF DK212 SIGNIFICANTLY ENHANCED PATHOGENICITY
OF QL90 IN MICE
90-212NS viruses caused 21.32% body weight loss and killed all
mice at 9 DPI at a dose of 106 EID50. The swap of NS enabled the
QL90 virus to replicate in the brain, kidneys and lung with a titer
higher than rgQL90 (p < 0.05) (Table 2). In addition, the viru-
lence of 90-212NS in mice was 133.35(102.125)-fold higher than
that of rgQL90 (Table 3).

THE PB1 GENE OF DK212 SLIGHTLY INCREASED PATHOGENICITY OF
QL90 IN MICE
90-212PB1 caused 12.19% body weight loss and killed all mice at
9 DPI at a dose of 106 EID50. Compared to rgQL90, 90-212PB1
showed no detected replication in the spleen and had a lower
replication titer in the lungs with 4.08 log10EID50 (p < 0.05).
However, the virulence of 90-212PB1 was 5.31-fold higher than
that of rgQL90.

THE SWAP OF HA, NP, NA, AND M MAINTAIN THE VIRULENCE OF QL90
IN MICE
90-212HA, 90-212NA, and 90-212M caused 14.77–15.26% body
weight loss and killed all mice at 8–10 DPI, at a dose of 106 EID50.
These three viruses showed replication in multiple organs with a
titer of 1.08–6.17 log10EID50. The titer of 90-212HA in the kid-
neys was higher than that of rgQL90 (p < 0.05) (Table 2). The
MLD50 of these three viruses were 4.167–4.276. The 90-212NP
virus at most caused 25.64% body weight loss and killed 60% of
mice (Figures 2C,D). 90-212NP only replicated in the spleen and
lung. The MLD50 of 90-212NP was 4.445 (Table 3).
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FIGURE 2 | Lethality and weight variation of BABL/c mice caused by

rgDK212, rgQL90, and their chimeric viruses. (A,C) Weight variation of
BABL/c mouse during the 14 days post-inoculation. The mean weight
variation of the mice infected with rgDK212, rgQL90 and their and chimeric

viruses of which one gene was replaced with the corresponding that of
QL90, at the doses of 106 EID50. (B,D) Death patterns of the mice
infected with rgDK212, rgQL90and their chimeric viruses, with the doses
of 106 EID50.

THE SWAP OF PA SIGNIFICANTLY DECREASED THE VIRULENCE OF
QL90 IN MICE
90-212PA had no obvious effect on body weight, and killed
20% of mice at a dose of 106 EID50 (Figures 2C,D). 90-212PA
replicated in the spleen, kidneys and lungs with a titer of 1.92–
5.25 log10EID50 (Table 2). The MLD50 of 90-212PA was 6.25,
120.23(102.08)-fold lower than that of rgQL90 (Table 3).

THE PB2 715SER MAINLY DECIDED THE HIGH VIRULENCE OF DK212 IN
MICE
To further determine the PB2 differences between these two
viruses in pathogenicity to mice, we selected four single sites to
generate mutants with a single amino acid swap, and detected
their pathogenicity in mice. The 212-Gln39Lys, 212-Ile649Val,
212-Thr684Ala, and 212-Ser715Asn viruses caused 25.57–29.24%
body weight loss, and killed all the mice at 6–9 DPI. These four
mutant strains could replicate in multiple organs with a titer of
1.08–7 log10EID50. The titer of 212-Thr684Ala in the kidneys was
lower than that of rgDK212 (p < 0.05). The MLD50 of these four
viruses were 2.464–4.6, and were 19.82–2710.19-fold lower than
rgDK212. Notably, the Ser715Asn mutation sharply decreased
the virulence of rgDK212 in mice (2710.19-fold) (Figures 3A,B,
Tables 2, 3). These results indicated that 715Ser made a great
contribution to the high pathogenicity of DK212 in mice.

THE SINGLE AMINO ACID MUTATION DECREASED THE VIRULENCE OF
QL90 IN MICE
The 90-Lys39Gln, 90-Val649Ile, 90-Ala684Thr and 90-Asn715Ser
caused 2.12%–29.48% body weight loss, and killed 40–100% of

mice. 90-Ala684Thr could replicate in the spleen and kidneys,
but the other three mutants only replicated in the lungs with a
titer of 3.58–5.75 log10EID50, at a dose of 106 EID50. The results
of MLD50 indicated the respective virulence of these four viruses
were 2.19–38.02 folds lower than that of rgQL90 (Figures 3C,D,
Tables 2, 3).

THE PB2 OF DK212 WAS INVOLVED IN HIGH POLYMERASE ACTIVITY
To compare the PB2 role of these two viruses in polymerase
complexes, polymerase activity assay was conducted. The activ-
ity of polymerase complexes of DK212 was 85-fold higher than
QL90 in 293T cells at 37◦C. After the swap of PB2 between these
two viruses, 90-212PB2 polymerase complex activity was 26-fold
higher than QL90 at 37◦C. In contrast, the activity of 212-90PB2
complex was 11-fold lower than that of the DK212 complex
(Figure 4). These results indicated that the PB2 gene was heav-
ily involved in the discrepancy between the polymerase activity
levels of these two viruses in human 293T cells at 37◦C.

DISCUSSION
H5N1 highly pathogenic avian influenza virus could be trans-
mitted to ferrets by aerosol droplets due to the acquisition of
some mutations in HA and PB2 in lab experiments. This kind
of novel virus may aggravate the threat to public health posed by
H5N1 HPAIV. Therefore, studying the molecular mechanism of
the pathogenicity of H5N1 virus in mammalian models is still
emergent and necessary.

The PB2 protein plays an important role in pathogenic-
ity. Mutation of Glu 627Lys or 701Asn in PB2 increases the
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FIGURE 3 | Lethality and weight variation of BABL/c mice caused by

rgDK212, rgQL90, and their four mutants. (A,C) Weight variation of
BABL/c mouse during the 14 days post-inoculation. The mean weight
variation of the mice infected with rgDK212, rgQL90 and their single

amino acid mutants, at the doses of 106 EID50. (B,D) Death patterns of
the mice infected with rgDK212, rgQL90 and mutants viruses of which
single amino acids of PB2 gene was substitution, with the doses of 106

EID50.

FIGURE 4 | Relative activity of polymerase complexes of QL90,

90-212PB2, DK212, and 212-90PB2. The 293T cells were transfected with
pHH-NP, pHH-PA, pHH-PB1, and pHH-PB2, along with the luciferase and
renilla reporter gene plasmids. Transfected cells were cultured at 37 for 24 h,
and luciferase and renilla production were determined. The relative activity of
polymerase complexes was expressed as the production of luciferase
dividing the production of renilla. The results were calculated as means ±
standard deviations from three independent experiments, by using of SPASS
(version 11.5).

pathogenesis of viruses in mammalian hosts (Li et al., 2005;
de Jong et al., 2013) and transmissibility between mammalian
models (Gabriel et al., 2008; Gao et al., 2009; Steel et al., 2009).
In addition, mutation Gln591Lys of PB2 could compensate for
the lack of PB2-627Lys and increase the virulence of an avian

H5N1 influenza virus in mice (Yamada et al., 2010). In this study,
the amino acids at positions 591, 627, and 701 in PB2 were Gln,
Glu, and Asp for DK212 and QL90, but both of them still had
high levels of pathogenicity in mice. The results support the con-
tribution of the virus without 627Lys or 701Asn or Gln591Lys
could be compensated for by other mutations at other sites of
PB2. The virulence of DK212 showed 464-fold higher than that
of QL90 in mice. The swap of PB2 sharply decreased the viru-
lence of rgDK212 (1896-fold) and limited replication of rgDK212
to the lungs only and with lower titer in mice. In contrast, the
swap of PB2 dramatically increased the virulence of rgQL90 in
mice (60-fold). The results indicated PB2 was a key factor for
determining differences in the virulence of DK212 and QL90
in mice.

The PB2 protein is also involved in polymerase activity and
nuclear localization. PB2 acts as a “cap snatching” function in
polymerase complex of influenza. The cap binding sites of PB2
locates in residues 32–483. The C-terminal of PB2 (residues
538–759) interacts with host proteins. Introduction of mutations
in the PB2 gene, such as 339 Lys, 271Ala, 627Lys, 591Lys/Arg,
701Asn, and 714Arg enhance polymerase activity in mammalian
cells (Gabriel et al., 2005; Bussey et al., 2010; Yamada et al.,
2010; Liu et al., 2013). In this study, the different amino acids
include Gln39Lys, near the domain of PB2 which binds to PB1;
Thr339Lys, Arg340Lys, and Gly368Arg, locate in “cap snatching”;
Ile649Val, Thr684Ala, and Ser715Asn, locate in the domain in
which PB2 reacts with the host protein. Mutations were located in
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or near the regions in which proteins or protein/RNA interactions
affected the activity of polymerase complex. Swapping the PB2
gene significantly enhanced the polymerase activity of QL90 (26-
fold) and sharply reduced the activity polymerase complex of
DK212 (11-fold) in human 293T cells at 37◦C. These results indi-
cated that PB2 of DK212 played an important role in maintaining
high polymerase activity. The different properties of the PB2 in
DK212 and QL90 might account for their differing replication
ability in mice.

The NS1 protein is an important factor in virulence by antag-
onizing IFN-α/β production for avian influenza viruses in a
mammalian model (Cheung et al., 2002; Quinlivan et al., 2005;
Li et al., 2006). NS1 could reduce the production of IFN-α/β by
binding to dsRNA or retinoic-acid inducible gene I (RIG-I) lig-
ands to block activation of 2′-5′-oligoadenylatesynthetase (OAS)
and protein kinase R (PKR). NS1 also could suppress IFN pre-
mRNA processing and mRNA nuclear exports, by binding to the
cellular pre-mRNA processing protein cleavage and polyadenyla-
tion specificity factor (CPSF30) (Hale et al., 2008; Zhang et al.,
2013). The H5N1 virus with some mutation, such as Asp92Glu,
Pro42Ser, Leu103Phe, and Ile106Met in NS1, could enhance the
ability to inhibit the IFN-α/β production and increase viral repli-
cation, resulting in high pathogenicity in pigs or mice (Seo
et al., 2002; Twu et al., 2007; Jiao et al., 2008). In addition,
the C-terminus of the NS1, PDZ-ligand domain was involved
with the virulence level (Jackson et al., 2008). There were 4
amino acid discrepancies in NS1 and NS2 between DK212 and
QL90, respectively. Swapping the NS gene could dramatically
enhance the pathogenicity of rgQL90 (133.35-fold) and enable
rgQL90 replication in the brain. The swap of NS gene did not
obviously affect the pathogenicity and replication of DK212 in
mice. These findings indicated the differences in NS protein
between DK212 and QL90 could possibly play a key role in
determining virulence. In addition, the higher activity of the
polymerase complex of DK212 could counteract the effects of
swapping the NS gene and maintaining the virulence of DK212
in mice.

HA protein serves as binding and fusogenic function dur-
ing influenza A virus infection. Amino acid substitutions in HA
which affect the receptor binding preference may alter tissue
tropism and change virulence in the host (Schrauwen et al., 2014).
The multi-basic cleavage site was critical for the spread of the
H5N1 virus to the mouse brain following intranasal infection
(Hatta et al., 2001). In this study, despite DK212 and QL90 hav-
ing the same multi-basic cleavage site, there were 7 amino acid
discrepancies in HA. QL90 was not similar to DK212 and only
replicated in the spleen and lungs. The swap of HA increased
the virulence of rgDK212 19.72-fold but also made rgDK212 lose
the ability to replicate in the kidneys. Meanwhile, the swap of
HA enabled rgQL90 replication in the brain and kidneys. These
results indicated that HA of DK212 was important for the virus
in maintaining the multiple-tissue tropism.

Non-coding sequences at the vRNA segments were parts of
the viral RNA packing signals, mutation in no-coding area would
affect viral RNA synthesis (Muster et al., 1991; Zheng et al., 1996;
Watanabe et al., 2003; Liang et al., 2005; Ng et al., 2008). In addi-
tion, the coding region located at the end of the neuraminidase

segment played an important role in RNA segment incorpora-
tion into virion (Fujii et al., 2005). 22 nucleic acids displayed
differences in the non-coding and coding regions of the NA gene
between DK212 and QL90. The differences in these nucleic acids
of NA affected viral RNA synthesis and the formulation of virion,
and subsequently attenuated the pathogenesis of DK212 virus in
mice.

There were 7 amino acids discrepancy in PB2 between DK212
and QL90, which included three discrepancies at PB2 Ile649Val,
Thr684Ala, and Ser715Asn located in the nuclear localization
domain or host protein binding domain (Brown, 2000), and one
discrepancy at Gln39Lys PB2, near the PA binding area (residues
1–35) (He et al., 2008; Sugiyama et al., 2009). Their muta-
tion may disturb nuclear localization and interrupt the host’s
antiviral pathway to change the viral replication. Therefore, we
chose these four sites to generate the single amino acid mutant.
The virulence of 212-Gln39Lys, 212-Ile649Val, 212-Thr684Ala,
and 212-Ser715Asn showed as being 19.82–2710.19-fold lower
than in rgDK212. It is noteworthy that the Ser715Asn muta-
tion dramatically decreased the virulence of DK212 by almost
2710.19-fold. Similar to rgDK212, the single amino acid swap
decreased the virulence of rgQL90 in mice (2.19–38.02-fold).
Asn715 Ser mutation made QL90 only able to replicate in
the lungs with a lower titer. The Ser714Arg single mutation
introduced into SC35 did not increase the virulence of the
virus in mice, but 714Arg was essential for SC35M in main-
taining high pathogenicity. PB2 714Arg worked together with
other mutations for the adaptation of SC35M (Gabriel et al.,
2005). Likewise, the Ser715Asn single mutation sharply decreased
the virulence of DK212, but the Asn715Ser single mutation
did not increase the pathogenicity of QL90. 715Ser was essen-
tial for maintaining high pathogenicity of DK212, but not
for QL90.

In light of the present study, PB2 of DK212, which dramatically
affected the polymerase activity, mainly contributed to the differ-
ence in virulence of DK212 and QL90 in mice. In addition, 715Ser
in the PB2 protein played an important role in maintaining high
pathogenicity of DK212 to mice.
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