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Fungi play a critical role in the degradation of organic matter. Because different combinations
of fungi result in different rates of decomposition, determining how climate change will
affect microbial composition and function is fundamental to predicting future environments.
Fungal response to global change is patterned by genetic relatedness, resulting in
communities with comparatively low phylogenetic diversity (PD). This may have important
implications for the functional capacity of disturbed communities if lineages sensitive to
disturbance also contain unique traits important for litter decomposition. Here we tested
the relationship between PD and decomposition rates. Leaf litter fungi were isolated from
the field and deployed in microcosms as mock communities along a gradient of initial PD,
while species richness was held constant. Replicate communities were subject to nitrogen
fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates
were measured over the course of 66 days. We found that nitrogen fertilization increased
cumulative respiration by 24.8%, and that differences in respiration between fertilized and
ambient communities diminished over the course of the experiment. Initial PD failed to
predict respiration rates or their change in response to nitrogen fertilization, and there
was no correlation between community similarity and respiration rates. Last, we detected
no phylogenetic signal in the contributions of individual isolates to respiration rates. Our
results suggest that the degree to which PD predicts ecosystem function will depend on
environmental context.
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INTRODUCTION
The ubiquity and abundance of terrestrial fungi is indicative of
their pivotal role in providing ecosystem services. It has been
estimated that 1 g of soil contains as much as 200 m of fungal
hyphae (Leake et al., 2004). In particular, fungi are key players in
the degradation of dead plant material (litter), and are capable of
breaking down complex carbon sources such as lignin, hemicel-
lulose, and chitin (Lindahl et al., 2007; Allison et al., 2009). Soils
contain roughly twice the carbon of either the atmospheric or
vegetation pools (Batjes, 1996), and nutrients in the litter layer are
presumably the most labile and rapidly cycled. Therefore, changes
in litter decomposition rates are likely to have the most immediate
impacts on carbon cycling (Cornelissen et al., 2007).

Recent empirical evidence suggests that differences in microbial
community composition correlate with differences in community
functioning. A handful of studies have examined this relationship
using reciprocal transplants (Balser and Firestone, 2005; Strick-
land et al., 2009; Cleveland et al., 2013) or community filtering
methods (Griffiths et al., 2000; Austin et al., 2006) and have found
significant differences among community responses and process
rates (but see Wertz et al., 2007). A few other studies have demon-
strated a positive relationship between microbial species richness
and community functioning by creating de novo assemblages of
isolated microorganisms (Naeem et al., 2000; Bell et al., 2005).
Presumably, the basis of this relationship is the positive correlation

between the number of species and the variety of different, perhaps
complementary, traits that contribute to a functional process.

In theory, a community spanning greater evolutionary history –
i.e., encompassing higher phylogenetic diversity (PD) – ought
to contain a greater number of non-redundant traits. Indeed,
recent work suggests that phylogenetic relatedness among plant
species is correlated with their trait similarity, leading to a
positive relationship between a plant community’s PD and its
productivity (Cadotte et al., 2008; Flynn et al., 2011). Many
microbial traits are phylogenetically patterned as well (McGuire
et al., 2010; Treseder et al., 2011; Lennon et al., 2012; Mar-
tiny et al., 2013). In fact, a comparative genomic analysis
demonstrated some phylogenetic conservatism for extracellu-
lar enzymes (Zimmerman et al., 2013) and glycoside hydrolases
(Berlemont and Martiny, 2013), examples of traits that could
directly influence litter decomposition rates. Similarly, the ability
of leaf-decomposer fungi to metabolize various organic nitro-
gen compounds seems to be genetically correlated (McGuire
et al., 2010). These results suggest that not only are leaf lit-
ter fungi functionally distinct, but that PD might be a better
predictor of decomposition rate than taxonomic diversity in and
of itself.

The relationship between microbial PD and ecosystem func-
tioning is particularly important in light of global change. Many
studies demonstrate that fungal communities are sensitive to
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global change (Avis et al., 2008; Andrew and Lilleskov, 2009; Dang
et al., 2009; Edwards et al., 2011; Edwards and Zak, 2011; Kerekes
et al., 2013), and that once disturbed, microbial communities do
not often rapidly recover to their original state (Allison and Mar-
tiny, 2008). Moreover, microbial response tends to be patterned
by phylogeny, such that perturbed communities consist of more
closely related species than would be expected by chance (Placella
et al., 2012; Evans and Wallenstein, 2014). Specifically, drought
and thermal tolerance appears to be phylogenetically patterned at
the phylum level (Treseder et al., 2014).

Overall, fungal traits, including those involved in decompo-
sition and in the response to changing environments, appear to
be phylogenetically conserved. Thus, we first test the hypoth-
esis that PD of the fungal species pool is positively correlated
with community functioning, measured here as litter respira-
tion. We combine 42 fungal species isolated from a natural
litter ecosystem, spanning approximately 600 million years of
evolutionary history, into a series of communities along a PD
gradient. We hold initial species richness constant to control
for portfolio effects as richer communities are more likely to
contain better competitors (Tilman, 1999). We further hypoth-
esize that PD, by increasing the breadth of a community’s
traits, will also buffer a community’s sensitivity to environmen-
tal change. To test this hypothesis, we fertilized a subset of the
microcosm communities with nitrogen, one aspect of ongoing
environmental change in the grassland ecosystem from which
the fungi were sampled (Fenn et al., 2010). We predicted that
differences in decomposition rates between fertilized and ambi-
ent microcosms would be inversely proportional to the PD of its
community.

MATERIALS AND METHODS
SAMPLING AND FUNGAL ISOLATION
Leaf litter was collected from a grassland savannah located near
Irvine, CA, USA (33.74 N, 117.70 W), described in detail else-
where (Allison et al., 2013). The site is dominated by invasive
grasses and forbs. The same leaf litter was divided into two
portions for fungal isolations and the microcosm experiment.
For isolations, leaf litter was homogenized in a sterile coffee
grinder, and filtered through sequential 2 mm, 212 μm, and
106 μm prefilters. The 106–212 μm size fraction was trans-
ferred to a sterile 100 μm nylon vacuum filter, washed twice in
200 mL sterile H20, and transferred to 30 ml 0.6 carboxymethyl-
cellulose solution (an emulsifier). The filtrate was sequentially
diluted until 50% of 10 μl aliquots yielded either 0 or 1 fun-
gal colony after 1 week of incubation. Ten microliter aliquots of
filtrate were added to 800, 1 ml titer tubes containing 500 μl
of solid MEA, water, MNM, or Thorn’s medium (Thorn et al.,
1996) amended with Kanamycin and Ampicillin (200 tubes per
medium). Tubes were incubated at room temperature until growth
was detected.

FUNGAL IDENTIFICATION, SEQUENCING, AND COMPARISON WITH
CULTIVATION INDEPENDENT FIELD DATA
Isolates were sorted into visually distinct morphotypes, and a
representative of each was PCR amplified using the primers
ITS1f-TW13 (White et al., 1990; Gardes and Bruns, 1993), which

spans ∼1,400 bp, including both ITS spacers and the D1 and
D2 regions of the gene encoding for the large ribosomal RNA
subunit. Amplicons were sequenced in two directions using the
sequencing services of Beckman Coulter, using the same PCR
primers. For taxon circumscription and identification, the ITS
spacers were excised from adjacent 18s, 5.8s, and 28s gene regions
using an algorithm based on Hidden Markov Models (ITSx;
Bengtsson-Palme et al., 2013) and concatenated and clustered
into groups containing 97% sequence identity or greater using
Sequencer’s (version 4.7; Gene Codes) “contig” function. A sin-
gle isolate from each contig was selected for subsequent analysis.
Sequences are deposited in Genbank under accession numbers
KF733341–KF733375.

Taxa were compared to a distribution of fungal communities
enumerated using 454 sequencing technology from the field site
over a 2-years sampling period (as described in Matulich and Mar-
tiny, 2014). Portions of the 28s encoding gene were matched to
environmental DNA sequences at 97% sequence identity using
the nearest neighbor clustering algorithm of the UCLUST pack-
age (Edgar, 2010). Taxonomic assignments of the environmental
sequences were determined using the RDP fungal LSU classifier
(Liu et al., 2012).

PHYLOGENETIC TREE
The 28s portions of the sequences (and outgroups Spizellomyces
punctatus and Rozella allomycis) were aligned using MAFFT’s
L-INS-i algorithm (Katoh et al., 2009), and a maximum likeli-
hood tree was calculated in RaXML (Stamatakis et al., 2008) on
the CIPRES server using default settings (Figure 1).

COMMUNITY ASSEMBLY AND MICROCOSM CONSTRUCTION
Fifty distinct species pools were assembled along a PD gradient
such that each microcosm contained seven taxa, each taxon was
present in 7–10 communities, and no community shared more
than three taxa. Isolates were selected to enable phylogenetically
nested species pools containing both closely related congeners as
well as distinct phyla (Figure 1).

Leaf litter for microcosms was homogenized in a Wiley mill,
and sterilized via gamma irradiation for 48 h. Sterility was ver-
ified by plating litter on nutrient media. Selected fungal isolates
were transferred to petri dishes containing growth medium with
5 mm cellophane disks on top, over which fungal colonies grew.
Ten cellophane disks per isolate were transferred to a tube con-
taining sterile water and one 3 mm silica bead and were briefly
vortexed to suspend fungal cells. Microcosms were established in
40 ml sterile vials with gas-tight septum caps filled with 2 g sterile
sand, 200 mg leaf litter substrate and 40 μl of fungal slurry for
each species (280 μl total). Each community was replicated six
times, and half of the replicates received a supplement of 71.4 μg
NH4NO3. We estimate that this amount represents a litter C:
fertilizer N ratio of approximately 5,000, equivalent to roughly
0.2 kg/ha. This is an ecologically relevant amount of Nitrogen that
is lower than typical field deposition trials (Allison et al., 2009), and
represents less than 10% annual deposition in this location (Fenn
et al., 2010). Fungus free control microcosms were also run with
and without nitrogen addition, replacing sterile H2O for fungal
slurry volume.
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FIGURE 1 | Maximum likelihood tree and community composition of

microcosms. Each column of the grid indicates the composition of one of 50
mock communities consisting of seven species in total. Species are colored

by taxonomy as follows: Ascomycetes (green), Basidiomycetes (blue), and
Mucoromycetes (red). Communities are ordered by increasing phylogenetic
diversity (PD) as indicated by the scale at top.

MEASUREMENT OF CO2 PRODUCTION
CO2 mineralization rate, our proxy metric for litter decomposi-
tion, was measured as the amount accumulated in the microcosm
headspace over 24 h. Concentrations were measured after the first
and third days and then weekly for a total of 66 days. The day
prior to each measurement, microcosms were opened under ster-
ile conditions, equilibrated with ambient air for 5 min, and then
sealed. For each measurement, an 8 ml subsample of headspace
gas was withdrawn by syringe and injected into an infrared gas
analyzer (PP-Systems EGM-4). After measurement, vials were
vented by rotating caps 1

4 turn until 24 h prior to subsequent mea-
sure. A different syringe was used for each community to prevent
cross-contamination.

STATISTICAL ANALYSES
We assessed the interactions between decomposition rates and PD
using a repeated measures ANCOVA model with sampling day
(factor 14 levels) and nitrogen addition (factor 2 levels) as fixed
effects, initial PD as a covariate, and community composition (fac-
tor 50 levels) as a random effect. PD was calculated three ways: (1)
as a measure of the cumulative phylogenetic branch length (PD)
contained amongst all community members, (2) as a measure of
the nearest taxon index (NTI), which is the mean phylogenetic dis-
tance between all taxa and their closest relatives in a community,
and (3) as the net relatedness index (NRI) which is the mean phylo-
genetic distance between all pairs of taxa within a community. All
indices were calculated in the R package “picante” (Kembel et al.,
2010), and the ANCOVA model was built using the stats package
in the R programming environment (R Core Team, 2013).

To test whether there was a correlation between similarity
of initial community composition and rates of respiration we
used a Mantel test with 999 randomized permutations to assess
significance levels. A pseudo cumulative respiration value was
calculated by summing 24 h sample time points multiplied by
the number of days preceding the last sample. Pairwise differ-
ences in cumulative measured CO2 were tested for correlation
with shared community membership (Jaccard’s index) and shared
phylogenetic branch length (Unifrac). We calculated correla-
tions for nitrogen addition microcosms, ambient microcosms,
and both together using the R package “vegan” (Oksanen et al.,
2013).

To determine whether individual species were significantly
associated with increased or decreased respiration rates (compared
to average) we calculated a multiple linear regression model. Each
species was considered a factor with two levels (present or absent).
A dummy species representing mean CO2 production across all
communities was added as a reference.

To the determine whether individual species contributed to dif-
ferences in community response with nitrogen addition, a multiple
linear regression was calculated as above, substituting cumula-
tive CO2 with the proportional difference between treatments
(ambient/nitrogen fertilization). Models were validated by plot-
ting residuals vs. fitted values, and normal quantile–quantile plots.
Models were made using the“stats”package in the R programming
environment (R Core Team, 2013), and data was formatted using
the package “reshape2” (Wickham, 2007).

Coefficients from these linear multiple regression tests were
tested for phylogenetic signal using Blomberg’s K statistic
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(Blomberg et al., 2003) using the “picante” package (Kembel
et al., 2010). This test measures whether variance among taxa
differs from expectations given a Brownian motion evolutionary
model. Values <1 indicate greater variance than expected whereas
values >1 indicate phylogenetic signal, with significance deter-
mined by comparing the observed variance distribution with 999
randomizations.

RESULTS
EFFECTS OF PHYLOGENETIC DIVERSITY AND NITROGEN FERTILIZATION
ON DECOMPOSITION RATES
We found that all three measures of PD were highly correlated
(PD-NTI R2 = 0.86; NTI-NRI R2 = 0.71; NRI-PD R2 = 0.96)
and selection of one vs. another had no impact on the signifi-
cance of any results. Therefore, only the results of PD are reported
here.

Community PD was not correlated with respiration nor inter-
acted with any other component of the experiment. Instead,
nitrogen fertilization, and its interaction with time, appeared to
drive respiration rates, with the earliest sampling dates of nitrogen-
fertilized microcosms showing the highest levels of respired carbon
(Table 1).

Phylogenetic diversity also did not correlate with difference
in respiration rate between fertilized and ambient microcosms
(ANCOVA; F1 value: 0.071, P = 0.791). Differences did cor-
relate with sampling date, however. Nitrogen addition had
the greatest impact during the earliest sampling dates, with
the differences in respiration between ambient and fertilized
microcosms diminishing over the course of the experiment
(F10 value: 1.864, P = < 0.048). In nearly all cases, rates
of decomposition peaked between days one and three and
steadily declined throughout the duration of the experiment
(Figure 2).

COMMUNITY COMPOSITION AND RESPIRATION RATES
Community composition was not correlated with cumulative
respiration, whether using either a measure of shared taxa
(MantelJaccard r = −0.017, P = 0.17) or a measure of shared phy-
logenetic branch length (MantelUniFrac r = −0.025, P = 0.621).
This was the case whether we considered the ambient or nitrogen
fertilized treatments together or individually.

CONTRIBUTION OF INDIVIDUAL TAXA TO COMMUNITY
DECOMPOSITION RATES
Individual contributions to community respiration rates were
measured using a general linear model in which the coefficient
associated with each of the species indicates its contribution to
respiration or to the difference between decomposition in the fer-
tilized and control microcosms. The coefficients are approximately
normally distributed (Figure 3), indicating that each species was
effectively equivalent with a few notable exceptions. Non-fertilized
microcosms containing Cryptococcus sp. 6, Rhodotorula sp. 3, and
Hypocrea lutea showed significantly slower rates of respiration
compared to average, whereas none of these species appeared to
impact fertilized microcosms (Table 2). Conversely, Cercophora
sp. was correlated with significantly higher rates of respiration in
ambient microcosms.

Blomberg’s K test for phylogenetic signal between correlation
coefficients and phylogenetic relatedness were near zero for all
groups of microcosm (ambient, fertilized, combined) and none
were significantly different from random expectations (Table 2).
In fact, species within the genus Cryptococcus contained both the
lowest and fourth highest coefficient scores.

ABUNDANCE OF ISOLATES IN THE FIELD SURVEY
Thirteen of 42 isolates were detected in the field survey, com-
prising 0.91% of the total sequence abundance (Table 3). The

Table 1 | Results of the ANCOVA Model testing the effects of phylogenetic diversity (PD), nitrogen addition and sampling time on respiration

(top), and on the affects of nitrogen addition on community respiration (cumulative difference; below).

Variable Factor Df Sum squares Mean squares F P -value

Respiration PD 1 89969 89969 0.029 0.866

Residuals 48 150170078 3128543

Nitrogen 1 5.76E + 07 57603071 99.018 <0.001

Time 10 1.53E + 09 153271897 263.469 <0.001

PD:nitrogen 1 1.14E + 05 114248 0.196 0.658

PD:time 10 3.01E+ 06 300580 0.517 0.879

Nitrogen:time 10 7.71E + 07 7707967 13.25 <0.001

PD:nitrogen:time 10 1.43E + 06 142590 0.245 0.991

Residuals 1008 5.86E + 08 581745

Cumulative

difference

PD 1 0.37 0.369 0.071 0.791

Residuals 48 248.77 5.183

Time 10 1.00E-27 1.00E-28 1.864 0.048

PD:time 10 1.04E-28 1.04E-29 0.193 0.997

Residuals 480 2.58E-26 5.37E-29

Bolded values indicate statistical significance at 0.05.
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FIGURE 2 |Time series of mineralized CO2, a proxy for decomposition.

Each polygon contains two SE of the mean amongst replicates for each
community under ambient and nitrogen fertilized conditions. Units are parts
per million (PPM) of CO2 accumulated in microcosms over 24 h.

single most abundant taxon isolated was Cryptococcus sp. 3,
accounting for 0.669% of the total sequence abundance. Family
level taxonomy was determined for 30 isolates, all of which

were detected in the field survey. Cumulatively these fami-
lies contained >88% of all sequence abundance, and were
dominated by the Davidiellaceae and the Pleosporaceae (com-
prising 39.0 and 37.6% of the relative abundance, respec-
tively).

DISCUSSION
The species richness–function relationship presumes a linkage
between a species and trait diversity. Under this model taxa
are functionally variable and the sum of individual species con-
tributes to combined community functioning. We hypothesized
that, due to the tendency of close fungal relatives to contain a
more similar suite of traits, PD of litter fungi would be a bet-
ter predictor of functioning (respiration rate) than taxonomic
diversity alone, as has been shown recently amongst commu-
nities of marine bacteria (Gravel et al., 2012; Venail and Vives,
2013).

Contrary to our prediction, we found no evidence, by any
measure, for a relationship between PD and respiration rates.
Initial PD of microcosm taxa pools did not correlate with

FIGURE 3 | Quantile–quantile (Q–Q) normality plots indicating normal residuals for all four response variables.
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Table 2 | Results from the multiple regression analyses of species

effects on decomposition, from left to right: all microcosms combined,

ambient, nitrogen fertilized, and the effect size of fertilization.

Species Combined

T -value

Ambient

T -value

N +T -

value

Difference

T -value

Rhodotorula_sp.1 0.603 0.073 0.778 0.699

Rhodotorula_sp.3 −1.136 −2.391* −0.065 1.931

Rhodotorula_minuta −0.019 0.855 −0.558 −1.592

Rhodotorula_sp.2 1.08 1.687 0.426 −0.757

Rhodotorula_sp.4 −1.109 −1.414 −0.635 0.315

Cryptococcus_sp.1 0.908 0.972 0.636 −0.161

Cryptococcus_sp.2 0.115 0.482 −0.143 −0.835

Cryptococcus_sp.3 0.215 0.166 0.191 0.026

Cryptococcus_sp.6 −1.57 −3.552** 0.065 3.169*

Cryptococcus_sp.5 0.601 1.136 0.114 −1.398

Cryptococcus_sp.4 −1.413 −1.66 −0.898 0.331

Mucor_racemosus −0.39 −0.656 −0.125 0.438

Mucor_flavus 1.459 1.814 0.865 −0.995

Helotiales_sp. 1.008 0.835 0.857 0.527

Penicillium_glabrum −0.766 −1.723 0.026 0.687

Phaeomoniella_sp. −0.088 0.418 −0.381 −0.04

Exophiala_sp. −0.33 −0.582 −0.089 −0.302

Helotiales_sp −0.898 −1.481 −0.305 0.325

Tetracladium_sp. 0.421 0.158 0.477 0.236

Dothideomycetes_sp −0.884 −0.138 −1.122 −1.112

Cercophora_sp. 1.875 2.572* 0.961 −1.434

Sordariomycete_sp.1 −0.631 −1.166 −0.136 1.016

Sordariomycetes_sp.2 −0.95 −0.597 −0.926 −0.914

Sordariomycetes_sp.3 1.75 1.465 1.48 −0.38

Gibberella_sp. 0.207 −0.639 0.681 1.254

Hypocrea_lutea −1.566 −2.512* −0.577 1.27

Hypocrea_koningii 0.214 0.069 0.25 0.509

Myrothecium_roridum −0.115 0.26 −0.318 −0.689

Acremonium_sp. −0.002 0.724 −0.453 −1.262

Davidiella_sp. 1.248 0.649 1.301 0.468

Aureobasidium_sp. −0.062 0.257 −0.244 −0.411

Dothidea_sp. 0.444 0.56 0.259 −0.159

Lewia_sp. −0.662 −0.807 −0.402 −0.414

Alternaria_sp.1 0.988 0.375 1.117 0.876

Alternaria_sp.2 −0.088 0.005 −0.123 −0.229

Phaeosphaeria_sp. −0.43 −0.619 −0.202 0.327

Pleosporales_2 0.746 0.937 0.436 −0.084

Pleosporales_1 −0.009 0.646 −0.414 −0.634

Epicoccum_sp. −0.007 0.506 −0.325 −0.778

Pleurophoma_sp. −0.262 −1.211 0.395 1.173

Capronia_brabeji −0.736 −1.609 −0.004 0.725

Neofusicoccum_sp. 1.998 1.846 1.581 −0.011

Blomberg’s K 0.00061 0.00003 0.00025 0.00001

Blomberg’s K statistic of phylogenetic signal and its P-value are reported below.
Significance values are reported as: *P < 0.05, **P < 0.01, Bold no
asterisk = <0.10.

respiration at any time point in the experiment. Furthermore,
although nitrogen fertilization increased respiration rates, this
response was independent of phylogenetic community compo-
sition: there was no correlation between PD and community
resilience. Last, we did not find a phylogenetic signal amongst
isolate contributions to community respiration. While previous
studies have found significant differences among decomposi-
tion rates of fungal isolates (Allison et al., 2009), and some
degree of phylogenetic patterning among their substrate utiliza-
tion (McGuire et al., 2010), we found very few species in our
study that correlated with increased or decreased rates of CO2

production.
We can think of at least three reasons for the discrepancy

between these past results and the present study. First, the scale of
PD considered might matter for the diversity-function relation-
ship. Many of the microbial traits examined are phylogenetically
conserved, but at a fine genetic scale (e.g., Martiny et al., 2013).
Thus, the scale of PD considered here, spanning three phyla, may
not be informative. Constraining communities to phylogenetically
narrower membership more consistent with detected levels of trait
conservatism may be more conducive to detecting a PD–function
relationship.

Second, traits of single isolates may be more likely to show
a phylogenetic signal than when they are measured within a
community context. Together with other taxa, the isolates do
not necessarily perform at their functional potential, but are
constrained by interactions with the rest of the community.
For fungi, competitive interactions between non-self mycelium,
including chemical and physical antagonism, can impact resource
allocations and decrease decomposition rates (Boddy, 2000).
Similarly, synergistic biotic interactions such as complemen-
tary abilities to degrade complex or recalcitrant biomolecules
such as lignin among Basidiomycetes (Blanchette, 1991), or spe-
cialized enzyme production to decompose cellulose and chitin
molecules (Lindahl and Finlay, 2006), may accelerate rates of
decomposition.

A third potential reason for a lack of correlation between ini-
tial PD and functioning is that the realized PD of the microcosms
may have differed from the initial PD. Fungal composition may
have changed, perhaps rapidly, due to biotic interactions, nutri-
ent availability, and stochastic processes favoring growth of one
species over another (Cleveland et al., 2013; Matulich and Mar-
tiny, 2014). A previous study with some of the same fungal isolates
did observe changes in community structure over the course of a
similar, 60 day microcosm experiment (Matulich and Martiny,
2014). Those community changes were largely driven by changes
in relative abundance rather than extinctions, and all measured
isolates were able to survive under experimental conditions. In
fact a vast, and contradictory, literature predicts both the compet-
itive exclusion of and niche selection for closely related organisms
(Maherali and Klironomos, 2007; Mayfield and Levine, 2010;
Venail and Vives, 2013; Godoy et al., 2014), making it difficult
to predict the outcome of biotic interactions based on relatedness
alone.

Although initial PD did not alter respiration rates, nitrogen
fertilization significantly increased rates, regardless of phylo-
genetic relatedness or taxonomic composition of microcosms.
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Table 3 | Relative abundance of isolates and isolate families in a field survey of leaf litter fungi.

Isolate name Family (unless otherwise noted) Phylum Taxon relative

abundance in survey

Family relative

abundance in survey

Tetracladium sp. Ascomycota_incertae_sedis (phylum) Ascomycetes – N.D.

Neofusicoccum sp. Botryosphaeriaceae Ascomycetes – 0.191

Davidiella sp. Davidiellaceae Ascomycetes – 39.027

Dothidea sp. Dothideaceae Ascomycetes – 0.634

Dothideomycetes sp. Dothideomycetes (class) Ascomycetes – –

Aureobasidium sp. Dothioraceae Ascomycetes – 0.863

Helotiales sp. Helotiales (rank) Ascomycetes – –

Helotiales sp. Helotiales (rank) Ascomycetes – –

Myrothecium roridum Helotiales_incertae_sedis (rank) Ascomycetes – N.D.

Capronia brabeji Herpotrichiellaceae Ascomycetes – 0.026

Exophiala sp. Herpotrichiellaceae Ascomycetes 0.008 0.026

Phaeomoniella sp. Herpotrichiellaceae Ascomycetes 0.000 0.026

Hypocrea koningii Hypocreaceae Ascomycetes – 0.000

Hypocreales sp. Hypocreaceae Ascomycetes 0.000 0.000

Acremonium sp. Hypocreales_incertae_sedis (rank) Ascomycetes – N.D.

Cercophora sp. Lasiosphaeriaceae Ascomycetes – 0.451

Gibberella sp. Nectriaceae Ascomycetes 0.029 0.102

Phaeosphaeria sp. Phaeosphaeriaceae Ascomycetes – 6.770

Alternaria sp. 1 Pleosporaceae Ascomycetes – 37.611

Alternaria sp. 2 Pleosporaceae Ascomycetes – 37.611

Epicoccum sp. Pleosporaceae Ascomycetes – 37.611

Lewia sp. Pleosporaceae Ascomycetes – 37.611

Pleosporales sp. 1 Pleosporales (rank) Ascomycetes – –

Pleosporales sp. 2 Pleosporales (rank) Ascomycetes – –

Pleurophoma sp. Pleosporales_incertae_sedis (rank) Ascomycetes 0.003 N.D.

Sordariomycetes sp. 1 Sordariomycetes (class) Ascomycetes 0.190 –

Sordariomycetes sp. 2 Sordariomycetes (class) Ascomycetes Singleton –

Sordariomycetes sp. 3 Sordariomycetes (class) Ascomycetes – –

Penicillium glabrum Trichocomaceae Ascomycetes Singleton 0.027

Rhodotorula minuta Sporidiales incertae sedis (rank) Basidiomycetes – N.D.

Rhodotorula sp.1 Erythrobasidiaceae Basidiomycetes – N.D.

Rhodotorula sp. 2 Erythrobasidiaceae Basidiomycetes <0.001 N.D.

Rhodotorula sp. 3 Erythrobasidiaceae Basidiomycetes – N.D.

Rhodotorula sp. 4 Erythrobasidiaceae Basidiomycetes 0.017 N.D.

Cryptococcus sp. 1 Tremellaceae Basidiomycetes – 3.124

Cryptococcus sp. 2 Tremellaceae Basidiomycetes – 3.124

Cryptococcus sp. 3 Tremellaceae Basidiomycetes 0.669 3.124

Cryptococcus sp. 4 Tremellaceae Basidiomycetes 0.000 3.124

Cryptococcus sp. 5 Tremellaceae Basidiomycetes – 3.124

Cryptococcus sp. 6 Tremellaceae Basidiomycetes – 3.124

Mucor flavus Mucoraceae Zygomycota – 0.000

Mucor racemosus Mucoraceae Zygomycota Singleton 0.000

Singletons are found once in the dataset.
N.D. indicates that family level taxonomy is uncertain for the genus.
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Earlier research has demonstrated mixed effects of nitrogen
availability on decomposition rates, with impacts varying across
substrate, taxonomy and functional guild of the microbes
under study (Knorr et al., 2005; Allison, 2012). Thus, it
appears that community response to nitrogen, and therefore
its correlation with phylogenetic patterning, is not consis-
tent across environments, but is context dependent. In low
nitrogen environments, for example, nitrogen fertilization has
been shown to decrease plant tissue C:N ratios (Bragazza
et al., 2011), increase decomposition of cellulose and min-
eral forms of N (Talbot and Treseder, 2012), and facilitate
transcription of lignocellulolytic enzyme genes (Edwards et al.,
2011).

Although there is likely to be a mismatch between microbial
diversity in natural systems and that amenable to cultivation on
lab media, our efforts increased the likelihood that isolate func-
tional and taxonomic diversity were broadly representative of
field conditions. Use of multiple media, isolation of a size frac-
tion >100 μm, and dilution to extinction protocols facilitated
cultivation of slow growing and less competitive taxa. Further,
because the taxa were isolated from the same substrate used in the
microcosms, there is the strong likelihood that these fungi are asso-
ciated with leaf litter decay processes. Cultivation-independent
sequence analysis of this field site uncovered more than 800
fungal taxa, of which our isolates comprised approximately 1%
of the sequence abundance: a reasonable representation given
the typically long-tailed community rank abundance curve. Fur-
ther, family level taxonomic identities of our isolates represented
>88% of the sequence abundance in our field site, indicat-
ing that isolate diversity was representative at higher taxonomic
ranks.

The complexity of biotic and environmental interactions
scales with community and litter complexity and may be dif-
ficult to predict. The high species diversity detected in our
field site enable an almost unfathomably tangled network of
interactions, undoubtedly unique to this site. For this rea-
son, this study highlights the importance of examining traits,
particularly those relating to ecosystem function, within the
context of the community in which they’re found, rather
than in isolation. In a recent study of petroleum degrading
bacteria, for example, a positive PD ecosystem function rela-
tionship was found in both two and four isolate microcosms
(Venail and Vives, 2013). Amongst the latter, an increase in
positive biotic interactions underpinned this relationship. How-
ever, in a natural microbial community, particularly one as
species rich as that found within leaf litter, the average dis-
tance between community members will decrease as a func-
tion of species richness. Therefore, complementarity will be
balanced, at some point, by competition amongst species
whose niche requirements overlap. Determining this “tipping
point” may be a fruitful endeavor for future research into the
PD ecosystem function relationship.

AUTHOR CONTRIBUTIONS
ASA and JBHM designed the experiment, ASA and KLM
conducted the experiment, ASA analyzed the data and all authors
contributed towards writing and editing the manuscript.

ACKNOWLEDGMENTS
We are grateful to Jonothan Vidovitch and Steven Nguyen for
assistance with microcosm measurements and maintenance. Steve
Allison contributed input on experimental design and analysis.
Research was supported by a NOAA climate and global change
fellowship to ASA, and the U.S. Department of Energy, Office of
Science, Office of Biological and Environmental Research (BER),
under Award Number DE-PS02-09ER09-25.

REFERENCES
Allison, S. D. (2012). A trait-based approach for modelling microbial litter

decomposition. Ecol. Lett. 15, 1058–1070. doi: 10.1111/j.1461-0248.2012.
01807.x

Allison, S. D., LeBauer, D. S., Ofrecio, M. R., Reyes, R., Ta, A.-M., and Tran,
T. M. (2009). Low levels of nitrogen addition stimulate decomposition by
boreal forest fungi. Soil Biol. Biochem. 41, 293–302. doi: 10.1016/j.soilbio.2008.
10.032

Allison, S. D., Lu, Y., Weihe, C., Goulden, M. L., Martiny, A. C., Treseder, K. K.,
et al. (2013). Microbial abundance and composition influence litter decomposi-
tion response to environmental change. Ecology 94, 714–725. doi: 10.1890/12-
1243.1

Allison, S. D., and Martiny, J. B. H. (2008). Colloquium paper: resistance, resilience,
and redundancy in microbial communities. Proc. Natl. Acad. Sci. U.S.A. 105,
11512–11519. doi: 10.1073/pnas.0801925105

Andrew, C., and Lilleskov, E. A. (2009). Productivity and community struc-
ture of ectomycorrhizal fungal sporocarps under increased atmospheric
CO2 and O3. Ecol. Lett. 12, 813–822. doi: 10.1111/j.1461-0248.2009.
01334.x

Austin, A. T., Sala, O. E., and Jackson, R. B. (2006). Inhibition of nitrification
alters carbon turnover in the Patagonian steppe. Ecosystems 9, 1257–1265. doi:
10.1007/s10021-005-0039-0

Avis, P. G., Mueller, G. M., and Lussenhop, J. (2008). Ectomycorrhizal
fungal communities in two North American oak forests respond to nitro-
gen addition. New Phytol. 179, 472–483. doi: 10.1111/j.1469-8137.2008.
02491.x

Balser, T. C., and Firestone, M. K. (2005). Linking microbial commu-
nity composition and soil processes in a California annual grassland and
mixed-conifer forest. Biogeochemistry 73, 395–415. doi: 10.1007/s10533-004-
0372-y

Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. Eur. J. Soil
Sci. 65, 151–163. doi: 10.1111/j.1365-2389.1996.tb01386.x

Bell, T., Newman, J., Silverman, B., Turner, S., and Lilley, A. (2005). The contribution
of species richness and composition to bacterial services. Nature 436, 1157–1160.
doi: 10.1038/nature03891

Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z.,
Godhe, A., et al. (2013). Improved software detection and extraction of
ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukary-
otes for analysis of environmental sequencing data. Methods Ecol. Evol. 4,
914–919.

Berlemont, R., and Martiny, A. C. (2013). Phylogenetic distribution of poten-
tial cellulases in bacteria. Appl. Environ. Microbiol. 79, 1545–1554. doi:
10.1128/AEM.03305-12

Blanchette, R. A. (1991). Delignification by wood-decay fungi. Annu.
Rev. Phytopathol. 29, 381–403. doi: 10.1146/annurev.py.29.090191.
002121

Blomberg, S. P., Garland, T., and Ives, A. R. (2003). Testing for phylogenetic signal
in comparative data: behavioral traits are more labile. Evolution 57, 717–745. doi:
10.1111/j.0014-3820.2003.tb00285.x

Boddy, L. (2000). Interspecific combative interactions between wood-decaying
basidiomycetes. FEMS Microbiol. Ecol. 31, 185–194. doi: 10.1111/j.1574-
6941.2000.tb00683.x

Bragazza, L., Buttler, A., Habermacher, J., Brancaleoni, L., Gerdol, R., Fritze, H.,
et al. (2011). High nitrogen deposition alters the decomposition of bog plant
litter and reduces carbon accumulation. Glob. Chang. Biol. 18, 1163–1172. doi:
10.1111/j.1365-2486.2011.02585.x

Cadotte, M., Cardinale, B., and Oakley, T. (2008). Evolutionary history and the
effect of biodiversity on plant productivity. Proc. Natl. Acad. Sci. U.S.A. 105,
17012–17017. doi: 10.1073/pnas.0805962105

Frontiers in Microbiology | Terrestrial Microbiology February 2015 | Volume 6 | Article 109 | 8

http://www.frontiersin.org/Terrestrial_Microbiology/
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Amend et al. Phylogenetic diversity–function relationship

Cleveland, C. C., Reed, S. C., Keller, A. B., Nemergut, D. R., O’Neill, S. P.,
Ostertag, R., et al. (2013). Litter quality versus soil microbial community con-
trols over decomposition: a quantitative analysis. Oecologia 174, 283–294. doi:
10.1007/s00442-013-2758-9

Cornelissen, J. H. C., van Bodegom, P. M., Aerts, R., Callaghan, T. V., van Logtestijn,
R. S. P., Alatalo, J., et al. (2007). Global negative vegetation feedback to climate
warming responses of leaf litter decomposition rates in cold biomes. Ecol. Lett.
10, 619–627. doi: 10.1111/j.1461-0248.2007.01051.x

Dang, C. K., Schindler, M., Chauvet, E., and Gessner, M. O. (2009). Temper-
ature oscillation coupled with fungal community shifts can modulate warm-
ing effects on litter decomposition. Ecology 90, 122–131. doi: 10.1890/07-
1974.1

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461

Edwards, I. P., and Zak, D. R. (2011). Fungal community composition and func-
tion after long-term exposure of northern forests to elevated atmospheric CO2

and tropospheric O3. Glob. Chang. Biol. 17, 2184–2195. doi: 10.1111/j.1365-
2486.2010.02376.x

Edwards, I. P., Zak, D. R., Kellner, H., Eisenlord, S. D., and Pregitzer, K. S. (2011).
Simulated atmospheric N deposition alters fungal community composition and
suppresses ligninolytic gene expression in a northern hardwood forest. PLoS ONE
6:e20421. doi: 10.1371/journal.pone.0020421

Evans, S. E., and Wallenstein, M. D. (2014). Climate change alters ecolog-
ical strategies of soil bacteria. Ecol. Lett. 17, 155–164. doi: 10.1111/ele.
12206

Fenn, M. E., Allen, E. B., Weiss, S. B., Jovan, S., Geiser, L. H., Tonnesen,
G. S., et al. (2010). Nitrogen critical loads and management alternatives for
N-impacted ecosystems in California. J. Environ. Manage. 91, 2404–2423. doi:
10.1016/j.jenvman.2010.07.034

Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I., and Naeem, S.
(2011). Functional and phylogenetic diversity as predictors of biodiversity–
ecosystem-function relationships. Ecology 92, 1573–1581. doi: 10.1890/10-
1245.1

Gardes, M., and Bruns, T. D. (1993). ITS primers with enhanced specificity for
basidiomycetes - application to the identification of mycorrhizae and rusts. Mol.
Ecol. 2, 113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x

Godoy, O., Kraft, N. J. B., and Levine, J. M. (2014). Phylogenetic relatedness
and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844. doi:
10.1111/ele.12289

Gravel, D., Bell, T., Barbera, C., Combe, M., Pommier, T., and Mouquet, N. (2012).
Phylogenetic constraints on ecosystem functioning. Nat. Commun. 3, 1–6. doi:
10.1038/ncomms2123

Griffiths, B. S., Ritz, K., Bardgett, R. D., Cook, R., Christensen, S., Ekelund, F.,
et al. (2000). Ecosystem response of pasture soil communities to fumigation-
induced microbial diversity reductions: an examination of the biodiversity–
ecosystem function relationship. Oikos 90, 279–294. doi: 10.1034/j.1600-
0706.2000.900208.x

Katoh, K., Asimenos, G., and Toh, H. (2009). Multiple alignment of DNA sequences
with MAFFT. Methods Mol. Biol. 537, 39–64. doi: 10.1007/978-1-59745-
251-9_3

Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon,
H., Ackerly, D. D., et al. (2010). Picante: R tools for integrating phyloge-
nies and ecology. Bioinformatics 26, 1463–1464. doi: 10.1093/bioinformatics/
btq166

Kerekes, J., Kaspari, M., Stevenson, B., Nilsson, R. H., Hartmann, M., Amend, A.,
et al. (2013). Nutrient enrichment increased species richness of leaf litter fungal
assemblages in a tropical forest. Mol. Ecol. 22, 2827–2838. doi: 10.1111/mec.
12259

Knorr, M., Frey, S. D., and Curtis, P. S. (2005). Nitrogen additions and lit-
ter decomposition: a meta-analysis. Ecology 86, 3252–3257. doi: 10.1890/0
5-0150

Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., and Read, D. (2004).
Networks of power and influence: the role of mycorrhizal mycelium in controlling
plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045.
doi: 10.1139/b04-060

Lennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K., and Schoolmaster, D. R. (2012).
Mapping the niche space of soil microorganisms using taxonomy and traits.
Ecology 93, 1867–1879. doi: 10.1890/11-1745.1

Lindahl, B. D., and Finlay, R. D. (2006). Activities of chitinolytic enzymes
during primary and secondary colonization of wood by basidiomyce-
tous fungi. New Phytol. 169, 389–397. doi: 10.1111/j.1469-8137.2005.
01581.x

Lindahl, B. D., Ihrmark, K., Boberg, J., Trumbore, S. E., Högberg, P., Sten-
lid, J., et al. (2007). Spatial separation of litter decomposition and mycor-
rhizal nitrogen uptake in a boreal forest. New Phytol. 173, 611–620. doi:
10.1111/j.1469-8137.2006.01936.x

Liu, K. L., Porras-Alfaro, A., Kuske, C. R., Eichorst, S. A., and Xie, G. (2012). Accurate,
rapid taxonomic classification of fungal large-subunit rRNA genes. Appl. Environ.
Microbiol. 78, 1523–1533. doi: 10.1128/AEM.06826-11

Maherali, H., and Klironomos, J. N. (2007). Influence of phylogeny on fungal
community assembly and ecosystem functioning. Science 316, 1746–1748. doi:
10.1126/science.1143082

Martiny, A. C., Treseder, K., and Pusch, G. (2013). Phylogenetic conser-
vatism of functional traits in microorganisms. ISME J. 7, 830–838. doi:
10.1038/ismej.2012.160

Matulich, K. L., and Martiny, J. B. H. (2014). Microbial composition alters the
response of litter decomposition to environmental change. Ecology 96, 154–163.
doi: 10.1890/14-0357.1

Mayfield, M. M., and Levine, J. M. (2010). Opposing effects of competitive exclusion
on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093. doi:
10.1111/j.1461-0248.2010.01509.x

McGuire, K. L., Bent, E., Borneman, J., Majumder, A., Allison, S. D., and Treseder,
K. K. (2010). Functional diversity in resource use by fungi. Ecology 91, 2324–2332.
doi: 10.1890/09-0654.1

Naeem, S., Hahn, D. R., and Schuurman, G. (2000). Producer-decomposer co-
dependency influences biodiversity. Nature 403, 762–764. doi: 10.1038/35001568

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara,
R. B., et al. (2013). vegan: Community Ecology Package. R Package Version 2.0-10.
Available at: http://CRAN.R-project.org/package=vegan

Placella, S. A., Brodie, E. L., and Firestone, M. K. (2012). Rainfall-induced
carbon dioxide pulses result from sequential resuscitation of phylogenetically
clustered microbial groups. Proc. Natl. Acad. Sci. U.S.A. 109, 10931–10936. doi:
10.1073/pnas.1204306109

R Core Team. (2013). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap
algorithm for the RAxML Web servers. Syst. Biol. 57, 758–771. doi:
10.1080/10635150802429642

Strickland, M. S., Lauber, C., Fierer, N., and Bradford, M. A. (2009). Testing the
functional significance of microbial community composition. Ecology 90, 441–
451. doi: 10.1890/08-0296.1

Talbot, J. M., and Treseder, K. K. (2012). Interactions among lignin, cellulose, and
nitrogen drive litter chemistry-decay relationships. Ecology 93, 345–354. doi:
10.1890/11-0843.1

Thorn, R. G., Reddy, C. A., Harris, D., and Paul, E. A. (1996). Isolation of saprophytic
basidiomycetes from soil. Appl. Environ. Microbiol. 62, 4288–4292.

Tilman, D. (1999). The ecological consequences of changes in biodiversity: a search
for general principles. Ecology 80, 1455–1474.

Treseder, K. K., Kivlin, S. N., and Hawkes, C. V. (2011). Evolutionary trade-offs
among decomposers determine responses to nitrogen enrichment. Ecol. Lett. 14,
933–938. doi: 10.1111/j.1461-0248.2011.01650.x

Treseder, K. K., Maltz, M. R., Hawkins, B. A., Fierer, N., Stajich, J. E., and McGuire,
K. L. (2014). Evolutionary histories of soil fungi are reflected in their large-scale
biogeography. Ecol. Lett. 17, 1086–1093. doi: 10.1111/ele.12311

Venail, P. A., and Vives, M. J. (2013). Phylogenetic distance and species richness
interactively affect the productivity of bacterial communities. Ecology 94, 2529–
2536. doi: 10.1890/12-2002.1

Wertz, S., Degrange, V., Prosser, J. I., Poly, F., Commeaux, C., Guillaumaud, N.,
et al. (2007). Decline of soil microbial diversity does not influence the resis-
tance and resilience of key soil microbial functional groups following a model
disturbance. Environ. Microbiol. 9, 2211–2219. doi: 10.1111/j.1462-2920.2007.
01335.x

White, T. J., Bruns, T., Lee, S., and Taylor, J. W. (1990). “Amplification and direct
sequencing of fungal ribosomal RNA genes for phylogenetics,” in Pcr Protocols: a
Guide to Methods and Applications, eds M. A. Innis, D. H. Gelfand, J. J. Sninsky,
and T. J. White (New York: Academic Press, Inc.), 315–322.

www.frontiersin.org February 2015 | Volume 6 | Article 109 | 9

http://CRAN.R-project.org/package=vegan
http://www.frontiersin.org/
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Amend et al. Phylogenetic diversity–function relationship

Wickham, H. (2007). Reshaping data with the reshape package. J. Stat. Softw. 21,
1–20.

Zimmerman, A. E., Martiny, A. C., and Allison, S. D. (2013). Microdiversity of
extracellular enzyme genes among sequenced prokaryotic genomes. ISME J. 7,
1187–1199. doi: 10.1038/ismej.2012.176

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 16 October 2014; accepted: 28 January 2015; published online: 18 February
2015.

Citation: Amend AS, Matulich KL and Martiny JBH (2015) Nitrogen addition, not
initial phylogenetic diversity, increases litter decomposition by fungal communities.
Front. Microbiol. 6:109. doi: 10.3389/fmicb.2015.00109
This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers
in Microbiology.
Copyright © 2015 Amend, Matulich and Martiny. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original pub-
lication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Microbiology | Terrestrial Microbiology February 2015 | Volume 6 | Article 109 | 10

http://dx.doi.org/10.3389/fmicb.2015.00109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Terrestrial_Microbiology/
http://www.frontiersin.org/Terrestrial_Microbiology/archive

	Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities
	Introduction
	Materials and methods
	Sampling and fungal isolation
	Fungal identification, sequencing, and comparison with cultivation independent field data
	Phylogenetic tree
	Community assembly and microcosm construction
	Measurement of co2 production
	Statistical analyses

	Results
	Effects of phylogenetic diversity and nitrogen fertilization on decomposition rates
	Community composition and respiration rates
	Contribution of individual taxa to community decomposition rates
	Abundance of isolates in the field survey

	Discussion
	Author contributions
	Acknowledgments
	References


