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Two fermentation types exist in the Enterobacteriaceae family. Mixed-acid fermenters
produce substantial amounts of lactate, formate, acetate, and succinate, resulting in
lethal medium acidification. On the other hand, 2,3-butanediol fermenters switch to
the production of the neutral compounds acetoin and 2,3-butanediol and even deacidify
the environment after an initial acidification phase, thereby avoiding cell death. We
equipped three mixed-acid fermenters (SalmonellaTyphimurium, S. Enteritidis and Shigella
flexneri ) with the acetoin pathway from Serratia plymuthica to investigate the mechanisms
of deacidification. Acetoin production caused attenuated acidification during exponential
growth in all three bacteria, but stationary-phase deacidification was only observed in
Escherichia coli and Salmonella, suggesting that it was not due to the consumption of
protons accompanying acetoin production. To identify the mechanism, 34 transposon
mutants of acetoin-producing E. coli that no longer deacidified the culture medium were
isolated. The mutations mapped to 16 genes, all involved in formate metabolism. Formate
is an end product of mixed-acid fermentation that can be converted to H2 and CO2 by the
formate hydrogen lyase (FHL) complex, a reaction that consumes protons and thus can
explain medium deacidification. When hycE, encoding the large subunit of hydrogenase 3
that is part of the FHL complex, was deleted in acetoin-producing E. coli, deacidification
capacity was lost. Metabolite analysis in E. coli showed that introduction of the acetoin
pathway reduced lactate and acetate production, but increased glucose consumption and
formate and ethanol production. Analysis of a hycE mutant in S. plymuthica confirmed
that medium deacidification in this organism is also mediated by FHL. These findings
improve our understanding of the physiology and function of fermentation pathways in
Enterobacteriaceae.
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INTRODUCTION
Within the Enterobacteriaceae family, a distinction is made
between mixed-acid (e.g., Escherichia, Salmonella, and Shigella)
and 2,3-butanediol fermenters (e.g., Klebsiella, Serratia, and Enter-
obacter) based on their fermentation end products produced
during sugar fermentation. Mixed-acid fermenters ferment sugars
to ethanol and a range of organic acids, including lactate, suc-
cinate, acetate, and formate. Formate can be further converted
to H2 and CO2 by the formate hydrogen lyase (FHL) complex
(White, 2000). Mixed-acid fermentation generally leads to rapid
and strong medium acidification and even cell death. On the
other hand, 2,3-butanediol fermenters use the mixed-acids path-
way only during the early growth phase, and switch in the late
exponential phase to a different fermentation pathway, in which
pyruvate is converted to the neutral end products acetoin or

2,3-butanediol, thereby preventing excessive acidification (Van
Houdt et al., 2006; Xiao and Xu, 2007). Moreover, after the ini-
tial decline of medium pH, 2,3-butanediol fermenters typically
deacidify the medium toward more neutral values during station-
ary phase (Johansen et al., 1975; Yoon and Mekalanos, 2006; Van
Houdt et al., 2007; Moons et al., 2011). This is in contrast to mixed-
acid fermenters or 2,3-butanediol fermenters with an inactivated
2,3-butanediol pathway, where a sustained pH decrease is usually
observed during sugar fermentation (Yoon and Mekalanos, 2006;
Moons et al., 2011). Thus, 2,3-butanediol fermentation is appar-
ently associated with stationary-phase deacidification. Synthesis
of 2,3-butanediol from pyruvate requires three steps. First, the
conversion of two molecules of pyruvate to α-acetolactate is cat-
alyzed by the α-acetolactate synthase (α-ALS). Next, α-acetolactate
is decarboxylated to acetoin by the α-acetolactate decarboxylase
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(α-ALD). In a last step, acetoin is reduced to 2,3-butanediol by
the 2,3-butanediol dehydrogenase (BDH), which can also catalyze
the reversed reaction. Each of these three reactions consumes an
intracellular proton, and this potentially explains the observed
stationary-phase deacidification. In Serratia plymuthica RVH1, a
strain previously isolated from a food processing environment
(Van Houdt et al., 2005), α-ALS and α-ALD are encoded by
the budB and budA genes, respectively, which are located on
the budAB operon (Moons et al., 2011). We previously showed
that transfer of the S. plymuthica RVH1 budAB operon conveys
to Escherichia coli the capacity to produce acetoin, to prevent
lethal medium acidification and to reverse acidification (Vivijs
et al., 2014a). In the present study, we transferred the budAB
operon to some additional mixed-acid fermenting enterobacte-
ria, Salmonella Typhimurium, Salmonella Enteritidis, and Shigella
flexneri, and show that these also acquire the capacity to pro-
duce acetoin. However, acetoin production was not associated
with stationary-phase deacidification in S. flexneri. This obser-
vation is remarkable since Shigella and E. coli are considered

as a single species based on DNA homology (Fukushima et al.,
2002). Thus, our results suggested the involvement of a deacid-
ification mechanism different from proton consumption during
acetoin production. To identify this mechanism, we performed
random transposon mutagenesis in budAB-containing E. coli
searching for mutants that lost their stationary-phase deacidifi-
cation capacity but still produced acetoin. This led us to identify
the FHL complex as the primary deacidification mechanism in
2,3-butanediol-fermenting Enterobacteriaceae.

MATERIALS AND METHODS
BACTERIAL STRAINS, PLASMIDS, OLIGONUCLEOTIDES, AND GROWTH
CONDITIONS
The bacterial strains and plasmids used in this study are listed
in Table 1. All bacteria were cultured in lysogeny broth (LB;
10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl) or on LB agar
(15 g/l agar) at 37◦C except Serratia plymuthica, which was grown
at 30◦C. Media were supplemented with the following chemi-
cals (Applichem, Darmstadt, Germany) when appropriate: 5 g/l

Table 1 | Strains and plasmids used in this study.

Strain or plasmid Relevant features Reference

Strains

Escherichia coli

S17-1 λpir pro thi recA hsdR− hsdM+ RP4: 2-Tc:Mu: Km Tn7 λpir Simon et al. (1983)

DH5α F− endA1 hsdR17 (rk−, mk
+) supE44 thi-1λ− recA1 gyrA96 relA1 deoR

�(lacZYA-argF )U169 �80d lacZ�M15

Grant et al. (1990)

MG1655 F− λ− rph-1 Guyer et al. (1981)

MG1655 hycE �hycE This study

Salmonella enterica

Typhimurium LT2 Wild-type McClelland et al. (2001)

Enteritidis ATCC 13076 Wild-type Tindall et al. (2005)

Shigella flexneri

ATCC 12022 Wild-type; serotype 2b Daligault et al. (2014)

Serratia plymuthica

RVH1 Wild-type; biofilm isolate from food processing plant Van Houdt et al. (2005)

RVH1 budAB �budAB::cat, CmR Vivijs et al. (2014b)

RVH1 hycE �hycE This study

Plasmids

pTrc99A Cloning vector carrying IPTG-inducible trc promoter (Ptrc); ApR Amann et al. (1988)

pTrc99A-Ptrc-budAB pTrc99A carrying the S. plymuthica RVH1 budAB operon downstream of Ptrc; ApR Moons et al. (2011)

pKD3 Template plasmid containing cat gene flanked by FRT sites; CmR ApR Datsenko and Wanner (2000)

pKD46 Plasmid expressing γ, β, and exo recombination genes of phage λ under control of

PBAD; temperature-sensitive replicon; ApR

Datsenko and Wanner (2000)

pCP20 Plasmid expressing the FLP (flippase) gene, directing recombination of FRT sites;

temperature-sensitive replicon; ApR CmR

Datsenko and Wanner (2000)

pUC18 Cloning vector; ApR Laboratory collection

pUCGmlox pUC18-based vector containing the lox -flanked aacC1 gene; ApR GmR Quénée et al. (2005)

pSF100 pGP704 suicide plasmid; pir dependent; ApR KmR Rubirés et al. (1997)

pCM157 cre expression vector; TcR Marx and Lidstrom (2002)
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glucose; 100 μg/ml ampicillin (Ap); 200 μg/ml carbenicillin (Cb);
30 μg/ml chloramphenicol (Cm); 5 μg/ml gentamicin (Gm); 10
μg/ml tetracycline (Tc); 50 μg/ml kanamycin (Km); and 1 mM
isopropyl-β-D-thiogalactopyranoside (IPTG). Plasmids pTrc99A
and pTrc99A-Ptrc-budAB were introduced into the mixed-acid fer-
menters by electroporation. All oligonucleotides used in this work
are listed in Table 2, and were purchased from IDT (Haasrode,
Belgium).

SCREENING FOR MUTANTS THAT HAVE LOST STATIONARY-PHASE
DEACIDIFICATION CAPACITY
A random knockout library of E. coli MG1655 containing
pTrc99A-Ptrc-budAB was constructed using λNK1324, which car-
ries a mini-Tn10 transposon with a Cm resistance gene, according
to the protocol described by Kleckner et al. (1991). The mutants
were subsequently grown in 300 μl LB medium with glucose,
IPTG, Ap, and Cm in a 96-well plate. The plates were sealed
with an oxygen impermeable cover foil and incubated without
shaking at 37◦C. After 24 h, medium acidification was analyzed
by adding 5 μl of a 0.06% w/v methyl red solution in 60% v/v
ethanol to 200 μl culture (MR test). For mutants that no longer
deacidified the medium, the remaining 100 μl culture was sub-
jected to the Voges–Proskauer (VP) test by adding 30 μl of 5%
w/v α-naphthol and 10 μl of 40% w/v KOH to 100 μl of cul-
ture. To quantify acetoin production, the mixture was stirred
vigorously after 1 h and the optical density at 550 nm (OD550)
was measured. Acetoin concentrations were determined using
a standard curve relating the OD550 with the acetoin concen-
tration in LB medium. From mutants that did not deacidify
culture medium and still produced acetoin, transposon inser-
tion sites were determined using the method described by Kwon
and Ricke (2000). Briefly, genomic DNA of the mutants was
isolated, digested with NlaIII and ligated with a Y-shaped linker,

Table 2 | Oligonucleotides used in this study.

Primer Sequence (5′-3′)

Linker 1 TTTCTGCTCGAATTCAAGCTTCTAACGATGTAC

GGGGACACATG

Linker 2 TGTCCCCGTACATCGTTAGAACTACTCGTACC

ATCCACAT

Y linker primer CTGCTCGAATTCAAGCTTCT

NK_Cm_DWN CCTCCCAGAGCCTGATAA

EC_HycE_pKD3_1 GCCGTGCCGGTTTTGATGACTTTTTTGATAAAGGT

AAACATGGCGATTCCATGGGAATTAGCCATGGTCC

EC_HycE_pKD3_2 TTTTTAGCGTTCGTCTCCTTGCTGGCGGCGTGATTA

AAGAGAGTTTGAGCGTGTAGGCTGGAGCTGCTTC

SP_HycE_1(XbaI) GCAGTCTAGAATCAGCGTCTGGTTCATTGG

SP_HycE_2(XbaI) ACTCTCTAGATTATCTGTTCGCCGTGGTGC

SP_HycE_3(XhoI) GCGACTCGAGCATGATGTTCCTACTTGTGAATTAGC

SP_HycE_4(XhoI) GCACTCGAGCGGAAAAACGCACCGTTTTAA

LoxP_Gm_1(XhoI) AACTCGAGCTTCAGCTGTACAATTGGTAC

LoxP_Gm_2(XhoI) AACTCGAGACCGGTTAACACGCG

composed of oligonucleotides linker 1 and linker 2. Next, a PCR
amplification was carried out using a transposon-specific primer
(NK_Cm_DWN) and a primer specific to the Y-shaped linker (Y
linker primer). The PCR product was subsequently sequenced
using the transposon-specific primer and the insertion site was
determined based on the known genome sequence of E. coli
MG1655.

CONSTRUCTION OF hycE MUTANTS IN E. coli AND S. plymuthica
The deletion of hycE in E. coli MG1655 was achieved using
the lambda red recombinase system described by Datsenko and
Wanner (2000), followed by removal of the introduced antibi-
otic resistance cassette using the FRT/FLP recombination system.
Briefly, 70-bp PCR primers were designed comprising a 50-bp
5′ part complementary to the region down- or upstream of
hycE and a 20-bp 3′ part allowing amplification of the FRT-
flanked Cm resistance cassette present in the plasmid pKD3.
The purified PCR product was electrotransformed into E. coli
MG1655 containing the pKD46 plasmid providing the lambda red
recombinase. The resistance cassette was subsequently removed
by expression of the flippase recombination enzyme (FLP) of
the FRT/FLP recombination system on the temperature-sensitive
pCP20 plasmid.

To delete the hycE gene in S. plymuthica RVH1, a frag-
ment encompassing 643 bp upstream and 559 bp downstream
of the gene was PCR-amplified using primers SP_HycE_1(XbaI)
and SP_HycE_2(XbaI), cut with XbaI, ligated into a XbaI-
digested pUC18 vector and transformed into E. coli DH5α.
The resulting plasmid pUC18-hycE was used as a template for
PCR using the outward-oriented primers SP_HycE_3(XhoI) and
SP_HycE_4(XhoI). In a separate reaction, the loxP flanked Gm
resistance cassette from plasmid pUCGmlox was amplified using
primers LoxP_Gm_1(XhoI) and LoxP_Gm_2(XhoI). Both PCR
products were then cleaved with XhoI and ligated together, gen-
erating pUC18-hycE::aacC1, which was transformed in E. coli
DH5α. The hycE::aacC1 insert from this plasmid was then ampli-
fied using primers SP_HycE_1(XbaI) and SP_HycE_2(XbaI),
cut with XbaI, ligated into a XbaI-digested pSF100 vector and
transformed into E. coli S17-1 λpir. After conjugation of the
resulting plasmid pSF100-hycE::aacC1 into S. plymuthica RVH1
(which does not support replication of this suicide plasmid),
transconjugants were selected on LB agar with Gm at 15◦C. This
temperature allows good growth of S. plymuthica but prevents
growth of E. coli S17-1 λpir. Loss of Km resistance (pSF100
marker) was assessed by replica plating on LB agar with Km.
The Gm resistance cassette was then spliced out using the cre
recombinase on plasmid pCM157, which catalyzes site spe-
cific recombination between loxP sites. Restriction endonucleases
and T4 DNA ligase were purchased from Thermo Scientific
(St. Leon Rot, Germany) and used according to the supplier’s
instructions.

CHARACTERIZATION OF FERMENTATIVE GROWTH AND FERMENTATION
END PRODUCTS
Strains were first grown overnight at the appropriate incuba-
tion temperature in 4 ml LB. For strains containing pTrc99A
or pTrc99A-Ptrc-budAB, Ap was added to ensure plasmid
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maintenance. Since S. plymuthica RVH1 is somewhat Ap resis-
tant, Cb was used instead of Ap. Next, the cultures were diluted
1:1000 in tubes containing 30 ml LB with glucose and, when
appropriate, IPTG and Ap or Cb. Five ml of paraffin oil was lay-
ered on top of the cultures to create anaerobic conditions and
the tubes were incubated at the appropriate incubation temper-
ature for 48 h. The cultures were sampled at regular time points
to determine cell concentrations, medium pH and acetoin con-
centration, and for analysis of fermentation end products. Plate
counts were determined by spot-plating (5 μl) a decimal dilu-
tion series in potassium phosphate buffer (10 mM; pH 7.00)
on LB agar. Gas production was evaluated qualitatively using
Durham tubes. Fermentation end products were analyzed in
600 μl culture supernatants stored at –20◦C. Succinic, lactic,
formic, and acetic acid, ethanol, and glucose were determined via
high-performance liquid chromatography (HPLC; Agilent 1200
series) using an ion exclusion column (Aminex® HPX-87H) main-
tained at 55◦C, and with 5 mM H2SO4 as the mobile phase
(0.6 ml/min). The system was equipped with a refractive index
detector operating at 35◦C and a diode array detector set at
210 nm.

STATISTICAL ANALYSIS
All experiments were carried out in triplicate using independent
cultures, and results are presented as the mean values ± SD.
Statistical significance between mean values were determined by
Student’s t-test analysis using the Microsoft Excel statistical pack-
age. Results were reported as significant when a p-value of <0.05
was obtained, based on a two-sided t-test with unequal variance.

RESULTS AND DISCUSSION
INTRODUCTION OF ACETOIN SYNTHESIS PATHWAY IN MIXED-ACID
FERMENTERS
Previously, we introduced the budAB operon from S. plymuthica
RVH1, encoding the α-ALS and α-ALD of the acetoin synthe-
sis pathway, in E. coli MG1655 and observed that this attenuated
lethal medium acidification during fermentative growth on glu-
cose (Vivijs et al., 2014a). Here, we extended this experiment
to S. Typhimurium, S. Enteritidis, and S. flexneri by introduc-
ing the pTrc99A-Ptrc-budAB plasmid into these organisms to see
whether other mixed-acid fermenters would show a similar behav-
ior. Figure 1 shows the growth curves and medium pH during
fermentative growth in glucose-containing LB medium of these

FIGURE 1 | Growth of Escherichia coli MG1655 (A), S. flexneri ATCC

12022 (B), S.Typhimurium LT2 (C) and S. Enteritidis ATCC 13076 (D) in LB

medium containing 5 g/l glucose, 1 mM IPTG and 100 μg/ml ampicillin

(Ap), in sealed microtiter plates incubated at 37◦C for 48 h. Cell numbers

(squares) and medium pH (triangles) of strains harboring pTrc99A (gray) or
pTrc99A-Ptrc-budAB (black) are shown. Pictures below the figures show the
results of the VP test, with a red color indicating the presence of acetoin.
Error bars represent SD.
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bacteria with and without the budAB genes. As expected, E. coli,
both Salmonella strains and S. flexneri without budAB strongly
acidified the medium (to pH 4.50–4.70 after 48 h) and this resulted
in cell death during the stationary phase. Introduction of the
budAB genes did not change growth of the bacteria until station-
ary phase was reached, but it changed the pH profile of the E. coli
and Salmonella cultures in two aspects. Firstly, the acidification
during the growth phase was less strong, reaching a minimum pH
of about 5.60. Secondly, the pH increased again during stationary
phase, up to 6.60–7.00 after 48 h. As a result, plate counts remained
almost constant once they had reached their maximal stationary
phase level (10–48 h).

Surprisingly, a different pattern was observed in S. flexneri.
Introduction of the budAB genes also attenuated medium acid-
ification during the growth phase (pH 5.60 after 10 h), but no
deacidification occurred during stationary phase. As a result, this
culture reached a final pH of 4.80 after 48 h and the plate counts
decreased to a similar extent as those of the strain without budAB
genes. The strain with the budAB genes produced acetoin in similar
amounts as the E. coli and Salmonella strains carrying these genes,
so that poor expression of the acetoin pathway could be ruled out
to explain the different behavior of S. flexneri. Therefore, pro-
ton consumption in the acetoin production pathway cannot fully
explain the deacidification during stationary phase in E. coli and
Salmonella, and it can be concluded that other deacidification
mechanisms must be involved.

SCREENING FOR LOSS OF DEACIDIFICATION CAPACITY IN E. coli
CONTAINING A FUNCTIONAL ACETOIN PATHWAY
In order to identify additional mechanisms involved in stationary-
phase deacidification, we performed random transposon muta-
genesis in E. coli MG1655 containing the pTrc99A-Ptrc-budAB
plasmid and searched for mutants that were unaffected in ace-
toin production (VP test), yet were no longer able to increase the
pH of glucose-containing LB medium at 37◦C after 24 h (MR test),
thus having a MR+/VP+ phenotype. Although in most Enterobac-
teriaceae a positive VP test is usually associated with a negative
MR test (MR–/VP+, e.g., Enterobacter aerogenes) and vice versa
(MR+/VP–, e.g., E. coli), there are also some species in this family
(e.g., Enterobacter intermedius, Klebsiella planticola, or Serratia liq-
uefaciens) reported to be positive for both tests (MR+/VP+; Holt
et al., 1994).

Out of 6.048 mutants screened, 34 MR+/VP+ mutants were
identified and their phenotype was confirmed after transferring
the mutation to a native MG1655 strain by P1-transduction, fol-
lowed by transformation of pTrc99A-Ptrc-budAB. Identification
of the transposon insertion sites of these 34 mutants led to 16
different genes (Table 3). Interestingly, all genes were related to
the metabolism of formate, one of the acids formed by mixed-
acid fermentation. Formate is produced by the pyruvate formate
lyase (PFL) enzyme, which catalyzes the CoA-dependent cleav-
age of pyruvate to formate and acetyl-CoA (Sawers and Böck,
1988). An overview of the fermentation routes present in E. coli
containing pTrc99A-Ptrc-budAB is shown in Figure 2. The for-
mate that is produced and secreted can also be reimported in
the cell through the FocA channel and become disproportion-
ated to CO2 and H2 by the membrane-associated FHL complex

Table 3 | List of genes knocked out in transposon insertion mutants of

E. coli MG1655 containing pTrc99A-Ptrc-budAB that had lost the

stationary-phase deacidification capacity but still produced acetoin

(MR+/VP+).

Gene Description

fdhD Redox enzyme maturation protein (REMP) for FdnG/FdoG;

required as a sulfurtransferase for FDH activity

fdhF FDH-H

fhlA FHL system activator

focA Formate channel

hycB FHL complex iron–sulfur protein

hycD FHL complex inner membrane protein

hycE Hydrogenase 3 large subunit

hycI Maturation endoprotease for hydrogenase 3 large subunit HycE

hypE Maturation protein required for the assembly of the CN ligand

of the NiFe metal center of hydrogenase 1, 2, and 3.

modC ATP binding subunit of the molybdate ABC transporter

moeA Molybdopterin molybdenumtransferase

moeB Molybdopterin-synthase adenylyltransferase

mog Molybdochelatase incorporating molybdenum into

molybdopterin

pflB Pyruvate formate lyase

selA Selenocysteine synthase

selD Selenophosphate synthase

(Sawers, 2005; Lü et al., 2012; Beyer et al., 2013). This complex
consists of the formate dehydrogenase H (FDH-H), a seleno-
protein carrying a molybdenum cofactor, and hydrogenase 3, a
nickel-containing protein complex (Bagramyan and Trchounian,
2003). FDH-H catalyzes the oxidation of formate (HCOO−),
generating CO2 and H+. The electrons from this reaction are
transferred via several subunits of the FHL complex to hydro-
genase 3, where they combine with two cytoplasmic protons to
form dihydrogen. This pathway is thus a net consumer of protons
and is used by E. coli to counteract acidification (Leonharts-
berger et al., 2002). All gene products found in our screening
could be linked to this particular pathway: FdhF (FDH-H), HycB,
HycD, and HycE are part of the FHL complex (Bagramyan and
Trchounian, 2003); HycI and HypE are both involved in matu-
ration of the large subunit of hydrogenase 3 (Forzi and Sawers,
2007); SelA and SelD take part in the biosynthesis of selenocys-
teine, and mutants lacking these gene products fail to synthesize
FDH-H (Leinfelder et al., 1988; Driscoll and Copeland, 2003);
ModC is the ATP binding subunit of the molybdate ABC trans-
porter and MoeA, MoeB, and Mog are other ancillary enzymes
that participate in the biosynthesis of the molybdenum cofac-
tor (Sawers, 1994; Grunden and Shanmugam, 1997; Leimkühler
et al., 2001; Nichols and Rajagopalan, 2002); FdhD is an acces-
sory protein functioning as a sulfurtransferase between IscS and
FdhF and is required for FDH activity (Thomé et al., 2012);
FocA and PflB are coexpressed from a single operon and form
a bidirectional formate channel and the PFL enzyme, respectively
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FIGURE 2 | Mixed-acid fermentation pathway in E. coli expressing the

acetoin synthesis operon (budAB operon). End products are shown in
boldface. Native enzymes are shown in green. The enzymes of the
additional acetoin synthesis pathway, in which pyruvate is converted to
α-acetolactate by α-ALS (BudB) and further to acetoin by α-ALD (BudA), are
shown in red. α-ALS, α-acetolactate synthase; α-ALD, α-acetolactate
decarboxylase; ACK, acetate kinase; ADH, acetaldehyde
dehydrogenase/alcohol dehydrogenase; FHL, formate hydrogen lyase
complex; FRD, fumarate reductase; FUM, fumarase; LDH, lactate
dehydrogenase; MDH, malate dehydrogenase; PFL, pyruvate formate
lyase; PPC, phosphoenolpyruvate carboxylase; PTA, phosphate
acetyltransferase; PYK, pyruvate kinase.

(Lü et al., 2012); FhlA, finally, is a transcriptional activator of the
FHL system (Leonhartsberger et al., 2002). In conclusion, the
mutant screening approach provides a strong indication that the
disproportionation of formate is responsible for the stationary-
phase deacidification capacity in E. coli containing the budAB
genes.

In addition to hydrogenase 3, E. coli also possesses three other
hydrogenases catalyzing the reversible reaction 2H+ + 2e− ↔ H2.
Hydrogenase 1 and 2 are H2-oxidizing enzymes which are max-
imally induced at low and alkaline pH, respectively (Trchounian
et al., 2012). Hydrogenase 4 is not well characterized and its sub-
units have not been isolated and studied yet, but it may be part of a
second FHL complex that may produce H2 at neutral and slightly
alkaline pH (Self et al., 2004; Trchounian and Sawers, 2014). The
contribution of hydrogenase 3 to acid resistance has been demon-
strated previously since anaerobic cultures of E. coli W3110 �hycE
showed a 20-fold loss in survival of an extreme acid stress (2 h at pH
2.0) when compared to the wild-type strain (Noguchi et al., 2010).
This finding suggested that the FHL complex supports survival
of extreme acid challenge by counteracting intracellular acidifica-
tion. Our results now show that the complex can also accomplish
an increase of the environmental pH during growth under mod-
erate acid stress, thereby preventing stationary phase cell death
during fermentative growth.

The observation that acetoin-producing S. flexneri showed
reduced acidification in the exponential growth phase, but did
not deacidify the medium during the stationary phase (Figure 1),

can also be linked to formate conversion. Although S. flexneri
closely resembles E. coli at the genetic level, Shigella species (with
the exception of a few strains) do not produce gas during carbohy-
drate fermentation (Brenner et al., 1982; Germani and Sansonetti,
2006). We confirmed that the S. flexneri strain used in this study
did not produce gas from glucose and the absence of this mecha-
nism may thus explain our observation. The reason why Shigella
species do not produce gas in the presence of glucose is unclear.
The genes encoding the FDH-H and the hydrogenase 3 are present
in the Shigella genome, but apparently no functional FHL complex
is formed.

EFFECT OF HYDROGENASE 3 INACTIVATION ON FERMENTATIVE
GROWTH OF ACETOIN-PRODUCING E. coli
To characterize in more detail the role of formate disproportion-
ation on the capacity of E. coli (with or without budAB genes)
to attenuate medium acidification during fermentative growth,
we constructed a clean deletion of the hycE gene. Since this gene
encodes the large subunit of the hydrogenase 3 that contains the
active site for proton reduction to dihydrogen (Trchounian et al.,
2012), its deletion completely blocks the conversion of formate
to CO2 and H2. Next, budAB-less and budAB-containing wild-
type and �hycE strains of E. coli MG1655 were grown for 48 h in
glucose-containing LB medium sealed from the air with a paraf-
fin oil layer and with a Durham tube to observe gas production.
Plate counts, medium pH, gas production and acetoin concentra-
tions were determined at regular time points (Figure 3; Table 4).
Knockout of hycE did not have any effect on the pH profile dur-
ing fermentative growth of budAB-less E. coli over the entire 48 h
growth period. In the budAB-containing strains, the effect of hycE
deletion depended on the growth phase. During the exponential
phase (first 6 h), hycE deletion had no effect on the acidifica-
tion, but it can be seen that the acidification was slightly less
compared to the two budAB-less strains, in line with the earlier
observations shown in Figure 1. However, from the onset of sta-
tionary phase, the pH profile of both acetoin-producing strains
diverged strongly. While acidification by the budAB-containing
wild-type strain slowed down and reversed into deacidification
after 12 h of growth (as already shown in Figure 1), acidification
by the budAB-containing �hycE mutant was sustained until 24 h,
after which the pH remained stable at a low value (pH = 4.72).
Since both strains produced similar amounts of acetoin, and ace-
toin production stopped after 10 h (Table 4), it can be concluded
that the stationary-phase deacidification by the budAB-containing
wild-type E. coli MG1655 is not a direct consequence of proton
consumption during acetoin production.

More likely, deacidification is triggered by proton consump-
tion in the reaction carried out by the FHL complex since deletion
of hycE resulted in loss of deacidification. This explanation is
also supported by the observed gas production. Since CO2 is
very soluble in water, gas accumulation in a Durham tube can
be mainly ascribed to H2 production, and is thus indicative of
the action of the FHL complex (White, 2000). Both strains with
an intact FHL complex produced more or less the same amount
of gas at 12 h, filling approximately half of the Durham tube
with gas (Figure 3). However, no additional gas production was
seen in case of wild-type E. coli after 12 h, while the Durham
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FIGURE 3 | Cell numbers (squares) and medium pH (triangles) during

fermentative growth of E. coli MG1655 wild-type (solid lines) or �hycE

(dashed lines) containing pTrc99A (gray) or pTrc99A-Ptrc-budAB (black)

in LB medium with 5 g/l glucose, 1 mM IPTG and 100 μg/ml Ap at 37◦C

for 48 h. Error bars represent SD. Gas production (expressed as % of the
volume of the Durham tube) is shown at the bottom.

Table 4 | Acetoin production (in mM) by E. coli MG1655 containing

pTrc99A-Ptrc-budAB or E. coli MG1655 �hycE containing

pTrc99A-Ptrc-budAB during fermentative growth in LB with 5 g/l

glucose, 1 mM IPTG, and 100 μg/ml ampicillin (Ap) for 48 h.

Time (h) E. coli MG1655

pTrc99A-Ptrc-budAB

E. coli MG1655 �hycE

pTrc99A-Ptrc-budAB

4 0.7 ± 0.2 0.5 ± 0.2

6 5.3 ± 0.7 5.0 ± 0.4

8 9.8 ± 0.9 7.1 ± 1.3

10 21.8 ± 0.8 18.4 ± 0.5

12 19.4 ± 1.2 12.5 ± 1.1

24 18.7 ± 0.7 12.3 ± 0.5

48 20.5 ± 2.3 11.1 ± 2.3

tubes in case of acetoin-producing E. coli were completely filled
with gas after 24 h, and additional gas bubbles were formed in
the medium after 48 h. On the other hand, the �hycE mutant
did not produce any gas, while only a small amount of gas
was observed in the budAB-containing �hycE mutant, which
might be the result of CO2 production during acetoin formation
(Figure 3).

The evolution of plate counts during stationary phase in this
experiment was generally in line with the observed pH changes,
with cell death taking place in the strongly acidified cultures. In
particular, lethal acidification could not be prevented by acetoin
fermentation in a budAB-containing �hycE mutant since plate
counts of this strain significantly decreased after the stationary
phase, as was also the case for the two budAB-less strains per-
forming a mixed-acid fermentation. Cell death can be explained
by the combination of the low pH environment and the toxic
accumulation of organic acids.

ANALYSIS OF METABOLITES PRODUCED DURING FERMENTATIVE
GROWTH OF E. coli
To provide more direct evidence for the involvement of formate
disproportionation in the deacidification capacity of budAB-
containing E. coli, glucose consumption and the production
of metabolites were determined by HPLC during fermentative
growth in LB with glucose (Figure 4). Succinate concentrations
(Figure 4E) remained low for all strains during the course of
the experiment. On the other hand, the budAB genes caused a
marked shift in the production of two of the major acids of the
mixed-acid fermentation pathway, especially in the late exponen-
tial and stationary growth phase, with no more acetate and much
less lactate being produced (Figures 4C,D, respectively). With
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FIGURE 4 |Time profiles of glucose consumption (A) and production of

the metabolites ethanol (B), acetate (C), lactate (D), succinate (E), and

formate (F) during fermentative growth of E. coli MG1655 wild-type

(solid lines) or �hycE (dashed lines) containing pTrc99A (gray) or

pTrc99A-Ptrc-budAB (black) in LB medium with 5 g/l glucose, 1 mM IPTG

and 100 μg/ml Ap at 37◦C for 48 h. Error bars represent SD.

regard to formate (Figure 4F), the highest formate accumulation
was seen in the �hycE mutants, probably because these have lost
their major route to convert formate to H2 and CO2. During
the stationary growth phase (up to 48 h), the formate concentra-
tions remained almost constant in the hycE− strains, but strongly
decreased in the hycE+ strains, indicating the reuptake and con-
version of formate to CO2 and H2. Interestingly, a close look at
the formate accumulation curves of the �hycE mutants reveals a
transient decline in the late exponential growth phase (onset at 4 h
of growth). Also in the hycE+ background a decline (budAB-less
strain) or a diminished accumulation (budAB-containing strain)
of formate was observed in this phase. A possible explanation
for this is the activity of the FDH-N, which also catalyzes the
oxidation of formate to CO2 (Sawers, 1994). However, FDH-N
transfers the electrons to nitrate (via a nitrate reductase) instead

of protons and has a much higher affinity for formate than the
FDH-H (Leonhartsberger et al., 2002), which could explain why it
is active in an earlier growth stage. The activity of FDH-N is lim-
ited, however, because LB medium contains only a small amount
of nitrate. The disproportionation of formate (Figure 4F) by the
hycE+ strains lasted longer when the budAB genes were present
(48 h) than when they were absent (24 h), probably because a
higher amount of formate was produced. This was also reflected
by an increased gas production in the presence of the budAB genes
during this phase, as reported above (Figure 3). Finally, ethanol
was produced in higher quantities by the budAB-containing strains
(Figure 4B).

As a final experiment to demonstrate that formate conver-
sion causes medium deacidification during stationary phase, 5 or
10 mM formate from a 1 M solution (pH 5.50) was added to the
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Table 5 | Effect of exogenous formate addition on pH of fermentation

medium.

Concentration of

formate added at 10 h

10 h 24 h 48 h

0 mM 5.64 ± 0.03a 5.81 ± 0.04a 6.14 ± 0.02a

5 mM 5.66 ± 0.05a 5.96 ± 0.04b 6.35 ± 0.04b

10 mM 5.63 ± 0.08a 6.05 ± 0.04c 6.48 ± 0.05c

E. coli MG1655 harboring pTrc99A-Ptrc -budAB was grown in LB medium with
5 g/l glucose, 1 mM IPTG, and 100 μg/ml Ap. Formate was added at 10 h and pH
was measured at 10, 24, and 48 h. a−c pH values with different superscripts in
the same column are significantly different (p < 0.05).

FIGURE 5 | Cell numbers (squares) and medium pH (triangles) during

fermentative growth of S. plymuthica RVH1 wild-type (black solid

lines), budAB::cat (gray solid lines), budAB::cat containing

pTrc99A-Ptrc-budAB (dashed line), or �hycE (dotted line) in LB

medium with 5 g/l glucose at 30◦C for 48 h. For the strain containing
pTrc99A-Ptrc-budAB, 1 mM IPTG and 200 μg/ml carbenicillin (Cb) were
added to the medium. Error bars represent SD.

medium after 10 h of fermentative growth of budAB-containing
E. coli MG1655 and the pH was subsequently measured after 10,
24, and 48 h. As expected, the addition of formate in the medium
resulted in a significantly stronger pH increase during stationary
phase (Table 5).

Taken together, the metabolite profiles lead us to propose the
following model to explain the effect of introduction of the budAB
genes in E. coli (see Figure 2). The introduction of these genes
diverts part of the pyruvate generated from glycolysis to acetoin
production. At the same time, possibly because of a reduced
cellular pyruvate pool, the balance between the mixed-acid fer-
mentation routes is shifted, with lactate production being almost
shut down. Nevertheless, since the budAB-containing strain pro-
duced higher amounts of formate (see previous paragraph), it
maintains a higher flux of pyruvate to acetyl-CoA, as also indi-
cated by the higher glucose consumption. This can be explained
by the reduced acid production and consequently the reduced
metabolic inhibition. The fate of acetyl-CoA is also different in
the budAB-containing strain. This is necessarily so, because the
reduced production of lactic acid creates an excess of NADH
that must be reoxidized by another route to maintain the cellular

redox balance. As can be seen in Figure 2, this is only possible by
increasing ethanol production at the expense of acetate produc-
tion. This is indeed what happens, since the budAB-containing
strain no longer produces acetate and has increased ethanol pro-
duction. Since acetate production is coupled to the generation
of an extra ATP, introduction of the acetoin pathway reduces the
ATP yield per mole of glucose fermented. However, this does not
result in reduced growth rate (Figures 1 and 3), because it is com-
pensated by a higher glucose turnover. Thus, although the total
biomass production (maximal cell density reached in early sta-
tionary phase) is approximately the same for all the strains, the
budAB-containing strains require much more glucose to achieve
this (Figure 4A).

ROLE OF HYDROGENASE 3 IN FERMENTATIVE GROWTH OF
S. plymuthica RVH1
Finally, we investigated whether the FHL complex also attenu-
ates acid formation and drives deacidification during fermentative
growth of a natural 2,3-butanediol fermenter, using S. plymuthica
RVH1 as a model. To this end, we constructed a �hycE mutant in
this strain. The evolution of medium pH for S. plymuthica RVH1
wild-type shows three phases (Figure 5). There was a decrease
during the first 8 h, followed by a rapid increase between 8 and
10 h, and then a slower increase until 48 h. The initial pH increase
is probably due to the switch to 2,3-butanediol production in
the late exponential phase since it was lost upon knockout of
the 2,3-butanediol pathway (budAB::cat) but not by knockout of
hydrogenase 3 (�hycE). In contrast, the deacidification during sta-
tionary phase required both an active 2,3-butanediol pathway and
an active hydrogenase 3. Genetic complementation of the budAB
mutant restored its pH profile to that of the wild-type strain. How-
ever, since this complemented strain produces acetoin under the
control of the plasmid Ptrc promoter right from the start of the
experiment, its acidification is more attenuated than in the wild-
type strain. Cell numbers declined after 48 h in the mutant strains
that had lost or reduced deacidification capacity and, as a result,
there was a clear correlation between cell numbers and medium
pH at the end of the experiment.

Previously, the pH profile during glucose fermentation in the
2,3-butanediol fermenter Enterobacter aerogenes was divided into
three phases (Johansen et al., 1975). The first phase was charac-
terized by a rapid drop to about pH 5.8, in the second phase the
pH remained almost constant at pH 5.6 and in the third phase the
pH increased again to about 6.5. However, during the last phase,
the total amount of acetoin and 2,3-butanediol remained con-
stant and 2,3-butanediol was reoxidized to acetoin, indicating that
the 2,3-butanediol pathway is not involved in this deacidification
(Johansen et al., 1975). Our results demonstrate that –at least in S.
plymuthica- the FHL complex is responsible for stationary-phase
deacidification since the final pH was about 1.3 pH units lower in
a S. plymuthica RVH1 �hycE mutant compared to the wild-type.
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