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Post-translational modifications (PTMs) are widely used by eukaryotes to control the
enzymatic activity, localization or stability of their proteins. Traditionally, it was believed
that the broad biochemical diversity of the PTMs is restricted to eukaryotic cells, which
exploit it in extensive networks to fine-tune various and complex cellular functions. During
the last decade, the advanced detection methods of PTMs and functional studies of the
host–pathogen relationships highlight that bacteria have also developed a large arsenal of
PTMs, particularly to subvert host cell pathways to their benefit. Legionella pneumophila,
the etiological agent of the severe pneumonia legionellosis, is the paradigm of highly
adapted intravacuolar pathogens that have set up sophisticated biochemical strategies.
Among them, L. pneumophila has evolved eukaryotic-like and rare/novel PTMs to hijack
host cell processes. Here, we review recent progress about the diversity of PTMs catalyzed
by Legionella: ubiquitination, prenylation, phosphorylation, glycosylation, methylation,
AMPylation, and de-AMPylation, phosphocholination, and de-phosphocholination. We
focus on the host cell pathways targeted by the bacteria catalyzed PTMs and we stress the
importance of the PTMs in the Legionella infection strategy. Finally, we highlight that the
discovery of these PTMs undoubtedly made significant breakthroughs on the molecular
basis of Legionella pathogenesis but also lead the way in improving our knowledge of the
eukaryotic PTMs and complex cellular processes that are associated to.
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INTRODUCTION
Post-translational modifications (PTMs) are widely used by
eukaryotes to control quickly, locally and specifically the enzy-
matic activity, localization or stability of their proteins, and thus
to fine-tune key factors of the cellular biology to environmental
changes. Eukaryotic PTMs involve diverse modifications of spe-
cific residues of the protein by the covalent addition of simple
or complex chemical groups; they include the addition of chem-
ical group (e.g., phosphate, methyl, or acetate), more complex
molecules (e.g., carbohydrates or lipids), the covalent linkage of
small proteins (e.g., ubiquitin), and the irreversible hydrolysis
of a specific peptide bond between two amino acids, or prote-
olysis (for review, see Walsh et al., 2005). PTMs are catalyzed
by specific enzymes and most of them are reversed by antago-
nistic catalytic activities. Traditionally, it was believed that the
broad biochemical diversity of the PTMs is restricted to com-
plex eukaryotic cells, which exploit it in extensive networks to
control various and complex cellular functions. During the last
decade, the advanced detection methods of PTMs, including
the modified peptides enrichment combined with high accu-
racy mass spectrometry, the pathogen genomes sequencing that
predicts PTMs activities, and the functional studies of the host–
pathogen relationships highlight that bacteria have also developed

a large arsenal of PTMs, particularly to subvert host cell path-
ways to their benefit, to escape to the host defences, and finally
to promote their replication (for review, see Ribet and Cossart,
2010a,b).

Legionella pneumophila, the etiological agent of the severe
pneumonia legionellosis, is a paradigm of highly adapted intravac-
uolar pathogens that have set up sophisticated biochemical strate-
gies to hijack host cell processes. Legionella pathogenic strains
(i) emerge from the environment after intracellular multiplica-
tion in protozoans, especially in amoebae; (ii) are disseminated by
contaminated aerosols; and (iii) can infect alveolar macrophages
of its accidental human host. Within environmental phago-
cytic cells and human macrophages, L. pneumophila evades
endocytic degradation (Horwitz and Maxfield, 1984; Clemens
et al., 2000), controls the innate immune response, especially
the NF-κB pathway (Schmeck et al., 2007; Shin et al., 2008),
and triggers the biogenesis of a Legionella-containing vacuole
(LCV), a rough endoplasmic reticulum-like compartment per-
missive for its intracellular replication (Horwitz, 1983; Kagan
and Roy, 2002). Crucial for hijacking host cell vesicle trafficking
necessary for LCV biogenesis, and subsequently for intracellular
multiplication of L. pneumophila, is the Dot/Icm Type 4 Secre-
tion System (T4SS; Marra et al., 1992; Andrews et al., 1998) that
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translocates into the host cell cytosol over 275 bacterial pro-
teins, named effectors (Zhu et al., 2011). Many Dot/Icm effectors
harbor eukaryotic domains (Cazalet et al., 2004), such as protein–
protein interaction domains and enzymatic activity-associated
domains, in particular for PTMs such as methylation, phospho-
rylation, ubiquitination, and glycosylation, which support that
L. pneumophila has evolved eukaryotic-like PTMs to hijack host
cell processes.

Here, we review recent progress about the diversity of PTMs
catalyzed by Legionella. We focus on the host cell pathways targeted
by the bacteria-catalyzed PTMs and we stress the importance of
the PTMs in the Legionella infection strategy.

DIVERSITY OF PTMs CATALYZED BY L. pneumophila
A key finding of the L. pneumophila genome analysis was the
identification of a large number of proteins similar to eukaryotic
proteins. The wide variety of these proteins includes enzymatic
activity–associated domains for various PTMs such as phospho-
rylation, glycosylation, methylation, prenylation, ubiquitination,
reversible AMPylation, and phosphocholination of host cell
proteins to modulate cellular functions (Table 1).

PROTEIN PHOSPHORYLATION
Phosphorylation–dephosphorylation of proteins represents a
powerful regulatory mechanism of cellular activity. Indeed, inten-
sive research has revealed that eukaryotes contain numerous
interconnected signal transduction networks in which protein
phosphorylation plays a dominant role for controlling essential
functions, such as growth, cell cycle and apoptosis, in response
to extracellular stimuli and stresses. It consists in the reversible
covalent addition of a phosphate group, from the phosphate
donor ATP, to specific residues of a target protein, the most
frequent being hydroxyl groups of serine, threonine or tyrosine
residues. The phosphoester bond is catalyzed by eukaryotic pro-
tein kinases that share a common catalytic domain characterized
by 11 conserved Hanks’s subdomains (Hanks, 2003). Conversely,
phosphatases hydrolyze the phosphoester bond, thereby releasing
the phosphate group and restoring the acceptor amino acid in its
unphosphorylated form.

The genomes of the six sequenced L. pneumophila strains,
Philadelphia, Lens, Paris, Corby, Alcoy, and 130b, have been
reported to encode four putative eukaryotic-like serine/threonine
kinases, named LegK1–LegK4 (Cazalet et al., 2004; de Felipe
et al., 2005; D’Auria et al., 2010; Schroeder et al., 2010). Align-
ment with several eukaryotic protein kinases revealed residues
that are highly conserved in the Hanks’ subdomains, including
the glycine-rich loop and the invariant lysine in subdomains I and
II, which are essential for binding and correct orientation of the
phosphate donor ATP. In vitro phosphorylation assays confirmed
that these kinases were functional for autophosphorylation and/or
phosphorylation of the classical substrate for eukaryotic kinases
Myelin-basic protein (Hervet et al., 2011; Table 1).

PROTEIN ALKYLATION
Protein alkylation consists in the addition of alkyl substituents on
specific amino acids. The common alkyl groups transferred are the
methyl (C1) or the C15 (farnesyl)/C20 (geranyl–geranyl) isoprenyl

groups, leading to protein methylation and protein prenylation,
respectively.

Protein methylation typically takes place on arginine or lysine
residues in the protein sequence. Arginine can be methylated
once or twice, with either both methyl groups on one termi-
nal nitrogen (asymmetric dimethylated arginine) or one on both
nitrogens (symmetric dimethylated arginine) by peptidylargi-
nine methyltransferases (PRMTs). Lysine can be methylated once,
twice, or three times by lysine methyltransferases (Walsh et al.,
2005). Protein methylation has been extensively studied in the
histones. The transfer of methyl groups from S-adenosyl methio-
nine (SAM) to histones is catalyzed by SET domain-containing
proteins. This protein family is characterized by an ∼130 amino
acid-long SET domain that possesses catalytic activity toward
the ε-amino group of lysine residues. In vivo, lysine methyla-
tion can be dynamically regulated by the opposing actions of
lysine methyltransferases and lysine demethylases (Herz et al.,
2013). L. pneumophila genome analysis revealed that all the five
strains Philadelphia, Lens, Paris, Corby, and Alcoy encode each an
orthologous protein encoding a SET domain that show 95–100%
sequence identity over the entire length (Cazalet et al., 2004). In
vitro assays recently demonstrated that Lpp1683 in Paris strain and
Lpg1718 in Philadelphia strain, display histone methyltransferase
activity toward the histone H3 substrate (Li et al., 2013; Rolando
et al., 2013b; Table 1).

Prenylation, i.e., addition of a farnesyl (C15) or a geranyl–
geranyl (C20) group, is a PTM that covalently links a lipid moiety
at the cysteine residue of the CAAX motif in the C-terminal region
of proteins (where C represents cysteine and A an aliphatic amino
acids). The Ras GTPases, Rab small GTPases, and protein kinases
superfamilies have members that can be prenylated on cysteine
thiolate side chains. The lipid anchors drive the modified proteins
to partition more to membranes, thus controlling their subcel-
lular localization (Walsh et al., 2005). Interestingly, bioinformatic
approaches identified 11–12 (depending on the strains) different
Legionella proteins containing a CAAX motif in the C terminus,
which have been so called Pel proteins for Prenylated effectors
of Legionella (Ivanov et al., 2010; Price et al., 2010a,b). Six of
these proteins had highly conserved homologs across all Legionella
stains, whereas four of the proteins were unique for either the
Philadelphia or Lens strain. Host farnesyltransferase and class I
geranylgeranyltransferase were both involved in the lipidation of
the Legionella CAAX motif proteins, among which AnkB from L.
pneumophila AA100 and Philadelphia Lp01 (Ivanov et al., 2010;
Price et al., 2010a,b; Table 1).

PROTEIN UBIQUITINATION
Ubiquitination consists in the addition of one or several ubiq-
uitins on a target protein, most frequently on lysine residue,
although linkages on cysteine, serine or threonine, or on the N-
terminal amino group have also been reported. Ubiquitin is a
small protein of 9 kDa, which contains itself seven lysines; all
of these lysine residues can be used as a target for the addition
of another ubiquitin moiety, thus leading to polyubiquitina-
tion. Polyubiquitin chains built up through Lys48 side chains
are commonly associated with proteasome binding and degra-
dation of the modified protein, whereas chains tethered through
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Table 1 | Diversity of PTMs catalyzed by Dot/Icm effectors of Legionella pneumophila.

PTMs Mechanism Effector name Motif Target Reference

Phosphorylation LegK1 STPK IκB Ge et al. (2009), Hervet et al. (2011)
LegK2 STPK Hervet et al. (2011)

LegK3 STPK Hervet et al. (2011)

LegK4 STPK Hervet et al. (2011)

Methylation LegAS4/RomA SET domain H3 Li et al. (2013), Rolando et al. (2013b)

Prenylation AnkB

/LegAU13

/Ceg27

CAAX Price et al. (2010a)

Ubiquitination LubX

/LegU2

U-box Clk1 /SidH Kubori et al. (2008)

AnkB

/LegAU13

/Ceg27

F-box Skp1/ParvB Price et al. (2009), Lomma et al. (2010)

LegU1 F-box BAT3 Ensminger and Isberg (2010)

SidC Hsu et al. (2014)

Glycosylation Lgt1 Coiled- coil eEF1A Belyi et al. (2006)

Lgt2 Coiled- coil eEF1A Belyi et al. (2008), Aktories (2011)

Lgt3

/Legc5

Coiled- coil eEF1A Belyi et al. (2008), Aktories (2011)

SetA Heidtman et al. (2009)

AMPylation SidM

/DrrA

Rab1 Müller et al. (2010)

DeAMPylation SidD Rab1 Neunuebel et al. (2011), Tan et al. (2011)

Phosphocholination AnkX

/AnkN

/LegA8

Ankyrin Rab1 Mukherjee et al. (2011)

Dephosphocholination Lem3 Rab1 Tan et al. (2011)

STPK, Ser/Thr protein kinase.

Lys63 participate in signal transduction, vesicular trafficking or
DNA repair (Hochstrasser, 2009). The conjugation of ubiqui-
tin requires different enzymes (Figure 1): E1 activating enzymes
that bind ubiquitin in a ATP dependent manner; E2 conjugation
enzymes that bind ubiquitin in a thioester bond; E3 ubiquitin
ligases are then required to catalyze the efficient transfer of the

activated ubiquityl protein tag to Lys side chains of target pro-
teins. There are two different families of E3 ubiquitin ligases, the
HECT family and the RING/U-Box family. In the RING fam-
ily, some of the enzyme 3 are multicomponent catalysts, such
as the SCF E3s that consist in four subunits: the invariable sub-
unit Skp1, the central core component Cullin, the RING finger
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FIGURE 1 | Sequential steps of ubiquitination. The small protein
ubiquitin is first activated by an E1 enzyme in an ATP-dependent manner,
then transferred to an E2 conjugating enzyme. Two main classes of E3
enzymes, the RING, and HECT classes, transfer differently the ubiquitin to
a specific protein substrate. Polyubiquitin chains are then built up through
Lys48 side chains or through Lys63 of ubiquitin, which directs the protein to
proteasome degradation or participate in signal transduction, vesicular
trafficking, or DNA repair.

protein Rbx1/Roc1 and the variable F-Box protein that serves as
a receptor for the target protein, such providing selectivity for
a given protein (Lorick et al., 1999). There are several 100 iso-
forms of such E3 ubiquitin ligases in higher eukaryotes, which
allow subtle discrimination among many target proteins selected
for ubiquitination.

Genome analysis of the L. pneumophila strains Paris and
Philadelphia revealed they encode a protein, named LubX, con-
taining two U-box domains similar to eukaryotic E3 ubiquitin
ligases (Cazalet et al., 2004). Indeed, in vitro and in host cells,
LubX functions as an ubiquitin ligase (Kubori et al., 2008). More-
over, L. pneumophila encodes several proteins with predicted

F-Box motifs (de Felipe et al., 2005). The best characterized is
the AnkB protein, that is conserved in the five sequenced L.
pneumophila strains (Table 1). Genome sequence of L. pneu-
mophila Philadelphia reveals the presence of at least another
four F-box containing proteins (Price and Kwaik, 2010). These
include Lpg2224 (PpgA), Lpg2525 (MavK), LicA, and LegU1.
Finally, the Dot/Icm effector SidC has been recently reported
to define a unique family of ubiquitin ligase (Hsu et al., 2014).
While the amino acid sequence of SidC does not exhibit signifi-
cant homology with any known protein, the crystal structure of
its N-terminal domain revealed a canonical catalytic triad C46-
H444-D446 found in cystein-based proteases and deubiquitinases.
Unexpectedly, in vitro assays demonstrated that SidC exhibits
ubiquitin ligase rather than protease or deubiquitinase activity.
More precisely, SidC catalyzes the formation of high–molecular-
weight ubiquitinated conjugates in a manner that is dependent on
the catalytic residue C46. Authors further showed that the SidC
paralog SdcA has also ubiquitin ligase activity (Hsu et al., 2014;
Table 1).

PROTEIN GLYCOSYLATION
O-glycosylation and N-glycosylation of proteins are very com-
mon in eukaryotes but only O-glycosylation has been described to
date in the two major groups of bacterial toxins. O-glycosylation
consists in the modification of serine or threonine residues. A
60 kDa protein that exihibited UDP-glycosyltransferase activity
toward a 50 kDa protein from HeLa cell lysates was firstly puri-
fied from L. pneumophila (Belyi et al., 2003). This protein, named
Lgt1 (for Legionella glycosyltransferase 1) contains a DXD motif,
which is conserved in many prokaryotic and eukaryotic glucosyl-
transferases. In L. pneumophila strains Philadelphia, Lens, Paris,
and Corby, two other proteins very similar to Lgt1 were then iden-
tified; they were thus called Lgt2 and Lgt3 and were shown to
exhibit the same glycosylase activity (Belyi et al., 2008; Aktories,
2011). An additional protein, namely SetA, possesses a functional
glycosyltransferase domain (Heidtman et al., 2009). However, its
target in the host cell has not been yet identified (Table 1).

REVERSIBLE PROTEIN AMPylation
AMPylation or adenylylation is the addition of an adenosine
monophosphate (AMP) group from ATP onto a threonine, tyro-
sine, or serine residue of a protein. This PTM was first and
recently discovered on host cell proteins infected by Vibrio para-
haemolyticus and Histophilus somni (Worby et al., 2009; Yarbrough
et al., 2009). This activity involves a conserved domain, called
Fic domain (for filamentation induced by cAMP domain), which
was originally described in Escherichia coli as a stress response
protein associated with filamentous bacterial growth in the pres-
ence of cAMP (Komano et al., 1991). The Fic domain is also
found in eukaryotic proteins, and AMPylation has now been
shown to be naturally occurring in eukaryotic cells (Kinch et al.,
2009; Roy and Mukherjee, 2009; Worby et al., 2009; Yarbrough
and Orth, 2009; Yarbrough et al., 2009). Despite the lack of a
consensus Fic domain on its sequence and that its amino acid
sequence did not suggest its function, the protein SidM from L.
pneumophila has been recently shown to possess AMPylase activ-
ity (Müller et al., 2010). More precisely, its N-terminal domain
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FIGURE 2 | Post-translational modifications controlling various

infectious cycle steps of Legionella pneumophila. Immediatly after
uptake of the bacteria, L. pneumophila secretes a high number of
Dot/Icm effectors into the host cell cytosol. (1) L. pneumophila exploits
the host prenylation apparatus to alkylate some of these effectors and
target them to the LCV surface. The effector LubX is able to ubiquitinate
some effectors thus addressing them to proteasomal degradation and
controlling their temporal presence on the LCV during infection. (2) Four
Dot/Icm effectors reversibly AMPylate and phosphocholinate the host
Rab1 small GTPase, thus controlling its activity to promote ER recruitment
on the LCV, a prerequisite feature to make the phagosome a replicative
niche. SidC and its paralog SdcA monoubiquitinate Rab1 and catalyze

polyubiquitin chains formation necessary for ER recruitment on the LCV.
(3) The Dot/Icm effector AnkB functions as a platform for the docking of
polyubiquitinated proteins to the LCV membrane, thus promoting
proteasome-mediated generation of free amino acids essential as energy
and carbon sources for L. pneumophila intracellular proliferation. (4) The
Dot/Icm effector LegK1 phosphorylates IκB thus mimicking the host IKKs,
and triggering the activation of the NF-κB pathway and the transcription of
NF-κB dependent genes. (5) The Dot/Icm effector LegAS4/RomA trigger
the methylation of the histone H3, thus inducing epigenetic changes and
subsequent transcriptional control of host genes. (6) Several Dot/Icm
effectors exhibits glycosidase activity toward eEF1A, thus inhibiting the
host cell translation.

exhibits structural similarities with the C-terminal domain of the
glutamine synthase adenylyl transferase, which leads the authors
to speculate that the N-terminal region of SidM might have
AMPylase activity toward the small GTPase Rab1, the substrate
of its GEF domain. Indeed, in vitro assays and mass spectrome-
try analysis demonstrates that SidM, more precisely its N-terminal
domain, AMPylates Rab1 on the Tyr77 residue (Müller et al., 2010;
Table 1).

AMPylation is a reversible process. Two independent groups
simultaneously identified SidD from L. pneumophila as the first
protein exhibiting a deAMPylase activity, by using two distinct
approaches. Neunuebel et al. (2011) observed that a whole cell
lysate from L. pneumophila but not from E. coli efficiently removes
in vitro radiolabeled AMP from AMPylated Rab1. Given that genes
of functionally linked proteins tend to be clustered on bacte-
rial genomes, they deleted the immediately nearby sidM gene,
namely sidD gene, and they observed that the whole cell lysate
from the sidD mutant was not able anymore to deAMPylate SidM

(Neunuebel et al., 2011). On the other hand, Tan and Luo iden-
tified SidD as a protein capable of suppressing the toxicity of the
AMPylase SidM to yeast (Tan and Luo, 2011). Both groups demon-
strated that SidD removes the AMP moiety from Tyr77 of Rab1,
thus reversing the effect of SidM on this small GTPase activity
(Table 1).

REVERSIBLE PHOSPHOCHOLINATION
As mentioned above, the Fic domain is associated to enzymes that
trigger AMPylation of target proteins. In silico analysis revealed
that another protein from L. pneumophila, namely AnkX, con-
tains a Fic domain. However, mass spectrometry demonstrated
that AnkX promotes a novel PTM, namely phosphocholination
rather than AMPylation (Mukherjee et al., 2011). Phosphocholi-
nation consists in the covalent link of a phosphocholine group to a
serine residue (Table 1). More precisely, AnkX catalyzes the phos-
phocholination of Ser76 of the small GTPase Rab1, immediately
upstream the Tyr77 AMPylated by SidM (Mukherjee et al., 2011).
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Like AMPylation, phosphocholination is a reversible PTM. Tan
et al. (2011) recently identified the Dot/Icm effector Lem3 as a
protein capable to rescue the growth of yeast transformed by
AnkX expression vector, which suggested that Lem3 was able to
antagonize the activity of phosphocholination of AnkX. Indeed, in
vitro assays demonstrated that Lem3 reverses the AnkX-dependent
phosphocholination of Rab1 by removing the phosphocholine
moiety from Rab1 (Tan et al., 2011; Table 1).

PTMs FOR Legionella CONTAINING VACUOLE BIOGENESIS
Legionella-containing vacuole biogenesis is a main trait of
Legionella intracellular fate that allows the bacteria to generate
a niche permissive for intracellular replication. Within 15 min
of uptake, the LCV is surrounded and fused with ER-derived
smooth vesicles and mitochondria (Horwitz, 1983), and 4 h
post-contact it is decorated by host cell ribosomes (Horwitz
and Silverstein, 1981; Roy and Tilney, 2002), thus resulting in a
replication-permissive vacuole (Figure 2). Legionella-containing
vacuole biogenesis mobilizes complex molecular mechanisms that
are strictly dependent on the Dot/Icm T4SS and its exceptionally
high number of effectors. PTMs of both host cell proteins and
Dot/Icm effectors play a key role in the fine-tuned orchestration
of this infection step.

Dot/Icm EFFECTORS ACETYLATION AND UBIQUITINATION
SPATIO-TEMPORALLY CONTROL THEIR RECRUITMENT ON THE LCV
Given the high number of effectors, it could be assumed that
both translocation into the host cell cytosol, organelles address-
ing, and degradation of each effector must be controlled such
that it could sequentially participate to the LCV biogenesis.
Many Dot/Icm effectors are targeted to the LCV surface. L.
pneumophila uses [PI(4)P] to anchor some Dot/Icm substrates,
such as SidC and SidM to the cytoplasmic face of LCV (Ragaz
et al., 2008; Brombacher et al., 2009). Another way for L. pneu-
mophila to address injected effectors to the LCV membrane, is
the exploitation of the host cell prenylation apparatus (Ivanov
et al., 2010; Price et al., 2010a). The Dot/Icm substrate AnkB,
of strains L. pneumophila AA100 and Philadelphia Lp01, con-
tains a CAAX motif. During infection, the CAAX motif of AnkB
is modified by the host farnesylation machinery (Ivanov et al.,
2010; Price et al., 2010a). Expression of a CAAX substituted-
variant results in defective anchoring of AnkB to the LCV, severe
defects in intracellular replication, and attenuation of intrapul-
monary proliferation in a mouse model, thus demonstrating that
the farnesyl-dependent vacuolar location of AnkB is essential to
its role in the infectious cycle of L. pneumophila (Price et al.,
2009).

In addition to the appropriate addressing of Dot/Icm effec-
tors, a specific temporal control of their stability in the host cell is
carried out during L. pneumophila infection. In that purpose, L.
pneumophila interferes with the ubiquitin system to address some
effectors to proteasomal degradation. LubX is a Dot/Icm effector
containing two U-box domains and functions as a E3 ubiquitin
ligase toward the cellular Clk1 protein. However, cellular con-
sequences of ubiquitination of Clk1 remain unknown (Kubori
et al., 2008). LubX was also shown to bind and polyubiquitinate
in vitro SidH, another Dot/Icm effector. It mediates proteasomal

degradation of SidH in infected cells. Thus, LubX is considered
like a metaeffector that controls in space and time, the presence
of another effector, by using ubiquitination PTM (Kubori et al.,
2010).

AMPylation AND PHOSPHOCHOLINATION CONTROLS THE GTPase Rab1
ACTIVATION FOR ER RECRUITMENT ON THE LCV
One main characteristic of the LCV is that it is fused with
ER-derived vesicles. The manipulation of host cell vesicu-
lar trafficking by L. pneumophila is strictly dependent of the
Dot/Icm T4SS. In particular, some of Dot/Icm substrates tar-
get host cell small GTPases. Among them, the effector SidM
interacts with Rab1, and its GEF and GDF activities result in
Rab1 release from GDI (Ingmundson et al., 2007), and in LCV
membrane associated GTP-coupled Rab1 (Arasaki et al., 2012),
respectively (Figure 3). An additional PTM-associated enzy-
matic activity of the multifunctional protein SidM has recently
been revealed. The N-terminal domain of SidM, which exhibits
similarities with the catalytic domain of glutamin synthetase
adenylyl transferase, modifies the tyrosine 77 of Rab1 by AMPy-
lation or adenylylation, i.e., the addition of a AMP moiety
(Müller et al., 2010). This PTM inhibits GAP-stimulated GTP
hydrolysis, thus locking Rab1 in the GTP-bound active state,
and finally allows ER recruitment at the surface of the LCV
(Figure 3).

The activation of Rab1 by SidM is counteracted by two others
Dot/Icm effectors, SidD and LepB (Figure 3). SidD removes AMP
from Tyr77 of Rab1 (Neunuebel et al., 2011; Tan and Luo, 2011) by
a protein phosphatase-like catalytic mechanism, as suggested by
structural analysis (Rigden, 2011). DeAMPylation of Rab1 makes
it accessible for GAP activities, such as that exhibited by LepB.
Despite any similarity with eukaryotic Rab-GAPs, LepB harbors a
Rab1-specific GAP activity that promotes GTP hydrolysis and sub-
sequent removal of Rab1 from the LCV (Ingmundson et al., 2007;
Mihai Gazdag et al., 2013). Consistent with the SidD-dependent
action of LepB, the phenotype of a lepB mutant is similar to that
of a sidD mutant, i.e., a prolonged localization of Rab1 on the LCV
(Neunuebel et al., 2011).

Two additional Dot/Icm effectors target the Rab1 GTPase for
PTM and participate to the temporal control of its activation
during Legionella infection cycle. AnkX harbors a novel PTM
activity, namely phosphocholination, that transfers a phospho-
choline moiety from CDP-choline to serine 76 of Rab1, preceding
the SidM-modified tyrosine (Mukherjee et al., 2011; Figure 3).
Although the biological effect of this PTM of Rab1 is not com-
pletely deciphered, it results in the same biochemical consequence
as the SidM-mediated AMPylation, i.e., locking Rab1 in the active
form. Like AMPylation, phosphocholination is reversible. The
Dot/Icm effector Lem3 has been recently shown to possess an
antagonistic activity to that of AnkX by removing the phospho-
choline from the Ser76 of Rab1 (Tan et al., 2011; Goody et al.,
2012). Thus, Rab1 is directly targeted and its activity is con-
trolled by four different Dot/Icm effectors that catalyze different
PTMs.

It is noteworthy that ubiquitination, mediated by the Dot/Icm
effectors SidC and SdcA, could also participate to ER recruitment
on the LCV. The Dot/Icm effector SidC and its paralog SdcA were
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FIGURE 3 | Post-translational modifications of small GTPase Rab1 by

L. pneumophila for LCV biogenesis. The ER recruitment on the LCV is
orchestrated by four Dot/Icm effectors-mediated PTMs. SidM releases
Rab1 from GDI with its GEF activity. SidM then modifies Rab1 by
AMPylation, i.e., the addition of a AMP moiety. This PTM locks Rab1 in
the GTP-bound active state, and finally allows ER recruitment at the
surface of the LCV. SidD removes AMP from Rab1, making it accessible

for GAP activities, such as that exhibited by LepB. LepB promotes GTP
hydrolysis of Rab1, removing it from the LCV. AnkX harbors a novel PTM
activity, the phosphocholination, that transfers a phosphocholine moiety to
Rab1, resulting in the same effect that the SidM-mediated AMPylation,
i.e., locking Rab1 in the active form. The Dot/Icm effector Lem3 possesses
an antagonistic activity to that of AnkX by removing the phosphocholine
from Rab1.

proposed to function as vesicle fusion tethering factors involved
in the recruitment of ER vesicles on the LCV (Luo and Isberg,
2004; Ragaz et al., 2008). Recently, infection by a WT L. pneu-
mophila strain was shown to mediate the mono-ubiquitination
of Rab1 on lysine 187 (Horenkamp et al., 2014). Given that cells
infected with the double mutant sdcA-sidC did not exhibit this
Rab1 PTM, it was assumed that Rab1 ubiquitination required the
Dot/Icm effectors SidC and SdcA. However, ectopic expression
of SidC or SdcA alone in HEK293 cells did not result in Rab1
ubiquitination, which suggests that neither SidC nor SdcA are E3
ubiquitin ligases. By contrast, another study demonstrated that
the N-terminal domain of SidC exhibits ubiquitin ligase activity
that catalyzes polyubiquitin chains formation and is necessary for
ER recruitment on the LCV (Hsu et al., 2014). According to the
authors, SidC does not seem to directly target Rab1 but more
likely triggers a remodeling of proteins composition at the sur-
face of the LCV. Although the mono-ubiquination of Rab1 would
be mediated by an indirect unknown mechanism and that the
substrates and impact of the SidC/SdcA-catalyzed polyubiquiti-
nation remains unclear, both these studies highlight the role of
ubiquitination in ER recruitment on the LCV.

UBIQUITINATION OF BAT3 COULD MITIGATE THE EFFECTS OF
DISRUPTING NORMAL VESICULAR TRAFFICKING
Legionella pneumophila co-opts host vesicular trafficking during
infection, in particular to recruit ER on the LCV surface. It can be
assumed that some Dot/Icm substrates are translocated to protect

host cells against the cytotoxic stress generated by the ER traf-
fic hijacking. Among them, the Dot/Icm effector LegU1 contains
an F-box domain and interferes with ubiquitin signaling. It can
be integrated into the functional SCF1 complex that confers E3
ubiquitin ligase activity. It specifically targets the host chaperone
protein BAT3, a key regulator of the ER stress response. LegU1
associates with BAT3 and mediates its polyubiquitination in vitro
(Ensminger and Isberg, 2010). Moreover, another translocated L.
pneumophila protein, Lpg2160, plays a role in this complex by
binding both the SCF complex and BAT3. These results suggest
that this multicomplex formation leads to BAT3 ubiquitination,
probably to modulate the ER stress response during infection
(Ensminger and Isberg, 2010).

PTMs FOR SUSTAINING Legionella INTRACELLULAR
REPLICATION
In the rough ER-like compartment of the LCV, L. pneumophila
proliferates in a so-called replicative form until vacuolar nutrients
become limiting. Polyubiquination of host cell proteins medi-
ated by a Legionella effector has been recently proposed to be
a bacterial strategy dedicated to generate sources of carbon and
energy needed for microbial proliferation in vivo (Price et al.,
2011). Indeed, in addition to the CAAX farnesylation motif
described above, AnkB from L. pneumophila Philadelphia strain
harbors two ankyrin (ANK) protein–protein interaction domains
and a F-box domain. In both macrophages and protozoa, AnkB
functions as a bona fide F-box protein where it recruits Skp1,
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thus subverting the host SCF1 complex and functionning as a
platform for the docking of polyubiquitinated proteins to the
LCV membrane. The polyubiquitinated proteins assembled by
AnkB on the LCV are preferentially enriched for Lys48-linked
polyubiquitinated proteins, which is a hallmark for proteaso-
mal degradation, that generate 2–24 amino acid peptides (Price
et al., 2011). Interestingly, substitution of Lys48 to Arg abolishes
the decoration of the LCV with polyubiquitinated proteins and
blocks intracellular proliferation. Moreover, inhibition of protea-
some, or host amino- and oligo-peptidases that degrade the short
peptides generated by proteasomal degradation, blocks intracellu-
lar proliferation (Price et al., 2011). However, both inhibitions
are bypassed by excess amino acid supplementation. Together
these data strongly support that AnkB promotes proteasome-
mediated generation of free amino acids essential as energy
and carbon sources for L. pneumophila intracellular proliferation
(Figure 2).

It is noteworthy that in some L. pneumophila strains such as the
strain Paris, AnkB does not contain the CAAX motif. Given they do
not localize to the LCV, these AnkB homologues might not be key
effectors of L. pneumophila that generate nutrients for intracellular
growth. A yeast two-hybrid screen and co-immunoprecipitation
analysis identified ParvB as one target of the L. pneumophila F-
box protein AnkB encoded by strain Paris. ParvB, or affixin, is
known to play important roles in focal adhesion, cell spreading
and motility. Surprisingly, expression of AnkB led to a decrease
of ubiquitination of ParvB. Thus, it was proposed that L. pneu-
mophila modulates ubiquitination of ParvB by competing with
eukaryotic E3 ligases for the specific protein–protein interaction
site of ParvB. However, the role of AnkB in the infectious cycle
of L. pneumophila strain Paris remains unknown (Lomma et al.,
2010).

PTMs FOR CONTROLLING HOST CELL GENES EXPRESSION
PHOSPHORYLATION OF IκB FOR CONTROLLING THE NF-κB DEPENDENT
GENES TRANSCRIPTION
After phagocytosis, L. pneumophila resides and replicates in the
LCV within the host cytosol. Consequently, survival of the host
cell is necessary for successful replication. To prevent cell death,
some Dot/Icm translocated substrates interfere with pro-death
pathways (Laguna et al., 2006; Banga et al., 2007). A second
mechanism of preventing host cell death during infection is to
stimulate the NF-κB pathway, which results in up-regulation of
genes encoding anti-apoptotic proteins (Karin and Lin, 2002).
NF-κB homo- and heterodimers are master transcription regu-
lators of the mammalian innate immune response that control
the expression of almost 400 genes (Karin and Lin, 2002; Ahn
and Aggarwal, 2005; Hayden and Ghosh, 2008). NF-κB activa-
tion can result from sensing of pathogen associated molecular
patterns (PAMPs) by the pattern recognition receptors (PRRs),
which leads to activation of IκB kinases (IKKs). Once activated,
IKKs phosphorylate IκB family members, inhibitory proteins that
are bound to NF-κB subunits in the cell cytoplasm, thus triggering
IκB ubiquitination, IκB degradation, and subsequent transloca-
tion of NF-κB into the nucleus (Hayden and Ghosh, 2008). L.
pneumophila infection results in increased Dot/Icm-dependent
transcription of NF-κB subunits as well as NF-κB regulated genes

including pro-inflammatory cytokines and antagonists of apop-
tosis (Losick and Isberg, 2006; Abu-Zant et al., 2007; Shin et al.,
2008). Besides the engagement of PRRs with PAMPs, direct tar-
geting of the pathway by a Dot/Icm effector, namely LegK1,
has been demonstrated (Ge et al., 2009; Figure 2). LegK1 effi-
ciently phosphorylates IκB on Ser-32 and Ser-36 both in vitro
and in cells, thus mimicking the host IKKs. Ectopic expression
of the protein in mammalian cells results in activation of an
NF-κB-dependent promoter. The kinase activity is necessary for
this activation, as a point mutation in the ATP binding domain
or a catalytic residue abolishes NF-κB activity (Ge et al., 2009;
Losick et al., 2010), and cell-free reconstitution revealed that LegK1
stimulated NF-κB activation in the absence of IKKs (Ge et al.,
2009).

METHYLATION OF HISTONES FOR CONTROLLING HOST CELL GENE
TRANSCRIPTION
Legionella-containing vacuoles are studded with an increasing
number of ribosomes during the first 8 h after bacterial internal-
ization, after which the bacteria start to replicate in the vacuole.
Besides, transcription of rRNA genes (rDNAs) in the nucleolus
is known to be regulated by epigenetic chromatin modifica-
tions including histone H3 lysine (de)methylation. Recently, the
Dot/Icm LegAS4 from L. pneumophila Philadelphia strain was
shown to localize in the host nucleolus and promoted rDNA
transcription (Li et al., 2013; Figure 2). LegAS4 contains an
active SET-domain-sharing 35% sequence identity with eukary-
otic NSD2/3 Lys Histone Methyltransferases of the SET2 family.
In vitro studies on histone H3 substrate, using methylation-specific
H3 antibodies, show that LegAS4 catalyses dimethylation of his-
tone H3 on Lys4 (H3K4me2). Consistently, ectopic expression
of LegAS4 in human cells is associated with increased levels
of H3K4me2 at rDNA promoters and the activation of the
transcription of these genes. LegAS4’s association with rDNA
chromatin is mediated by interaction with host HP1a/c. Dock-
ing of LegAS4 to these regions through binding to HP1, and
subsequent methylation of H3K4, might convert the epigenet-
ically silent state of rDNA genes to an active state methylated
H3. Stimulation of rDNA transcription might contribute to bac-
terial replication in two flavors. The enforced higher proliferation
potential of infected cells, resulting from activation of rDNA
transcription, could provide a better niche for bacterial repli-
cation. On the other hand, intracellular bacteria could exploit
host ribosome activity for its own survival advantages (Li et al.,
2013).

Interestingly, mass spectrometry analysis revealed that the
equivalent effector of LegAS4 from the L. pneumophila strain Paris,
named RomA (for regulator of methylation A) trimethylates in
vitro Lys14 of H3 (H3K14me3), a histone mark not previously
described in mammals (Rolando et al., 2013b). This epigenetic
mark was confirmed by systematic site-directed mutagenesis of
the lysine residues in the N-terminal tail of H3. It is notewor-
thy that while H3 methylation was almost completely decreased
when H3 was mutated on K14, RomA enzymatic activity appeared
to be also reduced on H3 carrying a mutated K4. However, no
H3K4 methylation was revealed in western-blot probed with anti-
H3K4me2 or H3K4me3 antibodies, thus suggesting that RomA
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only targets K14 of H3 and that H3K4 methylation could influ-
ence H3K14 methylation by being part of the motif required by
RomA to bind to its substrate (Rolando et al., 2013b). By promot-
ing a burst of H3K14me3, RomA decreases H3K14 acetylation,
which is an activating mark, thus leading to repression of host gene
expression. In addition, ChIP-seq analysis identified 4,870 H3K14
methylated promoter regions, including at innate immune genes,
during Legionella infection.

Recently, the H3K14-specific methylation was shown to be
conserved in cells infected by seven different strains of L. pneu-
mophila, including the Philadelphia 1 (Lp02) strain (Rolando and
Buchrieser, 2014). Thus, there is more likely no different speci-
ficity of the methylation activities of LegAS4 and RomA, and
despite slight discrepancies about the biochemistry and the bio-
logical effect of these effectors, both these studies highlight the key
role of histone PTMs during Legionella infection (Figure 2).

GLYCOSYLATION OF EF1A FOR INHIBITING THE HOST CELL
TRANSLATION
In addition to controlling the host cell gene transcription, L.
pneumophila is able to inhibit the overall host cell translation.
L. pneumophila encodes three Dot/Icm effectors, namely Lgt1,
Lgt2, and Lgt3, that monoglycosylate the serine residue Ser53
of the GTPase domain of the host translational factor eEF1A
(eukaryotic Elongation Factor 1A), leading to the inhibition of
protein synthesis, and consequently to the death of the host cell
(Belyi et al., 2006). Although EF1A glycosylation seems to pro-
mote L. pneumophila pathogenesis, the biological role of this PTM
remains to be addressed. Because their activities cause the host
cell death, glysosyltransferases are usually considered like bacterial
toxins rather than molecular tools that hijack host cell pathways
to the benefit of the bacteria. However, it can be assumed that
the inhibition of host cell protein synthesis leads to the over-
all decrease of the host metabolism, which promotes the ability
of the bacteria to overcome the cellular response and conse-
quently to replicate (Belyi et al., 2011). Moreover, it has been
recently shown that Lgt1, Lgt2, Lgt3 plus two others Dot/Icm
effectors, SidI and SidL that respectively, interacts with eEF1A
and eEF1B (Shen et al., 2009) and inhibit protein synthesis by an
unknown mechanism, are critical to control the host cell tran-
scription response to Legionella infection (Fontana et al., 2011).
In fact, these Dot/Icm effectors decrease the overall translation
of host cell proteins, among which the NF-κB inhibitor IκB, thus
promoting the activation of the NF-κB pathway. In that way, gly-
cosylation of eEF1A by these effectors and thus inhibition of host
cell translation could potentiate the activation of the NF-κB path-
way, already controlled by the IκB phosphorylation by LegK1, as
described above.

CONCLUSION
Given PTMs play key roles in the cellular biology, it is not surpris-
ing that interference with host PTMs is a strategy widely used by
bacterial pathogens to not only escape from host cell defences but
also to hijack host cell pathways to their benefit. However, recent
technological progresses in the detection of PTMs and advanced
functional studies of the host–bacteria relationship highlighted an
unexpected diversity of the PTMs triggered by bacteria and the

complexity of these processes in host–pathogen interactions, thus
making studies of bacteria-mediated PTMs an emerging field of
research.

Legionella pneumophila is a paradigm of a pathogenic bacteria
that evolved sophisticated biochemical strategies to successfully
infect and replicate into professional bacteria killer phagocytic
cells. In fact, L. pneumophila is a unique example for the co-
evolution of a bacterium with environmental hosts, namely
amoeba, that results in the acquisition of many genes encod-
ing proteins that can be secreted by the Dot/Icm T4SS and
trigger diverse PTMs into the host cells. Indeed, the large reper-
toire of Dot/Icm effectors enables the bacteria to phosphorylate,
alkylate, ubiquitinate, glycosylate, AMPylate, and phosphocholi-
nate specific host cell proteins. Noteworthy, L. pneumophila also
catalyze PTMs of its own proteins, namely some of Dot/Icm effec-
tors, to control their localization and/or their stability in the
host cell, and subsequently their activity during the infection.
Importantly, despite PTMs are usually catalyzed by eukaryotic-
like proteins, some of them are performed by enzymes that do
not exhibit similarity with their eukaryotic counterparts. More
interestingly, research on Dot/Icm effectors functional roles lead
to the discovery of a new PTM, namely the reversible phos-
phocholination, that may also be used by eukaryotic cells to
modulate cellular functions, as previously suggested by studies
that detected phosphoryl-choline substituted peptides secreted
by nematodes and from mammalian cells residing in the pla-
centa (Lovell et al., 2007; Grabitzki et al., 2008). AMPylation
had been also discovered by studying infections by V. para-
haemolyticus and H. somni, a human pathogen and the causal
agent of septicemia in cattle, respectively (Worby et al., 2009;
Yarbrough et al., 2009). These discoveries reveal that studies of
the relationship between pathogenic bacteria and their host cells
could lead the way to improve our knowledge of the eukary-
otic PTMs and complex cellular processes that are associated
to.

Interestingly, L. pneumophila targets host proteins that have
been already described to be preferential targeted for bacterial-
induced PTMs. This is the case of regulators of the NF-κB pathway,
which allows the bacteria to control both anti-apoptotic genes and
host immune response, like previously demonstrated for Shigella
flexneri (Kim et al., 2005), Salmonella typhimurium (Le Negrate
et al., 2008), L. monocytogenes (Gouin et al., 2010), and Yersinia
species (Mittal et al., 2006). Moreover, L. pneumophila joins those
bacteria that secrete effectors manipulating PTMs at histones
tails, allowing a fine-tuned regulation of host genes transcription
(Hamon and Cossart, 2008; Bierne, 2013; Rolando et al., 2013a).
These recent insights highlight the key role of both these pro-
cesses and their control by PTMs in the pathogenic bacteria–host
relationships.
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