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With the widespread availability of high-throughput sequencing technologies, sequencing
projects have become pervasive in the molecular life sciences. The huge bulk of data
generated daily must be analyzed further by biologists with skills in bioinformatics and
by “embedded bioinformaticians,” i.e., bioinformaticians integrated in wet lab research
groups. Thus, students interested in molecular life sciences must be trained in the main
steps of genomics: sequencing, assembly, annotation and analysis. To reach that goal,
a practical course has been set up for master students at the University of Lausanne:
the “Sequence a genome” class. At the beginning of the academic year, a few bacterial
species whose genome is unknown are provided to the students, who sequence and
assemble the genome(s) and perform manual annotation. Here, we report the progress of
the first class from September 2010 to June 2011 and the results obtained by seven master
students who specifically assembled and annotated the genome of Estrella lausannensis,
an obligate intracellular bacterium related to Chlamydia. The draft genome of Estrella is
composed of 29 scaffolds encompassing 2,819,825 bp that encode for 2233 putative
proteins. Estrella also possesses a 9136 bp plasmid that encodes for 14 genes, among
which we found an integrase and a toxin/antitoxin module. Like all other members
of the Chlamydiales order, Estrella possesses a highly conserved type III secretion
system, considered as a key virulence factor. The annotation of the Estrella genome also
allowed the characterization of the metabolic abilities of this strictly intracellular bacterium.
Altogether, the students provided the scientific community with the Estrella genome
sequence and a preliminary understanding of the biology of this recently-discovered
bacterial genus, while learning to use cutting-edge technologies for sequencing and to
perform bioinformatics analyses.
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INTRODUCTION
Since the onset of pyrosequencing in 2007, ultra-high-throughput
sequencing (UHTS) technologies have democratized the access of
large-scale sequencing to small laboratories by decreasing the cost
and the turnaround time (MacLean et al., 2009). This resulted
in a flood of new genome sequences, and especially unfin-
ished genome sequences, particularly in the field of microbiology

(Bertelli and Greub, 2013). Large sequence datasets are generated
daily not only for genome sequencing, but also for metagenomics
studies, RNA-seq or ChIP-seq. The treatment of sequence data has
thus become the main bottleneck for many studies in microbiol-
ogy, and more generally in biology. This underlines the current
need for biologists with skills in bioinformatics and for bioin-
formaticians embedded in wet lab research groups. Thus, it is
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extremely important to make students in molecular life sciences
aware of the main challenges related to the use of UHTS in biology
projects.

Several publications or web pages have reported the teach-
ing of genomics to undergraduate students using phages (Jordan
et al., 2014), microbes (Kerfeld and Simons, 2007; Drew and
Triplett, 2008; Coil1 JGI2), or mammals (Edwards et al., 2013).
Microbial genomics has the advantage of providing tractable
projects in a reasonable time frame and budget, while providing
the students with an opportunity to familiarize themselves with
important concepts such as quality control, read filtering, assem-
bly, annotation and genome analysis. The “Sequence a genome”
class, a compulsory practical course, has been set up for students
enrolled in the Master of Molecular Life Sciences at the School of
Biology of the University of Lausanne, Switzerland. Students are
provided with bacterial strains of interest to Lausanne research
groups, whose genomes are completely unknown. They learn
to use state-of-the-art UHTS technologies and bioinformatics
tools while producing new knowledge on a specific organism.
Here, we report the main idea and concepts of the class, and the
results obtained by seven master students who studied the Estrella
genome.

Estrella lausannensis is an obligate intracellular bacterium
isolated from the Llobregat river water (Barcelona, Spain) by
amoebal co-culture (Corsaro et al., 2009), a cell culture system
using amoebae as a cell background (Jacquier et al., 2013). The
bacterium was recently classified in the Criblamydiaceae family
based on phylogenetic analysis of ribosomal RNA, core genes,
and MALDI-TOF profiles (Lienard et al., 2011). Like all other
members of the Chlamydiales order, this strict intracellular bac-
terium exhibits two developmental stages: an infectious stage
called the elementary body (EB) and a replicative stage named
the reticulate body (RB). First electron microscopy showed star-
shaped EBs leading to the name Estrella (Lienard et al., 2011),
but star shapes are less frequent in E. lausannensis than in the
related species Criblamydia sequanensis (Thomas et al., 2006;
Rusconi et al., 2013). Although these morphologies probably
results from a fixative artifact, they certainly reveal underlying
differences in cell wall structure and composition (Rusconi et al.,
2013).

A survey of metagenomics sequences available in public
databases showed that the Criblamydiaceae family forms a
small operational taxonomic units (OTUs) compared to other
widely represented OTUs such as the Rhabdochlamydiaceae
(Lagkouvardos et al., 2014). However, recent serological stud-
ies suggested a common exposure of human to Estrella with
a seroprevalence varying from 2.9 to 12.7% (De Barsy et al.,
2014). Human exposure and E. lausannensis ability to grow in
human macrophages that point to a potential pathogenicity trig-
gered the investigation of E. lausannensis resistance to commonly

1Coil, D. Undergraduate Research: Built Environment Genomes -
microBEnet. Available online at: http://microbe.net/microbiomes-of-
the-built-environment-network-microbenet/undergraduate-research-built-
environment-genomes/
2JGI. Undergraduate Research in Microbial Genome Analysis. Available online
at: http://img.jgi.doe.gov/cgi-bin/edu/main.cgi

used antibiotics (De Barsy et al., 2014). When cultured in Vero
cells, the bacterium was resistant to beta-lactams and fluoro-
quinolones, but sensitive to cyclones. In addition, E. lausannensis
replicates efficiently in four different species of free-living amoe-
bae, inducing host cell lysis after 48–96 h (Lienard et al., 2011).
The bacterium was also shown to grow in two fish cell lines but
could not induce cell lysis (Kebbi-Beghdadi et al., 2011). Survival
and growth in macrophages and other professional phagocytes is
made possible by the presence of a class 3 catalase that degrade
reactive oxygen species (Rusconi and Greub, 2013).

All Chlamydiales species, like many intracellular bacteria, lack
complete biosynthetic pathways for essential compounds, but the
ability of each genus and species varies (reviewed in Omsland
et al., 2014). We hypothesized that the wide host range and the
rapid growth of E. lausannensis may be linked to wider metabolic
abilities compared to other Chlamydia-related bacteria and espe-
cially compared to its closest known relative C. sequanensis whose
genome has just been released (Bertelli et al., 2014). Thus, E. lau-
sannensis, the type strain of the genus and species, was selected in
the first implementation of the “Sequence a genome” course. We
present here the results of the sequencing, analysis and annotation
of the E. lausannensis genome by the students themselves. The
results section of the manuscript is mostly based on their written
reports provided as part of the course. Hence, this should be con-
sidered a preliminary assessment of this bacterial genome, which
illustrates how an undergraduate course can explore genome
biology.

MATERIALS AND METHODS
STRAIN CULTURE AND PURIFICATION
Estrella lausannensis strain CRIB-30 was co-cultured in
Acanthamoeba castellanii ATCC 30010 at 32◦C in 75-cm2-surface
cell culture flasks (Becton Dickinson, Allschwil, Switzerland)
with 30 ml of PYG medium as described previously (Greub and
Raoult, 2002). Co-cultures were harvested when a complete lysis
of the amoebae was observed. Then, Estrella elementary bodies
were purified using successive sucrose and gastrografin gradients,
as described previously (Bertelli et al., 2010). These steps were
not performed by the course students.

GENOME SEQUENCING
DNA extraction and library preparation failed likely due to
an insufficient amount of bacteria resulting from cell cul-
ture. However, students successfully extracted the DNA from
Pseudomonas knackmussii that was performed in parallel and
which analysis is published in another paper (Miyazaki et al.,
2014). Thus, a set of backup reads obtained previously was used.
Therefore, the following lines describe the protocol effectively
used and not that used by students during the course.

Estrella lausannensis DNA was purified from the bacte-
rial pellet using the QIAmp DNA extraction kit (Qiagen,
Hombrechtikon, Switzerland) and eluted in 100 µl of the pro-
vided elution buffer. The library was prepared according to
Illumina standard protocols with the addition of a 5 bp-index to
allow for sample multiplexing. A 38 bp paired-end (PE) run of
the Estrella library was sequenced on a lane of an Illumina GAIIx
sequencer at Fasteris (Plan-les-Ouates, Switzerland). The raw data
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was processed according to the Illumina pipeline and exported as
fastq files.

GENOME ASSEMBLY
The quality of Estrella reads (33 bp without tag, PE, insert
size ∼300 bp) was controlled using FastQC (http://www.

bioinformatics.bbsrc.ac.uk/projects/fastqc/) revealing an
excellent quality over their entire length. Thus, no trimming
or filtering was performed. Reads were assembled using CLC
Genomics Workbench 4 (CLCbio, Aarhus, Denmark), ABySS
V1.2.1 (n = 5) (Simpson et al., 2009), Velvet V1.0 (Zerbino
and Birney, 2008) and SOAPdenovo (Config file: max_rd_len
= 33, avg_ins = 330, reverse_seq = 0, asm_flags = 3, rank =
1, Assembly: −p 2–d 2) combined with GapCloser (−t 2) (Li
et al., 2010) with default parameters unless previously mentioned
and a k-mer that varied between 19 and 29. Assembly results
were compared and the best assembly (Velvet, k-mer = 23) was
selected according to the following criteria: minimum number of
scaffolds larger than 1000 bp, maximum N50, and maximal total
size of assembled nucleotides. All of these steps were performed
by the students, on a Linux cluster (http://www.vital-it.ch/), over
the autumn semester.

We checked the occurrence of large scaffolds (>1000 bp) with
a coverage higher or lower than the mean ± 1.5∗standard devi-
ation and investigated their content by BLASTN against the

non-redundant database (nt). Large scaffolds were searched for
similarity to A. castellanii genome by BLASTN.

Although they assemble the same data, the different soft-
wares used in this analysis implement different methods for graph
construction and resolution which results in slightly different
contigs. To make students aware of the differences that may exist
between the assemblies, the best assemblies of all software were
aligned using Mauve (Darling et al., 2004). By doing this, the
students recorded cases were the best Velvet assembly provided
two contigs for a region that was solved in one contig by another
software. These differences enabled to scaffold contigs in Velvet

Table 1 | Assembly statistics of Estrella lausannensis.

Assembler n n:1000 n:N50 min N50 max sum

CLCbio 613 350 72 1044 11402 74998 2762344

ABySS 102 60 7 1063 137730 303994 2966869

Velvet 109 39 5 1052 234440 464604 2827833

SOAPdenovo 152 52 6 1017 139628 438768 2815006

Final assembly 29 29 4 1052 268998 464198 2819825

n, number of scaffolds; n:1000, number of scaffolds > 1000 bp long; n:N50, num-

ber of scaffolds > N50; min, size of the smallest contig; max, size of the largest

scaffold; sum, sum of all nucleotides in the assembly without Ns.

FIGURE 1 | Organization of the course “Sequence a genome” in

2010–2011. Topics of corresponding lectures are detailed on the left. The
main steps of genome sequencing performed by the students as well as the
main scientific skills acquired by the students are indicated on the right. The

central arrow indicates the time (in hours) dedicated to lectures (left) and
practical work (right) during the autumn and spring semester of the year
2010–2011. Lectures were immediately followed by the practical work in a 4 h
class every 2 weeks. “//” represents the semester break.
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assembly. To further scaffold contigs, a multiple alignment of
the best genome assembly of each software was performed using
Mauve and the positioning of read pairs on different contigs
was analyzed using Phrap and Consed (Gordon et al., 1998).
To improve genome assembly, primers were designed between
200 and 400 bp of each contig end using Consed (Gordon et al.,
1998), R (Cran, 2010), and in-house scripts. Primer combina-
tions suggested based on the scaffold were tested first by PCR.
Positive combinations were sequenced using Sanger technology
and resulting reads were reassembled with contigs of the best
assembly using Phrap and manually curated to remove spuri-
ous errors using Consed. All these steps were performed by the
students, with limited improvements by the teachers for failed
experiments.

ANNOTATION
The draft genome was submitted to GenDB (Meyer et al., 2003)
for automatic annotation. The annotation of genes belonging to
selected pathways or particular regions of interest were manually
curated by the students under the teachers’ supervision, according
to guidelines available as Supplementary material. The biocura-
tion was performed on gene name, gene product, E.C. number, a
description field (notes), as well as a status of confidence and a GO
evidence code. For this purpose, BLAST searches (Altschul et al.,
1990) against Swiss-Prot/UniProtKB (UNIPROT, 2014), KEGG
(Ogata et al., 1999), the non-redundant database, local databases,
as well as HMM searches against Pfam (Finn et al., 2014) and
TIGRfam (Selengut et al., 2007) were taken into account. Thanks

to the possibilities offered by the GenDB interface, the genes
annotated by the students were tagged with a specific status of
function. Then, the teacher responsible for each correspond-
ing topic corrected the annotation, added more information if
required or answered questions asked by the students. Difficult
annotations were discussed directly among students, assistants
and professors during the practical courses.

ACCESSION NUMBER
The genome of Estrella lausannensis strain CRIB-30 is available
in the European Nucleotide Archive database with the acces-
sion number PRJEB7018: http://www.ebi.ac.uk/ena/data/view/
PRJEB7018

RESULTS
COURSE SET-UP
The course entitled “Sequence a genome” was initiated with the
launching of the new Master of Life Sciences at the University
of Lausanne during the academic year from September 2010 to
June 2011 (Figure 1). Fourteen pre-graduate students partici-
pated in the class, under the supervision of nine teachers, includ-
ing Professors, Post-doctoral fellows and PhD/graduate students
(“assistants”) during a full academic year.

After a general introduction on sequencing technologies and
on the bacteria selected for analysis, one full day was dedicated to
DNA extraction, DNA purity control and a visit to the genome
sequencing facility at the start of the course. Subsequently, the
class consisted of a 1-h lecture on technical aspects immediately

Table 2 | Genomic characteristics of members of the Chlamydiales order.

Family Species Complete/draft Representative Genome G + C Proteins tRNA rRNA Plasmid

genome strain size (bp) content (%) size (bp)

Chlamydiaceae Chlamydia trachomatis 60/28 D/UW-3/CX 1′042′519 41.3 895 37 6 7′493

Chlamydia muridarum 5/8 Nigg 1′072′950 40.3 903 37 6 7′501

Chlamydia pneumoniae 5/1 CWL029 1′230′230 40.6 1′122 38 3 –

Chlamydia pecorum 4/4 E58 1′106′197 41.1 988 38 3 –

Chlamydia felis 1/− Fe/C-56 1′166′239 39.4 1′005 38 3 7′552

Chlamydia caviae 1/− GPIC 1′173′390 39.2 998 38 3 7′966

Chlamydia abortus 1/1 S26/3 1′144′377 39.9 932 38 3 –

Chlamydia psittaci 16/33 6BC 1′171′660 39.1 967 38 3 7′553

Chlamydia suis −/1 MD56 1′079′683 42.0 937 37 3 5′976

Chlamydia galinacea −/1 08-1274/3 1′050′923 37.9 907 39 4 –

Chlamydia avium −/1 10DC88 1′041′170 36.9 940 39 3 7′099

Chlamydia ibidis −/1 10-1398/6 1′146′066 38.3 1′018 38 3 –

Waddliaceae Waddlia chondrophila 1/1 WSU86-1044 2′116′312 43.8 1′934 37 6 15′593

Criblamydiaceae Criblamydia sequanensis −/1 CRIB-18 2′969′604 38.2 2′418 40 12◦ 89′525

Estrella lausannensis −/1 CRIB-30 2′820′195 48.2 2′213 40 9◦ 9′136

Parachlamydia ceae Parachlamydia acanthamoebae −/1 UV-7 3′072′383 39.0 2′789 40 10 –

Protochlamydia amoebophila 1/1 UWE25 2′414′465 34.7 2′031 35 9 –

Neochlamydia hartmanellae −/3 S13 3′187′070 38.0 NA NA NA NA

Simkaniaceae Simkania negevensis 1/− Z 2′496′337 41.8 2′519 35 3 132′038

◦Number of rRNA was estimated as the ratio between the coverage of contigs encoding for 16S-23S-5S rRNA and the average contig coverage.
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FIGURE 2 | Conservation of the type III secretion system (adapted

from Bertelli et al., 2010). Comparison of the genetic clusters encoding
for T3SS genes between E. lausannensis (E. la), Parachlamydia
acanthamoebae (Pa. ac), Protochlamydia amoebophila (Pr. am), Waddlia
chondrophila (W. ch) and Chlamydia trachomatis (C. tr ) that belong to 4
different families within the Chlamydiales order. Gray shading indicates

the conservation of the genes. Gene names and ORF numbers are
respectively indicated above and below each gene. Genes are colored
according to their specific functions. Capital letters refer to sct gene
names according to the unified nomenclature proposed by Hueck (1998).
sycE and sycD are genes encoding for SycE-like and SycD/LcrH-like T3SS
chaperones.
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followed by 3-h practical exercises every 2 weeks. The 14 students
were split in two groups that worked in parallel on two projects:
genome sequencing of three Pseudomonas knackmussii strains that
were the subject of another publication (Miyazaki et al., 2014),
and E. lausannensis. During the class, the students performed de
novo genome assembly using four different software tools and
various parameter settings on a Linux cluster.

At the beginning of the spring semester, 3 days were dedicated
to gap closure of the genome by performing PCRs, sequencing
and reassembly (Figure 1). The course continued by manually
curating the annotation of the Estrella genome on the online
GenDB platform while deepening our understanding of specific
topics. Finally students were evaluated on the basis of a written
report and an oral presentation on their annotation topic, as well
as on the basis of their practical investment and interest during
the course and their understanding of the various steps of the
sequencing project.

GENOME SEQUENCING, ASSEMBLY AND GAP CLOSURE
The sequencing of E. lausannensis genome yielded 7,930,903
paired-end reads of 33 bp, leading to a theoretical coverage of

175 fold for a 3 Mb genome. Velvet (Zerbino and Birney, 2008)
produced the de novo assembly with the lowest number of large
scaffolds, the highest N50 and a total genome size within the
expected range (Table 1). Therefore, the Velvet assembly was
selected for gap closure. No large scaffold showed high similarity
to A. castellanii genome, which indicates that contaminant reads
from the host are scarce.

Two contigs attracted our attention due to their 3-fold higher
coverage than the rest of the genome. These contigs encode the
16S, 23S and 5S genes. Therefore, we concluded that E. lausannen-
sis possesses three ribosomal operons. Since no phylogenetically
closely related organism was available, the sequence of the selected
Velvet assembly was compared to the best assembly achieved using
each different software. In addition, the position of read pairs in
different contigs was analyzed to scaffold contigs. In short, these
strategies enabled us to detect one misassembly, to order 15 con-
tigs, and to identify possible combinations around the 3 rRNA
sequences and other repeated elements. PCRs resulted in posi-
tive amplicons for 20 gaps, which enabled us to solve 9 gaps by
a first round of Sanger sequencing. The final assembly included
29 scaffolds made of 35 contigs. Finally, a putative plasmid was

FIGURE 3 | Purine biosynthesis pathways predicted in E. lausannensis

and related chlamydia. The pathway for the biosynthesis of IMP from ribose
or amino acids appears to be absent in E. lausannensis. Green arrows
indicate enzyme reactions predicted to be catalyzed by proteins encoded in

the genome of E. lausannensis. Red arrows indicate reactions catalyzed by
enzymes that could not be detected in the genome. Colored boxes indicate
the presence of an enzyme reaction in four other members of the
Chlamydiales order.
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assembled differently by the four software tools. This enabled us
to resolve its circular sequence in silico (see below).

The final draft genome sequence encompasses 2,820,195 bp for
the main chromosome and 9136 bp for the plasmid, which is in
the range of other Chlamydiales bacteria (Table 2). The GC con-
tent is notably higher than in other members of the Chlamydiales
order, reaching 48.2%. This represent a 10% difference in GC
content compared to its closest known relative, C. sequanensis,
a member of the same family. The prediction of 40 tRNAs and
the presence of all Chlamydiales core genes suggest that the draft
genome is almost complete and likely lacks only repetitive ele-
ments such as mobile genes. All Chlamydiales sequenced so far,
including E. lausannensis, do not harbor CRISPR elements.

GENOME ANNOTATION
Each student was responsible for manually curating the annota-
tion of genes related to a specific topic of interest. Findings had to
be summarized in a short paragraph that formed the basis for this
article. These final reports, corrected by the professors at the time
of the course, are intentionally provided “as such” below with only
slight language editing.

Type III secretion system
The type III secretion system (T3SS) is an important bacterial
virulence factor that acts as a syringe and allows injection of

proteins in the eukaryotic host cell (Cornelis, 2006). This highly
conserved system is present in all members of the Chlamydiales
order studied so far: Chlamydia spp., Parachlamydia acan-
thamoebae, Protochlamydia amoebophila, Simkania negevensis
and Waddlia chondrophila (Peters et al., 2007; Greub et al., 2009;
Bertelli et al., 2010; Collingro et al., 2011). The sequencing of the
Estrella genome has confirmed the striking conservation of gene
order between the members of four different families (Figure 2).
Interestingly, all genes coding for core components and chap-
erones of the T3SS are located in four different DNA regions.
Thus, a T3SS was already present in the common ancestor of
all Chlamydiales that diverged more than 700 million years ago
(Greub and Raoult, 2003). The T3SS effectors are however poorly
conserved and more work will be needed to identify the effectors
of E. lausannensis and understand their effects on the eukaryotic
cell.

Nucleotide biosynthesis
Purines and pyrimidines are heterocyclic aromatic molecules nec-
essary for every living organism. These molecules are required
for the biosynthesis of nucleotides and nucleosides that are essen-
tial (i) as building blocks for DNA and RNA, (ii) in the form of
energy molecules (ATP and GTP), and (iii) for protein biosyn-
thesis. Therefore, every organism possesses tools to metabolize,
salvage, degrade and recycle purines and pyrimidines in order

FIGURE 4 | Pyrimidine biosynthesis pathways predicted in

E. lausannensis and related chlamydia. The pathway for the biosynthesis
of UMP from PRPP and amino-acids appears to be absent in E. lausannensis.
Green arrows indicate enzyme reactions predicted to be catalyzed by

proteins encoded in the genome of E. lausannensis. Red arrows indicate
reactions catalyzed by enzymes that could be discovered in the genome.
Colored boxes indicate the presence of an enzyme catalyzing the reaction in
four other members of the Chlamydiales order.
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to provide sufficient amounts to the organism. Members of the
Chlamydiales order are known to be auxotroph for nucleotides,
and possess specific or wide-range transporters to scavenge
nucleotides from their host (Haferkamp et al., 2004, 2006;
Knab et al., 2011; Fisher et al., 2013). We analyzed purine and
pyrimidine biosynthetic pathways in Estrella and related species
(Figures 3, 4).

Like other members of the Chlamydiales order, E. lausan-
nensis is not able to synthesize inosine monophosphate (IMP),
which is the central element of the purine pathway. However as
expected, E. lausannensis is equipped with the complete machin-
ery to produce purines and deoxy-purines in different phos-
phorylated states from ADP or GDP nucleotides. Concerning
pyrimidine biosynthesis, E. lausannensis is able to synthesize cyto-
sine, thymine and uracil from uridine monophosphate (UMP).
Similar to Chlamydia and Protochlamydia, E. lausannensis is not
able to synthesize UMP from amino acid degradation prod-
ucts or from PRPP produced in the pentose phosphate path-
way. On the contrary, W. chondrophila and C. sequanensis,
seem to be able to generate pyrimidines from L-glutamine.
These findings imply that E. lausannensis probably imports

core components such as ATP, GTP, UMP or other pyrim-
idine nucleotides from the host cell using nucleotide trans-
porters. Indeed, five nucleotide transporters were identified
which exhibit significant sequence similarity to transporters of
Pr. amoebophila and S. negevensis, which have been biochemically
characterized (Haferkamp et al., 2004, 2006; Knab et al.,
2011).

Amino acid metabolism
Members of the Chlamydiales order exhibit significant differ-
ences in the metabolism of amino acids (Figure 5). C. trachomatis
is auxotroph for most amino acids, including cysteine, glycine,
serine and threonine. All Chlamydia-related bacteria are able to
synthesize serine from pyruvate, which can then be transformed
into glycine from serine. Cysteine can be synthesized from pyru-
vate or serine in W. chondrophila, E. lausannensis and C. sequanen-
sis. In all bacteria analyzed, threonine is produced from glycine in
a two-step reaction involving L-aminoacetoacetate as an interme-
diate. Interestingly, C. sequanensis is able to produce threonine
from glycine in a one-step reaction using threonine aldolase
whereas other Chlamydia-related bacteria encode a two-step

FIGURE 5 | Amino acid metabolism. E. lausannensis is able to synthesize
(A) cysteine, glycine, serine, threonine, and alanine from pyruvate as well as
(B) aspartate, glutamate and their amidated forms asparagine and glutamine
from oxaloacetate. Green arrows indicate enzyme reactions predicted to be

catalyzed by proteins encoded in the genome of E. lausannensis. Red arrows
indicate reactions catalyzed by enzymes that could not be discovered in the
genome. Colored boxes indicate the presence of an enzyme catalyzing the
reaction in four other members of the Chlamydiales order.
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reaction catalyzed by glycine C-acetyltransferase and L-threonine
3-dehydrogenase.

In contrast with C. trachomatis that lacks all the enzymes
needed to produce alanine, aspartate and glutamate
independently from the host cell, E. lausannensis has the
ability to newly synthesize alanine from pyruvate, through the
action of an alanine dehydrogenase. Glutamate synthesis is
linked to the citric acid cycle by the action of either a glutamate
dehydrogenase, or an aspartate aminotransferase, both providing
a link between glutamate and 2-oxoglutarate. The only enzyme
shared by all members of the Chlamydiales order studied here
is the aspartate aminotransferase, catalyzing the transamination
of 2-oxoglutarate and aspartate to form oxaloacetate and gluta-
mate. Almost all enzymes for alanine, glutamate and aspartate
metabolism present in E. lausannensis are also conserved in
W. chondrophila. However, the latter possesses the additional
capacity to synthesize L-aspartate from fumarate through
adenylo-succinate lyase and adenylo-succinate synthetase.

Cofactor biosynthesis
Ubiquinone and menaquinone, two interchangeable molecules
that share a similar backbone structure but have different
side chains, are key players in electron transfer systems.

E. lausannensis, W. chondrophila and Pr. amoebophila encode the
entire menaquinone pathway whereas C. sequanensis lacks the
possibility to convert the 2-succinyl-5-enolpyruvoyl-6-hydroxy-
3-cyclohexene-1-carboxylate into (1R,6R)-2-succinyl-6hydroxy-
2,4-cyclohexadiene-1-carboxylate (Figure 6). Conversely,
C. trachomatis does not encode the classical menaquinone
biosynthesis pathway, but seems to encode an alternative route,
named the futalosine pathway (Hiratsuka et al., 2008).

Biotin (vitamin H) is another important cofactor notably
involved in bacterial growth as well as in different regulation
networks, including control of toxin production. E. lausannensis,
like C. sequanensis, exhibits a complete pathway for the synthesis
of biotin from Pimeloyl-CoA (Figure 6). On the contrary, C. tra-
chomatis and P. amoebophila lack several enzymatic steps for the
production and conversion of biotin, and may retrieve biotin
from the host cell.

Estrella plasmid
E. lausannensis contains a small 9.1 kb plasmid, whose sequence
was completely solved. It encodes 15 coding sequences (CDSs).
Nine CDSs encode for hypothetical proteins with no assigned
function (Figure 7). Genes with assigned function encode a
DNA primase, a RelE type toxin-antitoxin module, a putative

FIGURE 6 | Co-factor metabolism in E. lausannensis and related

chlamydia. Predicted intermediate metabolism for biotin (A) and
menaquinone (B) biosynthesis. Green arrows indicate enzyme reactions
predicted to be catalyzed by proteins encoded in the genome of

E. lausannensis. Red arrows indicate reactions catalyzed by enzymes that
could not be discovered in the genome. Colored boxes indicate the presence
of an enzyme catalyzing the reaction in four other members of the
Chlamydiales order.
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FIGURE 7 | Map of the 9.1-kb Estrella plasmid. The map shows the predicted
location of the 14 open reading frames on the plasmid. Hypothetical genes with
no known functions are depicted in orange boxes. Blue, hypothetical genes

conserved in related species. Green, the predicted RelE toxin-antitoxin module,
which is also found in Protochlamydia amoebophila. Yellow, genes with clear
functional assignment. Image created using GenDB 2.4 Circular Plot tool.

integrase/recombinase, a putative excisionase, and a putative
chromosome partitioning protein; all of which fall loosely
into the categories of plasmid maintenance, replication and/or
integration. Interestingly, many of the hypothetical proteins with
unknown function are conserved in related species including
P. acanthamoebae, Pr. amoebophila, and W. chondrophila. Two
of these hypothetical genes, ELAC_p0005 and ELAC_p0006,
are also found next to each other in P. acanthamoebae sug-
gesting that they may be of importance to amoeba-resisting
bacteria.

Also of interest is the RelE family toxin-antitoxin system. RelE
is part of a type II (protein-protein) toxin-antitoxin module
thought to be involved in plasmid addiction. RelE is a cyto-
toxic translational repressor that functions alongside an anti-toxic
protein RelB (Kamphuis et al., 2007). In this case, the gene
adjacent to relE is ELAC_p0009, which did not match to any
characterized RelB-like antitoxins and thus could encode a novel

antitoxin working in partnership with RelE. Furthermore, the
two genes relE (51% identity) and ELAC_p0009 (30% identity)
are conserved in Pr. amoebophila, but despite their predicted role
in plasmid addiction, they are located on the chromosome of
Pr. amoebophila outside the genomic island Pam100G (Greub
et al., 2004).

DISCUSSION
This “Sequence a genome” course was made possible by recent
advances in sequencing technologies, the commitment of a small
group of teachers, and the concentration of competences in sev-
eral institutions in Lausanne. The class was a success since it
enabled all students to acquire theoretical knowledge, scientific
skills and practical experience on a real research project dealing
with genomic data from the most recent sequencing technologies
(at the time of the course). Furthermore, it improved our knowl-
edge of a newly discovered bacterial species, E. lausannensis (this
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work), as well as of a strain of P. knackmussii (Miyazaki et al.,
2014).

During the last decade, several universities started courses aim-
ing at introducing students to genomics while providing novel
information on new bacterial strains. Table 3 summarizes some
of these initiatives which mostly started with the introduction of
high-throughput technologies and the decreasing of costs. As with
the variety of biology research, the organisms studied come across
the whole range of bacterial diversity, some courses targeting sin-
gle poorly known organisms (Kerfeld and Simons, 2007 and this
course), whereas others sequenced new strains of widely known
bacteria (Drew and Triplett, 2008) or a diversity of organisms
from a given environment (Edwards et al., 2013). The strategy for
the publication of student’s results vary from blog posts or web-
site results to short genome announcements or full research paper
publication. A main strength of this course is to propose all steps
of a bacterial genome project, from bacterial culture to genome
analysis and biocuration of annotation. The translation and inte-
gration of information relevant to biology (biocuration) in the
data provided to the scientific community is essential to raise the
standards of data release and facilitate knowledge transfer.

The availability of the Estrella genome is a first step in the
understanding of the biology of this recently-discovered genus
of intracellular bacteria. The students performed a targeted anal-
ysis of E. lausannensis biosynthetic abilities for essential com-
pounds. They provided information on major differences in
metabolism across different members of the Chlamydiales order,
including two additional genus compared to a recent review
by Omsland et al (Omsland et al., 2014). As a whole, the two
sequenced members of the Criblamydiaceae family show vari-
able metabolic potential, with no further abilities in the pathways
studied here, than other Chlamydia-related bacteria. Although
this might reflect their less homeostatic niche as previously sug-
gested (Omsland et al., 2014), the ability of E. lausannensis to
thrive in a variety of different cell lines might be due to other
factors such as effectors secreted by the complete T3SS appa-
ratus evidenced in this study. Further analyses through novel
metabolomics methods are required to tackle the metabolism of
E. lausannensis and other Chlamydia-related bacteria.

At the end of the year, the course was evaluated by the stu-
dents. They showed a great deal of enthusiasm and involvement
into this technical and conceptual adventure on a new and poorly
studied microorganism. The students developed their practical
knowledge in dealing with UHTS data and a UNIX-like computer
environment. These skills are increasingly needed by life scien-
tists to face the flood of genome sequencing projects and other
sequence-based projects (RNA-seq, ChIP-seq, etc.). Aware of the
future challenges to deal with large-scale data, students appreci-
ated a first travel at the border between bioinformatics and wet
lab techniques, while staying in the comfortable environment of a
relatively “simple” bacterial genome.

The balance between wet lab experiments and bioinformat-
ics was appreciated. As we could expect, the use of complex
bioinformatics tools, a high-performance computing cluster, and
major bioinformatics databases such as GenBank, Pfam or KEGG
was especially appreciated by a subset of the students. Most stu-
dents did not intend to continue into bioinformatics and were

planning to become wet-lab biologists. Therefore, they lacked a
background in UNIX and had only little experience with bioin-
formatics. However, they liked being introduced to the basic
concepts around sequence analysis.

The spring semester provided a stronger link to biology with
the annotation of the E. lausannensis genome. Manual curation
made them aware of the difficulties and potential errors hidden
behind a gene annotation available for any given organism. They
learned to be critical about annotations and to verify information
from multiple sources and types of evidence.

Many participants enjoyed being enrolled in a real research
experience and not a pre-prepared practical course where all
answers are already known. Moreover, a major praise was the pos-
sibility to participate in all steps from DNA extraction to report
preparation with only little intervention of the teachers to provide
extra analyses. They reported a gain in autonomy by learning this
way. Most students concluded that although the course was very
challenging to follow all the way from bioinformatics to the wet
lab, it was also highly interesting and rewarding.

In summary, students learned essential scientific skills from
study design, hypothesis formulation, critical mind, literature
review, to the ability to synthesize information and to commu-
nicate the information both verbally and in writing (Figure 1).
Moreover, they learned technical competence, knowledge on a
variety of technological and methodological aspects related to the
sequencing as well as biological background on their organism of
interest. This course further raised awareness among the students
on how difficult yet powerful it can be to obtain such a central
resource—a complete and annotated genome sequence—even in
the era of UHTS. The continuous evolution of these technologies
forces teachers to stay at the forefront of both experimental and
computational aspects. In the following years, several aspects of
the class have been improved and regular updates are posted on a
blog of the class (http://www.unil.ch/sequenceagenome/).
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