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River-floodplain systems are susceptible to rapid hydrological events. Changing
hydrological connectivity of the floodplain generates a broad range of conditions,
from lentic to lotic. This creates a mixture of allochthonously and autochthonously
derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic
extracellular release (PER), is an important source supporting bacterial secondary
production (BSP). Nonetheless, no details are available regarding microbial extracellular
enzymatic activity (EEA) as a response to PER under variable hydrological settings
in river-floodplain systems. To investigate the relationship between bacterial and
phytoplankton components, we therefore used EEA as a tool to track the microbial
response to non-chromophoric, but reactive and ecologically important DOM. The study
was conducted in three floodplain subsystems with distinct hydrological regimes (Danube
Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced
%PER (up to 48% of primary production) in a hydrologically isolated subsystem was
strongly correlated with β-glucosidase, which was related to BSP. This shows that—in
disconnected floodplain backwaters with high terrestrial input—BSP can also be driven
by autochthonous carbon sources (PER). In a semi-isolated section, in the presence
of fresh labile material from primary producers, enhanced activity of phenol oxidase
was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by
enzymatic degradation of particulate primary production. Our research demonstrates that
EEA measurements are an excellent tool to describe the coupling between bacteria and
phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM.
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INTRODUCTION
In river-floodplain systems seasonal floods or low water episodes
create a range of lotic to lentic conditions in the backwaters.
Depending on the duration and frequency of spates and on
the distance of a side arm from the main channel, different
types of side backwaters can be distinguished. These range from
frequently connected to fragmented and very rarely flooded parts
to side-arms that are completely disconnected from the main
channel. Rapid hydrological events introduce substantial loads of
terrestrial dissolved organic matter (DOM) into the floodplain
(Hein et al., 2003). Moreover, disconnected and stable hydrolog-
ical situations, observed after a flood, enhance phytoplankton
productivity (Hein et al., 1999). This creates a complex DOM
pool with a mixture of allochthonously and autochthonously
derived material, potentially available for bacterial
utilization.

Autochthonous autotrophic production is an important car-
bon source also for secondary production in rivers (Thorp and
Delong, 2002; Bunn et al., 2003). Nonetheless, DOM generated
in situ often is insufficient to exclusively support aquatic food

webs (Kritzberg et al., 2004). Particularly in aquatic systems where
primary production is low compared with the terrestrial load of
DOC (Kritzberg et al., 2005), allochthonous DOC can become
essential for bacterial secondary production (BSP) (Jansson et al.,
2000). BSP may be much higher when faced with pulse resource
addition compared to the same quantity of DOC supplied con-
tinuously over a longer time period (Lennon and Cottingham,
2008). This points to the importance of seasonal disturbance
events (such as floods) for BSP.

Even if most of carbon needed for bacterial growth may be
supplied from other than autochthonous sources (Fouilland and
Mostajir, 2010), the autochthonous material is preferentially uti-
lized prior to terrestrial DOM. In pelagic zones, an important
source of autochthonous carbon is photosynthetic extracellular
release of phytoplankton (PER). The link between PER and bac-
terial heterotrophic metabolism has been studied in freshwater
and marine systems. In floodplain studies, however, this is rarely
measured routinely. The rate and quality of the exudated material
depends on the phytoplankton species, cell size (López-Sandoval
et al., 2013) and on the type of aquatic ecosystem (Fogg, 1983).
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Nutrients (Meon and Kirchman, 2001; Wyatt et al., 2014), light
(Hulatt et al., 2009), UV radiation (Pausz and Herndl, 1999)
and other factors can also significantly impact the percentage,
composition and microbial utilization of PER (Sarmento and
Gasol, 2012; Landa et al., 2013). Related phytoplankton species
may produce similar suits of DOM, which has implications for
shaping bacterial communities (Becker et al., 2014). However,
the composition of PER may depend on the growth phase of
phytoplankton (Barofsky et al., 2009). In general, most pri-
mary production exudates are high-quality substrates, comprised
mainly of monomeric sugars, carboxylic acids and amino acids
(Bertilsson and Jones, 2003), which can be directly assimilated
by bacteria, stimulating the growth and abundance of micro-
bial communities (Norrman et al., 1995). Numerous studies have
revealed the importance of PER for bacterial metabolism and the
direct utilization of PER by bacteria (Cole, 1982; Chrzanowski
and Hubbard, 1989; Baines and Pace, 1991). Nonetheless, other
studies could not demonstrate direct coupling between BSP and
PER (Teira et al., 2003; López-Sandoval et al., 2010). Thus, beside
monomeric compounds, phytoplankton exudates may be com-
posed also of high molecular weight material, mostly polymeric
sugars (Myklestad, 1995; Giroldo and Vieira, 2005), which are
not directly available for bacteria. In such cases, an enzyme-
mediated step is necessary to assimilate these polymeric exudates.
The optical properties of PER provide information on PER com-
position (Stedmon and Markager, 2005; Romera-Castillo et al.,
2011). Such investigations, however, do not cover the broad
range of non-chromophoric compounds that are also exudated
(Rochelle-Newall and Fisher, 2002). Measurements of extracel-
lular enzymatic activity (EEA) is an alternative approach that
enables tracking the microbial response to non-chromophoric,
but quickly cycling DOM. The activity of extracellular enzymes
enables detecting shifts in the microbial response to varying
resources (Wagner et al., 2014), especially those that are rela-
tively quickly exploited by the bacterial community. Production
of extracellular enzymes by bacteria can be regulated by the DOM
supply (Chróst, 1991) and it is directly linked to mechanisms of
DOM processing (Sinsabaugh and Foreman, 2001). Hence EEA
likely is regulated by the composition of phytoplankton exudates
(Chróst and Siuda, 2006).

Model enzymes used to study bacterial degradation of carbo-
hydrates and proteins are β-glucosidase and leu-aminopeptidase
(Cunha et al., 2010), but the activity of other enzymes
has also been measured frequently (Chróst and Siuda, 2002;
Sinsabaugh, 2010). Although some studies report the extra-
cellular enzymatic response to phytoplankton exudates in
the water column (Obernosterer and Herndl, 1995; Fajon
et al., 1999) and sediments (Goto et al., 2001), this topic
remains understudied. Especially under variable hydrologi-
cal settings in river-floodplain systems this process has been
neglected.

Our study was designed to compare water column processes
in three different floodplain sections located in a river-floodplain
system of the Danube. The focus was on the post-flood period. We
investigated relationships between natural phytoplankton pro-
ductivity and microbial EEA in these distinct subsystems. The
main goals of the study were:

- to characterize potential environmental differences between
subsystems located in relatively close vicinity in the same flood-
plain area,

- to investigate how extracellular enzymes respond to primary
production, emphasizing the effect of phytoplankton extracel-
lular release in temporarily compared to permanently discon-
nected water bodies,

- to elucidate the importance of autochthonous, phytoplankton-
derived DOM for microbial uptake in an environment typically
dominated by allochthonous DOM,

- to elucidate whether the main DOM sources for bacterial
growth are different in hydrological individual and diverse
subsystems of a floodplain after a flood.

MATERIALS AND METHODS
STUDY SITE
The study was conducted in the area of the “Danube Floodplain
National Park” (DFNP) downstream of Vienna, Austria. Some
parts of this area are severely impacted by human activity (river
regulation), whereas others were restored about 15 years ago
(Schiemer et al., 1999). Water samples were collected after a 30-
year flood from backwaters located in three different subsystems
of the DFNP (Figure 1). These subsystems, although close to one
another, exhibit distinct hydrological regimes, with different types
of surface connectivity with the main Danube channel. Subsystem
I (hereafter termed: I) is located in a semi-natural and restored
part of the river-floodplain, where two side arms (A and B) were
chosen (Figure 1). Although A and B are situated in different sec-
tions of the DFNP, both have very similar characteristics. They
have been restored by lowering the riverbank, which results in
frequent changes of lentic to lotic and flowing conditions (220
(A) and 180 (B) days per year). In subsystem II (hereafter: II) two
temporarily disconnected backwaters (C) and (D) were selected
(Figure 1). Section C and D are located in a semi-separated area
of the floodplain, which is protected from direct flow-through by
a levee and additional weirs. Here, a surface connection of back-
waters with the main channel is established only rarely (average 18
days per year), during higher water level of the Danube (>1.30 m
above mean water). Both backwaters are open water bodies, where
DOM derives from external (fallen leaves, rare river water import)
as well as from internal sources (phytoplankton, macrophytes).
Subsystem III (hereafter: III) in former times was an integral part
of the “active” floodplain area, but due to a major regulation of
the river in the nineteenth century (embankment and additional
weirs), subsystem III has been permanently separated from the
main channel. Therefore, it is never flushed even during excep-
tional floods. Hence, surface connection with the Danube is never
established; the only connection with the Danube is through infil-
tration from groundwater. Subsystem III is situated in a highly
shaded area (average light intensity at midday: 195 μmol photons
PAR m−2 s−1) where the dominating DOM input is probably of
allochthonous origin (leaves, debris).

Water samples from all stations were always collected between
10 and 12 a.m. with rinsed polyethylene bottles (10 l, single sam-
ple) and transported to the laboratory within 3 h in dark boxes
at in situ temperature. Surface water sampling was performed
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FIGURE 1 | Danube River and its floodplains downstream of Vienna. Letters indicate the sampling sites. I–III indicate different subsystems.

between July and October 2009, which covered the post-flood
period. In subsystems II and III the sampling included a 2-weeks-
longer period than in I. Because both locations in subsystem I still
experienced flooding conditions in early July, we did not include
these samples into our post-flood analyses. Water samples from
subsystem I were collected on 5 dates, whereas in II and III, sam-
ples were taken on 9 dates. The intensity of sampling was more
frequent at the onset of the post-flood phase (every few days)
and decreased toward the end of the investigation period (every
month). In subsystem I the first sample was taken 7 days after
flood while in subsystem II, 3 days after the flooding.

ANALYSES OF ABIOTIC PARAMETERS
Water level, temperature, oxygen saturation (WTW, Oxi 315i)
and vertical profiles of light intensity (μmol photons PAR m−2

s−1, every 10 cm, LICOR sensor) were measured in situ at each
location. The key nutrients determined included: three nitro-
gen compounds—nitrate, ammonia, dissolved organic nitrogen
(DON)—and soluble reactive phosphorus (SRP). These analyses
were completed within 24 h using the German standard methods:
nitrate: DIN 38405-29, ammonia: DIN 38406-5, SRP: DIN EN
ISO 6678, soluble KjeldahL-N: DIN 38406-5. DON was assessed
by subtracting ammonia from soluble KjeldahL-N (Peduzzi et al.,
2008) and the ratio DOC/DON was determined. The ratio of dis-
solved inorganic nitrogen [(nitrate+ammonia) (DIN)] and SRP
was calculated as DIN/SRP.

PRIMARY AND SECONDARY PRODUCERS
Phytoplankton productivity and biomass
To make our measurements comparable, the samples for primary
production were taken at the same time of day during all sam-
pling events right below the water surface (10–20 cm). Particulate
primary production (pPP) and net photosynthetic extracellular
release (PER) of phytoplankton were determined using a 14C
method, originally proposed by Steemann-Nielsen (1974), mod-
ified according to Preiner et al. (2008). We measured the rate of

carbon fixed in particulate material (cells; pPP), while PER was
assessed to estimate dissolved organic carbon released by phyto-
plankton into the surrounding water. Total primary production
(PPt) was calculated as the sum of pPP and PER. Assessing PPt
was needed to calculate the relative fractions. For each station,
8 bottles with a defined volume (∼117 ml) were incubated in a
water basin at in situ temperature for 3.5–4 h after adding sodium
bicarbonate (NaH14CO3) 14C (20 μCi/ml). This time period was
selected according to Myklestad (2000) and Preiner et al. (2008)
assuming that, on one hand, it was not too short to obtain mea-
surable results. On the other hand, avoiding that the bacterial
community has not passed its latent period and not reached max-
imum uptake rates. With this it was attempted to minimize a
bias due to potentially remaining bacterial uptake. Bottles were
exposed in a light gradient covering the environmental condi-
tions (10–560 μmol Photons m−2 s−1). The sample water was
permanently mixed by placing the bottles on a rolling table. Two
additional bottles were kept in dark to determine the unspe-
cific adsorption of 14C. After the incubation, filtration (0.45 μm;
Millipore HAWP) separated the particulate from the dissolved
fraction (Wetzel and Linkens, 1990) using low vacuum pres-
sure (<50 mBa). The filtrate from each sample (5 ml), including
dark-incubated samples, was collected. The filters were placed
in scintillation vials with 0.5 ml 0.5N HCl to remove the inor-
ganic 14C (Peterson, 1980). The filtrate was decontaminated by
acidifying the samples to pH 4 and bubbling with air for 15 min
(Peterson, 1980; Parsons et al., 1984). Filters were dissolved with
ethyl acetate to minimize self-adsorption (Peterson, 1980) and
scintillation cocktail was added. After 24 h radioactivity of each
sample was measured in a scintillation counter (Parsons et al.,
1984) to determine disintegrations per minute (DPMs). DPMs
of dark-incubated samples were subtracted to calculate pPP and
PER. For the characterization of the light climate, the light atten-
uation coefficient was determined from vertical light profiles and
light curves (P/I curves) were created. Primary production [μg C
l−1 h−1] was calculated according to Jassby and Platt (1976) based
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on surface radiation, the attenuation coefficient and the depth
where the samples were taken (Riedler and Schagerl, 1998). The
analytical variability was always <10%. The rate of carbon fixed
in particulate organic matter (cells; pPP) was compared to the
rate of dissolved organic carbon released extracellularly by phyto-
plankton (PER). The relative extracellular release was defined as
percentage of total primary productivity (PPt): %PER = PER ×
100/(PP+PER). Additionally, for a biomass estimate, the concen-
trations of chlorophyll a (chl a) were determined using standard
methodology (Lorenzen, 1967); the method is described in more
details by Schagerl et al. (1996).

Bacterial secondary production
Bacterial secondary production (BSP) was assessed based on the
method of [3H] thymidine (20 μl, 20 nM final concentration)
incorporation into DNA (Fuhrman and Azam, 1982). Three repli-
cate samples and two additional formaldehyde-killed (2% final
concentration) samples (5 ml), which served as controls, were
incubated in dark at ambient temperature for 0.45–1.5 h. After
the incubation, samples and controls were filtered (0.45 μm;
Millipore HAWP). Filters were collected in scintillation vials and
dissolved in ethyl acetate. Afterwards scintillation cocktail was
added and samples were placed into the scintillation counter. The
analytical variability was always <10%. BSP [μg C l−1 h−1] was
calculated using an average Danube-specific conversion factor
of 3.2 × 1018 cells produced per mol of incorporated thymi-
dine (Berger et al., 1995). The ratio of BSP:PPt was calculated,
based on hourly rates as an instantaneous BSP/PPt ratio, the ratio
right at the day time of sampling. This ratio was used to estab-
lish the relative share of primary production used by BSP, hence
to characterize a potential coupling between the bacterial and
phytoplankton compartments (Ducklow and Carlson, 1992).

Bacterial abundance
Sample water (1–2 ml) was fixed with formaldehyde (2% final
concentration) and stained with 4.6-diamidino-2-phenylindole-
dihydrochloride (DAPI) (10 μg ml−1). Bacterial abundance (BA)
was determined by epifluorescence microscopy (Nikon E 800)
in 20–30 randomly chosen fields according to Porter and Feig
(1980).

DOM characterization
Water samples were filtered through pre-combusted (500◦C)
GF/F filters (0.7 μm, pore size) within 3 h of collection. Samples
for DOC concentration [mg l−1] were acidified to pH 3 and ana-
lyzed by high-temperature combustion using a Shimadzu TOC
5000 analyzer (Benner and Strom, 1993). We applied optical
DOM indices to obtain information about DOM quality in each
subsystem. Absorbance at wavelengths of 364, 254, and 250 nm
was measured in a 5-cm quartz cuvette with a spectrophotometer
(Hitachi U-2000). Carbon-specific UV absorbance (SUVA254) [l
mg−1 m−1] was calculated as the ratio of absorbance at 254 nm to
the DOC concentration. SUVA254 is reported to be positively cor-
related with DOC aromaticity (Weishaar et al., 2003). SUVA254

has also been used as an indicator of terrestrial sources of DOM
(Jaffé et al., 2008). Additionally, the ratio of absorbance measured
at 250 nm to absorbance at 364 nm (E2:E3 ratio), first proposed

by De Haan and Boer (1987), was calculated. The E2:E3 ratio
was determined to track changes in the relative size of DOM
molecules. E2:E3 is inversely related to average DOM molecu-
lar weight, hence higher E2:E3 ratios, indicate lower molecular
weight of DOM. The E2:E3 ratio has been shown to be a good
indicator to track alterations in molecular weight of DOM dur-
ing and after rapid hydrological changes (Ågren et al., 2008).
Furthermore, to distinguish DOM originating from microbial
sources (including algal-derived) from terrestrially derived DOM,
the fluorescence index (FI) (McKnight et al., 2001; Sieczko and
Peduzzi, 2014) was determined with a Shimadzu spectrofluo-
rophotometer RF-5301 PC. FI is the ratio of the emission intensity
at 450–500 nm under excitation at 370 nm; FI end-values of ∼1.3
indicate allochthonously produced DOM, whereas ∼2.0 implies
autochthonously derived material.

Extracellular enzymatic activity (EEA)
EEA was measured to infer available organic matter sources
as suggested by Boschker and Cappenberg (1998) for natural
systems. Hence we used EEA as a tool to obtain information
about availability of non-chromophoric but reactive and quickly
cycling DOM (Sieczko and Peduzzi, 2014). Part of the rapidly
metabolized DOM (including phytoplankton-derived DOM) is
non-chromophoric, but it also includes bioavailable polysaccha-
rides and proteins. Hence, this part of the DOM pool cannot be
tracked with standard optical methods. Therefore, serving as a
proxy, this ecologically important DOM was investigated by EEA
measurements.

Fluorogenic substrate analogs were used to assess poten-
tial hydrolysis rates of α-, β- glucosidic and peptide bonds.
To estimate the activity of α- (EEAa) and β- (EEAb)
glucosidase, 4- methylumbelliferyl (MUF)-α-D-glucoside and
4-MUF-β-D-glucoside were used, respectively. To measure the
activity of leucine aminopeptidase (EEAleu), L-leucine 7-amido-
4-methylcoumarin was used. For measuring the extracellular
enzymatic activity, triplicates of 3 ml of sample water with
15 μl fluorescently- labeled substrates (final, substrate saturat-
ing concentration: 2.5 μM) were incubated in the dark at in situ
temperature. Fluorescence of the replicates was measured imme-
diately after adding the substrate (t0) and after 45–90 min (t1)
at an excitation wavelength of 360 nm and an emission wave-
length of 444 nm (Hoppe, 1983) with a spectrofluorophotometer
(Shimadzu RF-5301 PC). Substrate degradation was calculated
from the increase in fluorescence over time as nmol substrate
hydrolyzed per liter per hour (Hoppe, 1993).

Phenol oxidase activity (PhOx) was measured spectrophoto-
metrically following the method outlined by Pind et al. (1994).
Incubations were completed by mixing 2 ml of unfiltered sam-
ple water with 2 ml of L-3,4-Dihydroxyphenylalanine (DOPA)
stock solution (5 mM DOPA in 2.5 mM NaHCO3 buffer, pH
8.3). Thus, the substrate saturating, final concentration for our
samples was 2.5 mM DOPA. The absorbance was measured at
460 nm in a spectrophotometer (Hitachi U-2000) immediately
after addition of DOPA (t0) and after incubation in dark (t1)
at in situ temperature for 180–220 min. Results were calcu-
lated using Beer’s Law and the molar absorbancy coefficient for
the DOPA product 3-dihydroindole-5.6-quinone-2-carboxylate
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(diqc) (3.7 × 104; Mason, 1948). Phenol oxidase activity was
expressed in nmol of product (diqc) produced per liter
per hour.

Statistical analyses
For the statistical tests we used R 2.15.0 and SPSS 17.0 for
Windows. Most of the data were normally distributed and fulfilled
the conditions to apply parametric tests (T-test and One-Way
ANOVA), unless stated otherwise. In such cases, non-parametric
tests such as Wilcox- and KruskaL-Wallis tests were applied. Only
the data used for correlations and linear regressions were log-
transformed and the residuals were tested for normal distribution
and homogeneity of variances.

RESULTS
SELECTED ENVIRONMENTAL AND DOM CHARACTERISTICS
Most of the abiotic parameters of subsystem III were clearly dis-
tinct from parameters at subsystems I and II. Different nutrient
conditions occurred: in subsystems I and II, SRP was signifi-
cantly lower compared to III, (p < 0.001, n = 42), whereas the
lowest DIN was noted in II. Hence the DIN/SRP-ratio diverged
from the Redfield ratio and was significantly higher in I and II
than in III (p < 0.001, n = 42) (Table 1). Average oxygen satu-
ration [O2%] was significantly different between all subsystems
(p < 0.001, n = 42), with the highest values at I (Table 1). The
organic nutrient ratio (DOC/DON) ranged from 13:1 to 62:1
(Table 1), with significantly higher values at II and III compared
to I (p < 0.001, n = 42). The DOC quantity and the qualitative
proxies for DOM in the permanently disconnected subsystem
(III) were distinct from I and II, with significantly higher DOC
(p < 0.001), SUVA254 (p < 0.01), higher E2:E3 ratio (p < 0.05)
and lower FI (p < 0.001) in III (Table 1). The DOC quantity in I
and II decreased by 50% during the investigation period, while in
III it increased by 30%, (data not shown). Also SUVA254 in I and II
dropped (43, 57%, respectively) while E2:E3 increased by 20 and
35%, respectively, toward the end of the sampling season (early
October) compared with the values measured at the onset of the
post-flood period. DOM quantity and quality in subsystems I and
II did not significantly differ from each other. In III SUVA254 and
E2:E3 were relatively constant; the only considerable increase was
noted in the middle of the sampling season (data not shown).

PHYTOPLANKTON BIOMASS, PRIMARY PRODUCTION AND
PHOTOSYNTHETIC EXTRACELLULAR RELEASE
Phytoplankton biomass and productivity varied distinctly along
the connectivity gradient from dynamic to isolated sites. After the
flood, in mid-August, the pPP increased markedly and reached
the highest values in station A (263.4 μg C l−1 h−1) and B
(213.1 μg C l−1 h−1) (Supplementary Figures 1A,B). In subsystem
II, the pPP also increased after the flood, the highest pPP rate
181.9 μg C l−1 h−1 occurring at the end of the sampling period
(Supplementary Figures 1C,D). In subsystem III, pPP was much
lower and fluctuated considerably, peaking in September (41.9 μg
C l−1 h−1) (Supplementary Figure 1E).

On average, chl a and pPP rates were highest in I; pPP rates
in III were even 7 times lower than in I (Figures 2A,B). Chl a
and pPP were correlated significantly only in the semi-isolated
subsystem (II) (r = 0.82, p < 0.001, n = 14).

Phytoplankton cells excreted variable amounts of photosyn-
thesis products (PER) into the water. PER in I remained in the
range of 1.54–7.46 μg C l−1 h−1 (Supplementary Figures 2A,B).
The highest PER coincided well with an increase in pPP rates
in both locations in I. In II and III, PER fluctuated consid-
erably (0.68–11.3 μg C l−1 h−1 and 2.02–17.0 μg C l−1 h−1,
respectively) with the highest rates in the end of the sampling
period (Supplementary Figures 2C–E). Overall, subsystem III was
characterized by generally higher rates of PER, but due to high
variability, no significant differences in PER between the sub-
systems were noted (Figure 3A). Also the percentage of PER (%
PER) was highly variable in each subsystem throughout the sam-
pling season. Nonetheless, average % PER increased significantly
at locations with lower connectivity with the main river channel
(Figure 3B). The share of PER on total primary production (PPt)
in I ranged from 0.9 to 3.4%, in II from 0.9 to 12.3% whereas
in the isolated subsystem (III), the values were between 12.2 and
47.9% of PPt.

EXTRACELLULAR ENZYMATIC ACTIVITY IN DIFFERENT SUBSYSTEMS
OF THE FLOODPLAIN
The EEA rates showed different patterns in the three sub-
systems (Supplementary Figure 2). In both stations of sub-
system I, all the measured enzymes strongly coincided with
each other (Supplementary Figures 2A,B); hence, hydrolases

Table 1 | Min-max values of: nutrients (DIN, SRP, DIN/SRP ratio), oxygen saturation and DOM quantity (DOC) and quality (DOC/DON, SUVA254,

FI ratio, E2:E3 ratio) in subsystems I–III; average in brackets.

Subsystem DIN SRP Ratio O2 [%] DOC Ratio SUVA FI E2:E3

[μg l−1] [μg l−1] DIN/SRP [g/g] [mg l−1] DOC/DON [l mg−1 m−2] ratio

I 107.5–1478.9 0.88–25.7 37.3–485.1 74–147 1.30–2.61 12.9–22.9 3.53–7.53 1.52–1.68 4.66–6.79

(743.1) (8.68) (181.7) (104) (1.88) (17.1) (5.79) (1.62) (5.82)

II 86.9–349.7 0.78–3.24 60.7–332.5 50–100 1.98–4.37 13.3–41.5 3.58–8.38 1.40–1.66 4.34–6.69

(181.4) (1.44) (132.8) (75) (2.63) (23.2) (6.34) (1.58) (5.34)

III 368.7–1051.8 121.7–581.4 1.05–4.47 10–65 21.21–389.0 17.4–62.4 5.60–12.9 1.42–1.53 4.88–10.7

(771.8) (364.9) (2.41) (38) (27.0) (25.6) (7.94) (1.51) (6.26)

For abbreviations see text.
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FIGURE 2 | Boxplots illustrating average chl a (A) and pPP rates (B) in

three different subsystems (I–III) during the sampling period. The
boundaries of the box plot indicate the 25th and 75th percentiles, points

indicate outliers, the solid line in the box marks the median. Statistical
differences are indicated on the top of each panel (for applied statistical tests
see Section Materials and Methods).

FIGURE 3 | Boxplots illustrating average PER rate (A) and % of PER

release in PPt (B) in three different subsystems (I–III) during the

sampling period. The boundaries of the box plot indicate the 25th and 75th

percentiles, points indicate outliers, the solid line in the box marks the
median. Statistical differences are indicated on the top of each panel (for
applied statistical tests see Section Materials and Methods).

and oxidase were strongly and positively correlated (Table 2A).
In subsystem II, EEA was more variable, but, the hydrolytic
enzymes coincided quite well during the investigated post-flood
period (Supplementary Figures 2C,D); correlations between
hydrolytic enzymes (glucosidases with leu-aminopeptidase) were
still observed (Table 2B). The hydrolase activity peaked in sub-
system III, while PhOx showed the lowest rates here toward the
end of the sampling period (Supplementary Material Figure 2E).
Extracellular enzymes in III were more decoupled, but similarly
to other subsystems the activities of the two glucosidases (EEAa
and EEAb) coincided well throughout the investigated post-flood
period (Table 2C). Activity of glucosidases (Figures 4A,B) and
PhOx (Figure 4C) were on average highest in III, whereas EEAleu
was highest in the dynamic subsystem (I) (Figure 4D). Among
the hydrolytic enzymes, EEAleu displayed the highest activity,
which was 3–4 orders of magnitude higher than EEAa and EEAb
activity. In line with the gradient of connectivity between I, II,
and III, decoupling of the different enzymatic activities occurred
(Table 2).

BACTERIAL ABUNDANCE AND PRODUCTION
Total bacterial numbers (BA) in all the subsystems ranged from
1.1 to 7.0 × 106 cells ml−1 (Supplementary Figures 3A–E). They
were on average higher in III but not significantly different
between the three subsystems (Figure 5A).

BSP ranged from 0.24–3.91 μg C l−1 h−1 with occasionally
highest rates in III (Supplementary Figures 3A–E). Due to high
variability, however there were no significant differences between
subsystems (Figure 5B). BSP followed a similar pattern as BA in
subsystems I and II (Supplementary Figures 3A–D), hence BSP
was significantly correlated with BA in I (r = 0.82, p < 0.01,
n = 10) and in II (r = 0.56, p < 0.05, n = 18).

MICROBIAL RESPONSE ON DOM CHARACTERISTICS
BSP and BA were not related to DOM quality (based on opti-
cal properties) in any of the subsystems. No direct enzymatic
response to any of the qualitative proxies was observed in sub-
system I and III. In subsystem II, however, the synthesis of EEAa
and EEAb was apparently related with SUVA254 (Figures 6A,B).
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Table 2 | Correlation coefficients between extracellular enzymatic

activity (EEAa, EEAb, EEAleu, phOx) in subsystem I (A), subsystem II

(B), and subsystem III (C).

EEAa EEAb EEAleu phOx

I (A)

EEAa – 0.98*** 0.86** 0.73*

EEAb – 0.90*** 0.70*

EEAleu – 0.76*

phOx –

II (B)

EEAa – 0.98*** 0.50* ns

EEAb – 0.54* ns

EEAleu – ns

phOx –

III (C)

EEAa – 0.74* ns ns

EEAb – ns −0.65*

EEAleu – ns

phOx –

*p < 0.05, **p < 0.01, ***p < 0.001. The data were log-transformed.

EEAa and EEAb were also negatively related to the E2:E3 ratio
(Figures 6C,D).

RELATIONSHIPS BETWEEN EXTRACELLULAR ENZYMATIC ACTIVITY
AND PRIMARY AND SECONDARY PRODUCTION
Depending on the subsystem, the extracellular enzymes exhibited
distinct relationships with phytoplankton and bacterial parame-
ters. In the dynamic subsystem (I), hydrolase activity was strongly
promoted by the primary production rate and biomass (pPP and
chl a) (Table 3). Beyond a positive relation between PhOx and chl
a (r = 0.46, p = 0.05, n = 14) in II, no other direct enzymatic
response to chl a occurred in subsystems II and III. There was,
however, a clear enzymatic response to phytoplankton extracellu-
lar release. The synthesis of α -and β-glucosidase clearly coincided
with PER in subsystem I (Supplementary Figures 2A,B); EEAa
and EEAb were apparently promoted by PER (Figures 7A,B).
However, in subsystem II, the opposite tendency was noted;
the activity of EEAa and EEAb was negatively related to PER
(Figures 7C,D). In subsystem III, EEAb corresponded to PER
(Supplementary Material Figure 2E), hence it was positively
related to PER (Figure 7E).

Since DOM properties, based on our optical assessment of
DOM quality, were not related to BSP or BA, the enzymatic
approach helped to elucidate which DOM was important for
bacterial metabolism in each subsystem. Accordingly, we linked
EEA to BSP to investigate which DOM pool was more impor-
tant for bacterial metabolism in our three different subsystems.
Our results imply that degradation of distinct material sup-
ported bacterial growth in each subsystem differently. More
than one enzyme explained BSP variability; we therefore per-
formed stepwise multiple regression analyses using a combination
of EEAleu, EEAa, EEAb, and PhOx as independent variables.
This revealed that in each subsystem different enzymes were
the most significant predictors for BSP (Table 4). In I, only

EEAleu was directly related to bacterial production. In II, BSP
was best described by the activity of EEAleu and PhOx, while
in subsystem III, EEAb explained most of the variability in BSP
(Table 4).

In I, pPP was directly related to BSP (r = 0.67, p < 0.05) and
BA (r = 0.64, p < 0.05). Phytoplankton biomass (chl a) also pos-
itively related to BA in I (r = 0.65, p < 0.05) and BSP in II (r =
0.49, p < 0.05, n = 17). There was no direct response of bacterial
production or abundance to photosynthetic extracellular release
(PER) in any of the subsystems.

In subsystem I, where the highest pPP was observed (Figure 3),
the BSP:PPt ratio was the lowest; bacterial production there
ranged from 0.38 to 3.06% (average 1.07%) of the total pri-
mary production. On average the BSP:PPt ratio was more
than 2 times higher in III than in II, where it remained
in a range of 2.01–17.7% (8.65%) and 0.58–10.6% (3.66%),
respectively.

DISCUSSION
ENZYMATIC ACTIVITY: RESPONSE TO DOM QUALITY
This study was designed to shed light on the microbial response to
various allochthonous and autochthonous DOM sources in dif-
ferent sections of a floodplain. Our results show that DOM in all
subsystems was a mixture of allochthonous and autochthonous
material. Although no significant differences were noted between
subsystem I and II after the flood, this study points to the more
autochthonous, less aromatic DOM in subsystem I. However,
in subsystem III DOM was clearly more allochthonous, higher
molecular weight and more aromatic. This is very likely due to
input of local terrestrial material (dense surrounding vegetation),
because this subsystem is never connected to the main channel.
In other subsystems (I and II) allochthonous material derives
also from the main channel during occasional surface connec-
tion with the Danube (Sieczko and Peduzzi, 2014). Differences
in the DOM composition and availability can be important in
determining the functioning of microbial communities (Hoostal
and Bouzat, 2008). Our results, however, do not generally support
the idea that enzymatic activity is strongly linked to DOC quan-
tity or quality based solely on optical measurements. Even though
the quantitative and qualitative parameters of DOM were sig-
nificantly different between the investigated subsystems, only in
subsystem II did we find a significant relation between enzymatic
activity and optical properties of DOM.

The positive relation between EEAa, EEAb activity and
SUVA254 or molecular size of DOM (Figures 6A–D) implies
enhanced expression of glucosidases in the presence of terrestri-
ally derived, higher molecular weight DOM. There is evidence
that HMW substances can be even more reactive as long as
they are diagenetically younger (Amon and Benner, 1996) com-
pared to diagenetically older LMW residues of former bacterial
metabolism (Ogawa et al., 2001). Nonetheless, molecular weight
or origin are not the only factors regulating DOM bioavailability.
For example, microbial communities are most productive when
metabolizing their native DOM sources (Young et al., 2005). This
could explain that, in other subsystems, EEA was not related to
the molecular size of DOM and that other factors might have been
important.
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FIGURE 4 | Boxplots of extracellular enzymatic activity of α-glucosidase

(A), β-glucosidase (B), phenol oxidase (C), and leu-aminopeptidase (D) in

three different subsystems (I–III). The boundaries of the box plot indicate

the 25th and 75th percentiles, points indicate outliers, the solid line in the box
marks the median. Statistical differences are indicated on the top of each
panel (for applied statistical tests see Section Materials and Methods).

FIGURE 5 | Boxplots of average BA (A) and BSP (B) in three

different subsystems (I–III). The boundaries of the box plot indicate
the 25th and 75th percentiles, points indicate outliers, the solid line in

the box marks the median. Statistical differences are indicated on the
top of each panel (for applied statistical tests see Materials and
Methods).

RELATIONSHIP BETWEEN PHYTOPLANKTON AND MICROBIAL
ENZYME ACTIVITIES
The mechanisms behind enzyme synthesis are regulated by a
number of environmental factors which may induce or suppress
production of extracellular enzymes (Sinsabaugh and Follstad

Shah, 2012; Arnosti et al., 2014). In our study, we attempted to
evaluate the importance of autotrophic planktonic production for
EEA. Our results show that in subsystem I, primary production
(pPP and chl a) was strongly and positively related to EEAleu
(Table 1), which indicates the importance of algal products here.
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FIGURE 6 | Relationships between SUVA254 and: α-glucosidase (A) or β-glucosidase (B) and E2:E3 ratio and: α-glucosidase (C) or β-glucosidase (D) in

subsystem II. All data were log-transformed.

Table 3 | Correlation coefficients between extracellular enzymatic

activity (EEAa, EEAb, EEAleu, PhOx) and phytoplankton parameters

(pPP and chl a) in subsystem I.

pPP chl a

EEEa 0.82** 0.81**

EEAb 0.85** 0.87**

EEAleu 0.83** 0.77**

phOx ns ns

**p < 0.01. The data were log-transformed.

Studies in river environments showed that EEAleu was actively
produced when autochthonous production of labile organic mat-
ter was high (Wilczek et al., 2005). One potential reason for quite
high activity levels of EEAleu in our study, compared to the activ-
ity of other enzymes, is that aminopeptidases are not very specific
in their cleaving (Chróst, 1992) and that they can hydrolyze many
different peptides.

In I we also observed strong correlations between all the
enzymes, including PhOx (Table 3). This indicates a tight cou-
pling of metabolic pathways (Hoostal and Bouzat, 2008) and
mutualism within the microbial community here. Further, in
subsystem II, the strong and positive relation between PhOx

and chl a may indicate that input of fresh labile mate-
rial from primary producers was able to augment synthesis
of PhOx.

The phenomenon of enhanced production of extracellular
enzymes degrading recalcitrant OM in the presence of labile OM
is called priming effect (PE) (Guenet et al., 2010; Bianchi, 2012)
and it has already been proven in laboratory assays (Shimp and
Pfaender, 1985) and field studies (Treignier et al., 2006; Rier
et al., 2007, 2014). Although our data may imply that in sub-
systems I and II phytoplankton-derived material possibly could
influence the expression enzymes responsible for degrading recal-
citrant DOM, more extensive studies on a potential priming
effect here would be necessary. However, we suggest that river-
floodplain systems are places where ample opportunities for this
phenomenon are created. This calls for further investigations
on the existence of a priming effect in hydrologically dynamic
river-floodplain systems.

Carbon-rich exudates are often predominant products of phy-
toplankton growing under an imbalanced DIN/SRP ratio (Penna
et al., 1999). Production of bacterial enzymes may be also related
to the nutrient status. We propose that strong P-limitation (and
low SRP) noted in subsystem II (Table 1) may have induced C-
rich PER. Under P-depleted conditions, phytoplankton releases
large amounts of carbohydrates (Obernosterer and Herndl,
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FIGURE 7 | Relationships between PER and α-glucosidase and PER and β-glucosidase in subsystem I (A,B), subsystem II (C,D), and subsystem III (E).

All data were log-transformed.

1995), which may have induced a high utilization of PER by
bacteria. Utilizable PER implies a reduction of EEAb activity, and
this could be responsible for the negative relation of glucosidases
with PER (Figures 7C,D). A decrease of β-glucosidase produced
by aquatic bacteria has been described as being linked to the
introduction of phytoplankton-derived DOM (Chróst and Siuda,
2002). Furthermore, also in lake water the catabolic repression
of glucosidases in the presence of easily assimilable substrates is

described as an important mechanism controlling EEAb synthesis
(Chróst, 1989).

However, in subsystem III nutrient limitation was unlikely,
because DIN and SRP were high (Table 1). Other reasons (strong
light limitation or viral lysis), potentially responsible for elevated
PER here, need to be considered (compare Myklestad, 2000). In
subsystem III (Table 1), a large portion of total primary pro-
duction was exudated, reaching up to 50% (Figure 3B). The
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Table 4 | Multiple stepwise regressions between bacterial secondary production (BSP) and enzymatic activity (EEAa, EEAb, EEAleu, PhOx).

Independent variables Regression equation Adjusted r2

Subsystem I BSP EEAleu(beta = 0.65; p < 0.05) logBSP = 2.527+0.895 logEEAleu 0.35

Subsystem II BSP PhOx(beta = 0.56; p < 0.01) logBSP = 0.062+0.397 logPhOx 0.60

EEAleu(beta = 0.45; p < 0.05) logBSP = −1.080+0.342 logEAleu

Subsystem III BSP EEAb(beta = 0.86; p < 0.001) logBSP = −0.469+0.797 logEEAb 0.72

All data were log transformed. For abbreviations see text.

positive relation between PER and EEAb (Figure 7E) in subsys-
tem III implies utilization of phytoplankton exudates that are
mainly comprised of β-linked polysaccharides; these are often
a predominant product of phytoplankton extracellular release
(Biddanda and Benner, 1997) and from lysed cells (Weinbauer
and Peduzzi, 1995). Although some of the primary production
exudates contain quickly consumed compounds, actively grow-
ing phytoplankton also releases higher molecular weight organic
matter, which is largely composed of polysaccharides (Lignell,
1990; Myklestad, 2000). We suggest that the quality of exudates
triggered a greater activity of EEAb.

WHAT SUPPORTS BACTERIAL PRODUCTION IN DISTINCT FLOODPLAIN
SUBSYSTEMS?
Based on our study, EEA appears to be a valuable tool for elucidat-
ing the potential linkage between non-chromophoric, but rapidly
cycling DOM and bacterial production. Our results imply that in
each of the three subsystems, the degradation of distinct mate-
rial supported bacterial growth. The similar average BA and BSP
rates in all subsystems (Figures 5A,B)—but significantly differ-
ent EEA (Figures 4A–D), phytoplankton biomass and pPP rates
(Figures 2A,B)—suggest that in each of the three subsystems,
bacterial growth was supported by DOM from different sources.
Typically, DOM of autochthonous origin is higher-quality mate-
rial that mainly controls BSP (Cole et al., 2002), as opposed to
allochthonously derived DOM, which is recalcitrant with much
longer turnover times. These pools are produced independently
from each other but both are available for bacteria (Del Giorgio
and Pace, 2008). Although correlation between BSP and pPP has
been demonstrated both in culture (Gurung et al., 1999) and
field studies (Cole et al., 1988), our field data show that only in
subsystem I was primary production (pPP) directly coupled to
BSP or BA (see Results). At increased primary productivity bac-
teria can assimilate more phytoplankton-derived DOM (Piontek
et al., 2012). Hence, we suggest that in subsystem I (with highest
pPP noted), pPP derived-material supported bacterial production
directly or by an enzyme-mediated step. Other studies from this
area (Preiner et al., 2008) report stimulated phytoplankton pro-
ductivity after floods in frequently connected water bodies. Also,
according to the River Wave Concept (Humphries et al., 2014),
autochthonous production of DOM predominates after floods.
Hence, strong relation of pPP with EEAleu (Table 3) and of BSP
with EEAleu (Table 4) implies that pPP products, hydrolyzed
by EEAleu, supported BSP in I. Our results suggest that in fre-
quently flooded river-floodplain systems (such as subsystem I),
elevated bacterial growth could be driven mainly by enzymatic
degradation of particulate primary production.

In subsystem II, a more refractory pool appears to also sup-
port bacterial growth. PhOx and EEAleu were the only enzymes
that could explain any variability in BSP in II (Table 4). Positive
relations of these enzymes with BSP here imply that organic
matter degraded by PhOx and EEAleu could have become rela-
tively more important as a source and promoted bacterial growth
and abundance in subsystem II. Other studies in different envi-
ronments support our findings. Lignin material led to increased
bacterial abundance in soils where the bacterial population assim-
ilated lignin-derived carbon (Deangelis et al., 2011). Also in
peatlands bacterial growth was linked to phenol oxidase activity
(Fenner et al., 2005). In freshwater, PhOx activity is less explored
(Münster and De Haan, 1998) but bacteria seem to play a lead-
ing role in decomposing lignin in aquatic ecosystems (Li et al.,
2008). Lignin degradation is a relatively slow process (Benner
and Kaiser, 2011) and significantly increases with higher tem-
perature (Donnelly et al., 1990). Because lake water typically has
a long residence time, such waters can be important places for
microbial processing of carbon received from terrestrial sources.
In river systems, occasional flood events are especially important
in this process; they deliver significant amounts of low-age, terres-
trial DOM (Berggren et al., 2009). We propose that semi-isolated
floodplain side arms (such as subsystem II) provide opportuni-
ties for microbial processing of more refractory carbon. Sporadic
inputs of fresh terrestrial material, reduced hydrodynamic stress
due to rare flooding, high oxygen availability and the stimulating
effect of phytoplankton on PhOx synthesis may create favor-
able conditions that could trigger the utilization of lignin-derived
material.

Despite the elevated % PER in subsystem III, no direct
link between BSP and pPP or PER was observed. This could
be because bacteria in that subsystem did not take up algae-
derived carbon directly. Our results, however, imply that BSP was
driven by primary production here. This was found also in lakes
with terrestrial input, where bacterial metabolism was driven by
autochthonous primary production (Kritzberg et al., 2005). Even
since mean pelagic primary production was significantly lower
in III compared to the highly productive floodplain side arms of
subsystem I, PER was still able to sustain bacterial metabolism
also in subsystem III. In our study, close and positive relations of
EEAb and BSP (Table 4) suggest that PER products, hydrolyzed by
EEAb (Figure 7E), supported BSP. The activity of β–glucosidase
is strongly stimulated by carbohydrates, which phytoplankton
accumulates as a storage material (Mallet and Debroas, 2001;
Børsheim et al., 2005). This may imply that β-linked polysaccha-
rides derived from phytoplankton degradation could be beneficial
sources sustaining bacterial growth in subsystem III. This allows
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us to suggest that in isolated floodplain lakes, despite high terres-
trial input, bacterial growth can be also driven by autochthonous
carbon sources to a certain extent (Robertson et al., 1999).

EXTRACELLULAR ENZYMATIC ACTIVITY LINKING PRIMARY AND
SECONDARY PRODUCTION
Our results stress the importance of primary production in
sustaining BSP in backwaters with a connectivity gradient.
Nonetheless, the only modest variation of BSP compared to more
dynamic primary production (pPP, PER, and chl a) demonstrates
that organic matter derived from sources other than phyto-
plankton also supported BSP in this river-floodplain system. The
potential coupling between bacterial and phytoplankton com-
ponents can be indicated by the BSP:PPt ratio (Van Wambeke
et al., 2002). This ratio is a measure for the importance of
heterotrophic bacteria in consuming material from primary pro-
duction (Kirchman, 2010). A high ratio could reflect significant
input of terrestrial OM (Kirchman, 2012). The highest value
in subsystem III implies that allochthonous, non-planktonic
sources were relatively more important than bacterial utilization
of phytoplankton-derived C (compare Tranvik, 1989; Gao et al.,
2007). EEA measurements, however, point to phytoplankton exu-
dates as an important source supporting BSP in subsystem III.
Our study demonstrates that, despite the lack of data for a direct
relationship between bacterial and phytoplankton components,
the EEA analyses are able to elucidate the patterns relating these
two variables, especially in systems with high terrestrial input.

Bacteria can utilize an increasing proportion of primary pro-
duction, when phytoplankton is less efficient (Conan et al., 1999).
At increased primary productivity, when phytoplankton is most
active, the BSP:PPt ratio is the lowest (Almeida et al., 2005;
Morana et al., 2014). The lowest ratio has been sometimes inter-
preted as a low flux of labile OM to bacteria (Ducklow et al.,
2012), hence indicating a weak coupling between the bacterial
and phytoplankton component. In our study, however, the lowest
BSP:PPt ratio in subsystem I was accompanied by a strong cou-
pling of BSP and pPP. Moreover, EEA measurements emphasize
the significance of primary production (pPP, PER, and chl a) for
bacterial utilization. Hence, we suggest that in subsystem I a fast
transfer of phytoplankton-derived carbon to bacteria occurred:
at elevated primary production, more of phytoplankton-derived
material was assimilated by bacteria (compare De Kluijver et al.,
2014). Our conclusion is that EEA measurements are very useful
in describing the coupling of bacterial and phytoplankton compo-
nents. The BSP:PPt ratio alone does not fully describe the strength
of this link (Morán et al., 2002). Drawing conclusions based solely
on that ratio simplifies the mechanisms that relate these two com-
ponents (Almeida et al., 2005) potentially overlooking important
links between bacteria and phytoplankton.
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