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Dynamic environmental factors such as light, nutrients, salt, and temperature
continuously affect chlorophototrophic microbial mats, requiring adaptive and acclimative
responses to stabilize composition and function. Quantitative metabolomics analysis
can provide insights into metabolite dynamics for understanding community response
to such changing environmental conditions. In this study, we quantified volatile organic
acids, polar metabolites (amino acids, glycolytic and citric acid cycle intermediates,
nucleobases, nucleosides, and sugars), wax esters, and polyhydroxyalkanoates,
resulting in the identification of 104 metabolites and related molecules in thermal
chlorophototrophic microbial mat cores collected over a diel cycle in Mushroom Spring,
Yellowstone National Park. A limited number of predominant taxa inhabit this community
and their functional potentials have been previously identified through metagenomic and
metatranscriptomic analyses and in situ metabolisms, and metabolic interactions among
these taxa have been hypothesized. Our metabolomics results confirmed the diel cycling
of photorespiration (e.g., glycolate) and fermentation (e.g., acetate, propionate, and
lactate) products, the carbon storage polymers polyhydroxyalkanoates, and dissolved
gasses (e.g., Ho and COy) in the waters overlying the mat, which were hypothesized
to occur in major mat chlorophototrophic community members. In addition, we have
formulated the following new hypotheses: (1) the morning hours are a time of biosynthesis
of amino acids, DNA, and RNA; (2) photo-inhibited cells may also produce lactate via
fermentation as an alternate metabolism; (3) glycolate and lactate are exchanged among
Synechococcus and Roseiflexus spp.; and (4) fluctuations in many metabolite pools (e.g.,
wax esters) at different times of day result from species found at different depths within
the mat responding to temporal differences in their niches.

Keywords: gas chromatography-mass spectrometry, metabolomics, microbial mats, polyhydroxyalkanoates,
Roseiflexus, Synechococcus, wax esters
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Metabolomics analysis of a chlorophototrophic microbial community

Introduction

Microbial communities inhabiting extreme environments in Yel-
lowstone National Park (YNP) have been investigated for more
than half a century (Brock, 1972, 1998). In particular, chloropho-
totrophic (i.e., chlorophyll-based phototrophs) microbial mat
communities present in the effluent channels of Octopus Spring
and Mushroom Spring within the Lower Geyser Basin have been
intensively studied (Brock, 1978; Ward et al., 2012). As a result
of metagenomic (Klatt et al., 2011) and metatranscriptomic (Liu
et al., 2011, 2012; Klatt et al., 2013) analyses, an objective and
more complete understanding of the major taxa inhabiting the
upper 2mm of the 60-65°C regions of the Mushroom Spring
mat, in terms of their contribution to the gene pool and their
functional potentials, has emerged (Table 1). Cyanobacteria from
the genus Synechococcus are the predominant primary producers
driving metabolism in these communities via oxygenic photosyn-
thesis (Klatt et al., 2011; Liu et al., 2011). Synechococcus spp. fix
CO; and synthesize, and possibly excrete, metabolites that are
then consumed by (photo)-heterotrophic members of the com-
munity, including several Chloroflexi, especially Roseiflexus spp.
(Table 1), which were formerly thought to be exclusively pho-
toheterotrophs. However, genomics, metagenomics, and meta-
transcriptomics analyses have revealed that Roseiflexus spp. also
have the genetic potential to fix CO, (Klatt et al., 2007; Van Der
Meer et al., 2010). Collectively, cyanobacteria and Roseiflexus spp.
account for the majority of the biomass of the upper 0-2 mm por-
tion of the mat community (Table 1), and thus they should have
the greatest influence on the metabolites in this portion of the
mat. Two additional Chloroflexi, Chloroflexus spp. and a novel,
apparently phototrophic, Anaerolineae-like taxon, and two aer-
obic/microaerophilic, anoxygenic photoheterotrophs, Chloraci-
dobacterium thermophilum (Bryant et al., 2007; Garcia Costas
et al., 2012) and “Candidatus Thermochlorobacter aerophilum”
(Liu et al., 2012), also occur in the upper photic layer of the mat.
Non-chlorophyllous, heterotrophic bacteria have been detected
in the upper mat community, but they are much less abundant
(Liu et al, 2011), and are unlikely to strongly influence mat
metabolites. Heterotrophs, together with the photoheterotrophic
and photomixotrophic community members, can be considered
potential consumers of metabolites produced by cyanobacteria
and possibly other mat inhabitants.

Studies performed by Konopka (1992) and Nold and Ward
(1996) showed that CO,-fixing chlorophototrophic community
members undergo diel metabolic switching. Recently, metatran-
scriptomics analyses have provided a comprehensive view of
diel transcription patterns in predominant mat taxa (Liu et al.,
2011, 2012; Klatt et al., 2013), and have led to new hypothe-
ses about Synechococcus spp. and Roseiflexus spp. metabolisms.
For instance, Synechococcus spp. express genes involved in pho-
tosynthesis diurnally and have the genetic potential to produce
glycogen, which they accumulate during the day (Van Der Meer
etal.,, 2007). Extremely high irradiance during the day leads to O,
supersaturation combined with CO, depletion (as indicated by
elevated pH), causing production and possible accumulation of
toxic levels of glycolate, a common product of photorespiration
(Bateson and Ward, 1988). Synechococcus spp. also have the

genetic potential to conduct fermentation with production of
lactate, acetate, ethanol and formate (Bhaya et al., 2007). When
photosynthesis declines in the evening, O, uptake by aerobically
respiring community members exceeds O, production and the
mat becomes anoxic, except within the upper ~150 wm. Fer-
mentation genes, as well as genes involved in N, fixation, are
expressed at this time, consistent with measured N, fixation
driven by fermentative metabolism at night and by light in the
early morning (Steunou et al., 2006, 2008).

Diurnal transcription patterns of the genes involved in
CO, fixation suggested that Roseiflexus spp. can conduct
photomixotrophic metabolism, in which they combine CO, fix-
ation with assimilation of low-molecular weight organic com-
pounds, possibly produced by Synechococcus spp. (Klatt et al.,
2013). Other transcription patterns suggested that Roseiflexus
spp. construct and decompose intracellular polymers, includ-
ing glycogen, polyhydroxyalkanoates (PHAs) and possibly wax
esters (genomic and metagenomic analyses show that Syne-
chococcus spp. lack the ability to synthesize PHAs (Bhaya
et al, 2007; Klatt et al., 2011). Because external reductants
such as H, and H,S are not present in the oxic mid-day
photic layers of the mat, it was further hypothesized that
utilization of these intracellular storage polymers may pro-
vide reductants and organic intermediates for photomixotrophic
CO; incorporation during the day. As suggested by Bauld
and Brock (1973), organic compounds produced by CO,-
fixing community members might be cross-fed to (photo)-
heterotrophic or mixotrophic mat community members. Little
is known about metabolite exchange in the mat, although it
has been shown that acetate, butyrate, ethanol, glycolate, lac-
tate, and propionate are photoassimilated into filamentous com-
munity members (Anderson et al., 1987; Bateson and Ward,
1988).

Metabolomics has been successfully applied to character-
ize the metabolic responses of diverse organisms, both qualita-
tively and quantitatively, under various growth conditions (Koek
et al,, 2011). These measurements are increasingly used to study
microbial communities (Mosier et al., 2013; Xie et al., 2013).
In the current study, a combination of untargeted and targeted
metabolomics analyses was performed to quantify five groups of
metabolites. Volatile organic acids, polar metabolites, wax esters,
and PHAs were measured in the mat, while selected dissolved
gasses and inorganic ions were quantified in the overflowing
water. Measurements of acetate, propionate, and glycolate in the
mat, as well as Hy, CO,, and CHy in the water, were performed
to test hypotheses regarding the production of these products
during different parts of the diel cycle. Similarly, targeted mea-
surements of wax esters and PHAs were performed to charac-
terize these molecules as intracellular carbon and energy storage
polymers that should undergo diel cycling if photomixotrophy
occurs as hypothesized in Roseiflexus spp. (Klatt et al., 2013).
Finally, untargeted metabolomics measurements were performed
to identify and quantify polar metabolites extracted from the
mat samples (intracellular) and interstitial fluids (extracellular) to
identify additional metabolites that are changing during the diel
cycle and that may be available for possible metabolic exchange
among mat community members, respectively. In addition to
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metagenomic

inferred from
analyses

polymers
genomic/

Potential metabolites inferred Storage
from genomic/metagenomic
analyses
From
fermentation

photorespiration

From

Use by
representative
isolatesd

Pathway genes
glycolate, acetate

Potential carbonaceous substrates
consumed based on evidence of®

Transporter genes

assimilation in

primary carbon
mat®

Hypothesized

mode of
heterotrophy
heterotrophy

unknown

Mode of
primary carbon
assimilation in
culture®
unknown

ND

ND

% of
rRNAP
3.8

ND

ND

TABLE 1 | Continued
Organism type
based on
metagenome
cluster?
Anaerolineae—like
Heterotroph 1
Heterotroph 2

9Chloroflexus sp. strain OK-70-fl was reported to grow autotrophically on sulfide and bicarbonate (Madigan and Brock, 1975), and a Chloroflexus sp. isolate from Mushroom Spring can grow on sulfide and carbon dioxide (Thiel et al.,

©Gene presence is based on annotations of metagenomic clusters and genomes of representative isolates (Klatt et al., 2011, 2013; Liu et al., 2012). Other nutritional requirements, such as those for vitamins, are not considered here.
unpublisheq).

9Only strains known to be representative of Mushroom Spring populations were considered, including Roseiflexus sp. strains RS1 and RS2 and Chloracidobacterium thermophilum.

€Possible photorespiration products (Bauwe et al., 2010).

fFrom (Van Der Meer et al., 2010).

aFrom Klatt et al. (2011).
bFrom Liu et al. (2012).
hTank and Bryant, 2015.
ND, not determined.

evaluating the above hypothesized metabolisms, these data were
collectively used to formulate new hypotheses of community
metabolisms and metabolite exchange.

Materials and Methods

Chemicals and Materials

All chemicals and reagents were purchased from Sigma-Aldrich
(St. Louis, MO) unless otherwise noted. A mixture of fatty acid
methyl esters (FAMEs; C8-C28) dissolved in hexane was pre-
pared for use as a retention index standard. PHA polymers were
purchased from Sigma-Aldrich or were provided as a gift by
Prof. Alexander Steinbiichel at University of Miinster, Germany.
Deionized and purified water was used to prepare buffer and
standard solutions (Milli-Q System Advantage A10, Merck Milli-
pore, Billerica, MA). All solvents and chemicals were obtained in
the highest purity available.

Sample Collection

Mat Samples

For whole-mat (i.e., intracellular and extracellular metabolites
combined) analyses of volatile organic acids, polar metabolites,
wax esters, and PHAs, core samples were collected in from a
microbial mat in the effluent channel of Mushroom Spring in
the Lower Geyser Basin (YNP, WY) where the temperature of
water in the sampling area varied from 58 to 62°C during the diel
cycle. A cork-borer with a 8 mm inner diameter was used to col-
lect the same volume of mat sample, and a razor blade was used
to separate the top 5 mm of each mat core such that the analyses
were focused on the top green phototrophic layer and the red-
orange undermat layers in the zone that contain most of the bio-
logical activity (Ward et al., 1987) (Figure 1). The samples were
transferred to microcentrifuge tubes and immediately frozen in
a Dewar containing liquid nitrogen. Mat samples were collected
in triplicate at 14 time points between 13:30 h on September 21,
2012 and 11:00 h the following day.

For analyses of extracellular metabolites, mat core samples
were collected at 03:00, 09:00, 13:00, and 19:00h (n = 6, each)
during the same diel cycle. Once collected, three core samples
from each time point were immediately frozen as described above
for use as unrinsed controls, while the remaining three sam-
ples were transferred to 15mL Falcon tubes containing 1 mL
of spring water that had been filtered through a 0.2-um filter.
Since the 68°C source pool of Mushroom Spring is lined with
mat, in order to avoid metabolites that might have diffused from
the mat to overflowing water, we used water from the source
pool (92°C) of chemically similar Octopus Spring (Papke et al.,
2003), which is well upstream of photosynthetic mats (maxi-
mum range of 72-74°C). This water did not contain signifi-
cant levels of any of the organic compounds detected in this
study. The re-suspended mat cores were then quickly disrupted
onsite by vigorous shaking, and the biomass and rinse water were
then immediately separated using a centrifuge (16,025 x g for
5min). The supernatant was transferred to a clean microcen-
trifuge tube and the rinsed biomass and the rinse water samples
were immediately frozen with liquid nitrogen. All samples were
stored at —80°C until further processing. This process did not
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B Top 5mm of mat

v

Solvent extraction

Aqueous fraction
- Volatile metabolites
- Polar metabolites

Organic fraction
- Wax esters
- PHAs

8.0mm

FIGURE 1 | Core sampling using a cork-borer in Mushroom Spring
phototrophic mat (A) and longitudinal view of core sample and brief
analytical scheme (B).

result in release of metabolites identified in analyses of biomass,
suggesting that it did not cause leakage of constituents from intact
cells.

Water Samples

Duplicate water samples were collected at 03:00, 07:00, 09:00,
11:00, 13:00, 15:00, 17:00, 19:00, and 23:00 h, during the same diel
cycle. The temperature at the collection site was approximately
60°C in the main effluent channel. Channel water was filtered
through 0.4 wm HTTP Isopore™ polycarbonate membrane fil-
ters, collected in 160-mL serum bottles, and then after several
exchanges of the serum-bottle volume, sealed with butyl-acetate
stoppers (without head-space).

Metabolite Extraction

A single metabolite extraction protocol was used for the analy-
sis of the various classes of metabolites described herein. Frozen
mats were thawed at room temperature and 100 pL each of
Nanopure™ water and zirconia-silica beads (0.1 mm size; Biospec
Products; Bartlesville, OK) were added, respectively, to the sam-
ples and vigorously vortexed for 2 min. This bead-beating process
was repeated after the samples were maintained at room tem-
perature for 5min. A mixture of chloroform/methanol (400 nL;
2:1, v/v) spiked with 20 g of 1*C-labeled acetate (Sigma-Aldrich
catalog number 282022-250) was added to each disrupted mat
sample, and the mixtures were repeatedly vortexed to ensure
thorough mixing. The samples were centrifuged at 15,000 x g

for 5min at 4°C to separate aqueous and organic layers from
precipitated proteins.

For analysis of acetate and propionate, aliquots (50 nL) of
the aqueous layer from each extract were transferred to glass
vials equipped with glass inserts for direct GC-MS analysis with-
out chemical derivatization. Because acetate and propionate are
volatile molecules, all samples were immediately analyzed after
extraction.

For untargeted analysis of polar metabolites, aliquots (150 L)
of the remaining aqueous layer from each sample extract were
transferred to glass vials and completely dried in vacuo. The dried
extracts were stored at -20°C until chemical derivatization.

For analysis of wax esters, aliquots (200 wL) of the organic
layer from each extract were analyzed directly using GC-MS
without chemical derivatization.

For analysis of PHAs, the remaining organic layer from each
extract was combined with the corresponding protein pellet, and
the combined extract and pellet were completely dried in vacuo.
The samples were hydrolyzed using a modification of the method
reported by Lageveen et al. (1988). Briefly, the dried pellets were
dissolved in methanol containing 15% H,SO4 (v/v) and incu-
bated at 100°C for 15h. The resulting PHA monomers were
extracted with chloroform and analyzed by GC-MS.

Metabolomics Analyses

An Agilent 7890A gas chromatograph coupled with a single
quadrupole 5975C mass spectrometer (Agilent Technologies,
Inc.) was used for all analyses. Samples were analyzed in dupli-
cate by optimized GC-MS methods, which varied according to
the classes of molecular targets as described below.

Acetate and propionate were quantified in a targeted fashion
using '3C-labeled acetate as an internal standard. Briefly, mix-
tures of unlabeled acetate and proprionate at different concen-
trations were combined with constant amounts of '*C-labeled
acetate in order to construct calibration curves. *C-labeled
acetate was then spiked into microbial mat lysates prior to extrac-
tion of metabolites, and the measured ratios of unlabeled acetate
and propionate to labeled internal standard were used to accu-
rately quantify the target molecules. A polar column (HP-FFAP;
30m x 0.250mm x 0.250 um; Agilent Technologies, Santa
Clara) was used. The temperature of the GC inlet was maintained
at 200°C, and samples (1 pL) were injected in splitless mode with
a helium gas flow rate of 1.0mL min~!. A temperature gradient
from 40 to 200°C over 20 min was used, and data were collected
over the mass range 20-300 m/z. To reduce any carry over aris-
ing from the direct injection of the aqueous layers (a mixture of
methanol and water) from the metabolite extraction procedure,
pure methanol blanks were analyzed between each sample.

For untargeted analysis of polar metabolites, extracted
metabolites in the dried aqueous layers were chemically deriva-
tized to trimethylsilyl esters as previously described (Kim et al.,
2013). Metabolite extracts were dried in vacuo again to remove
any residual moisture. To protect carbonyl groups and reduce
the number of tautomeric isomers, methoxyamine (20 LL of
a 30mg mL™! stock in pyridine) was added to each sample,
followed by incubation at 37°C with shaking for 90 min. To
derivatize hydroxyl and amine groups to trimethylsilyated (TMS)
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forms, N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA)
with 1% trimethylchlorosilane (TMCS) (80 nL) was added to
each vial, followed by incubation at 37°C with shaking for 30 min.
The samples were allowed to cool to room temperature and were
analyzed on the same day. A HP-5MS column (30 m x 0.25 mm
x 0.25 pwm; Agilent Technologies) was used for untargeted anal-
yses. Samples (1 L) were injected in splitless mode, and the
helium gas flow rate was determined by the Agilent Retention
Time Locking function based on analysis of deuterated myris-
tic acid (Agilent Technologies, Santa Clara, CA). The injection
port temperature was held at 250°C throughout the analysis. The
GC oven was held at 60°C for 1 min after injection, and the tem-
perature was then increased to 325°C by 10°C/min, followed
by a 5min hold at 325°C. Data were collected over the mass
range 50-550 m/z. A mixture of FAMEs (C8-C28) was analyzed
together with the samples for retention index alignment purposes
during subsequent data analysis.

For analysis of wax esters, aliquots of the organic layer
from the metabolite extracts were directly injected into the
GC-MS. For analysis of PHA monomers, the acid-hydrolyzed
samples were analyzed. Wax esters and PHA monomers were
chromatographically separated using the same HP-5MS column
as described above. Samples (1 L) were injected in splitless
mode. The GC oven was held at 60°C for 5 (wax esters) or 10
(PHA monomers) min after injection, and the temperature was
then increased to 325°C by 10°C/min, followed by a 1 (PHA
monomers) or 5 (wax esters) min hold at 325°C. The helium
gas flow rate was 1.0 mL/min and the injection port temperature
was held at 250°C throughout the analysis. Data were collected
over the mass range 50-600 (PHA monomers) or 50-700 (wax
esters) m/z.

All GC-MS raw data will be made available via the Metabo-
Lights metabolomics data repository (http://www.ebi.ac.uk/
metabolights/) under study identifier MTBLS187.

Metabolomics Data Analysis
The relative amounts of acetate and propionate in the mat sam-
ples were quantified by isotope dilution mass spectrometry. Stan-
dard curves for acetate and propionate were constructed as
described above, and the integrated peak areas of acetate, propi-
onate, and *C-acetate in mat samples were determined using the
corresponding extracted ion chromatograms (EICs; acetate, m/z
60; propionate, m/z 74; and '3C-acetate, m/z 62). The peak areas
of endogenous acetate and propionate were divided by that of
13C-acetate to obtain ratios of unlabeled/labeled target molecules.
GC-MS raw data files from untargeted analyses of polar
metabolites were processed using MetaboliteDetector (Hiller
et al., 2009). Retention indices (RI) of detected metabolites were
calculated based on the analysis of the FAME standard mixture,
followed by their chromatographic alignment across all analyses
after deconvolution. Metabolites were then identified by match-
ing GC-MS features (characterized by measured retention indices
and mass spectra) to an augmented version of the Agilent Fiehn
Metabolomics Retention Time Locked (RTL) Library (Kind et al.,
2009), which contains spectra and validated retention indices for
over 700 metabolites. All metabolite identifications were manu-
ally validated to reduce deconvolution errors during automated

data-processing and to eliminate false identifications. The NIST
08 GC-MS library was also used to cross-validate the spectral
matching scores obtained using the Agilent library. A heat-map
analysis was also carried out after z-score transformation of the
obtained signal intensities and with K-means clustering (K = 5,
Distance metric: Euclidean) using DanteR (Taverner et al., 2012).

For wax ester analysis, the 10 most abundant species from >30
detected and quantified in the microbial mat samples were
selected based on a previous report (Dobson et al., 1988), and
their abundances were determined by the EIC method described
above. For PHA analysis, the monomers were also quantified
using the EIC method described above. A common represen-
tative fragment ion (m/z 103) was used for quantifying both
3-hydroxybutyrate and 3-hydroxyvalerate.

Dissolved Gas Analysis
Dissolved gasses (CO,, H,, and CHy4) were determined using
closed head-space GC as described (Inskeep et al., 2005).

Solar Irradiance Analysis

The incident downwelling irradiance was logged throughout the
field campaign with a LI-1400 light meter equipped with a LI-192
quantum irradiance sensor (LI-COR, Lincoln, NE).

Results

Triplicate samples were taken from a 60°C region of Mush-
room Spring mat at approximately 2-h intervals over a diel cycle
(Figure 1). The top 5 mm was removed for solvent extraction and
separate analyses of polar and volatile aqueous metabolites, PHAs
and wax esters.

Polar Metabolites in the Mat

Untargeted metabolomics analyses were performed to identify
fluctuations in polar metabolites. This analysis resulted in iden-
tification of 58 metabolites that were reproducibly detected in
the 42 samples over the diel cycle. The time-course abundance
patterns of these 58 metabolites are shown individually in Sup-
plemental Figure S1. K-means clustering was used to categorize
these patterns of temporal changes in relative abundances, result-
ing in five clusters of metabolites (Table 2) that each contained
metabolites sharing similar patterns of abundance fluctuation
over the diel cycle (Figure 2).

Metabolites detected in Cluster A accumulated in the predawn
and early morning and included 3-hydroxybutyrate and 3-
hydroxyvalerate, the monomeric units of PHA. These two com-
pounds showed similar patterns of relative abundance over the
diel cycle, as well as to the monomers liberated from acid hydrol-
ysis of intact PHA polymers (see below). Many of the metabolites
of Cluster A were lowest in relative abundance in the afternoon
and began to increase at 03:00h, peaking by 09:00 to 11:00 h.
Adenine, ornithine (indistinguished from arginine during GC-
MS analysis), dihydroxyacetone phosphate, a-hydroxyglutaric
acid, sophorose and phosphoinositol showed similar diel
profiles.

Cluster B contains metabolites that showed highest abun-
dances in late morning. These included the majority of the
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TABLE 2 | List of categorized metabolites showing diel cycling patterns.

Cluster Pattern? Metabolites

adenine

dihydroxyacetone phosphate
3-hydroxybutyric acid
a-hydroxyglutaric acid
3-hydroxyvaleric acid
L-ornithine

phosphoinositol*

sophorose

A(8) Increase in early morning
(03:00-11:00)

B (28) Increase in late morning

(07:00-11:00)

L-asparagine
L-cysteine
fumaric acid
D-glucose
D-glucose-6-phsophate
L-glutamic acid
L-glutamine
glycine
hypoxanthine
inosine

lumazine
L-lysine

D-malic acid
maltose
maltotriose
methylcitric acid*
nicotinic acid
L-phenylalanine
phosphate ion
L-pyroglutamic acid
ribose

L-serine

succinic acid
L-threonine
thymine
L-tyrosine

uracil

L-valine

carbonate ion

citric acid

glyceric acid

glycolic acid
L-homoserine

oxalic acid
2-oxo-glutaric acid
phosphoenolpyruvic acid
pyruvic acid

C ) Increase in afternoon
(11:00-15:30)

D(11) adenosine

benzoic acid
glycerol-3-phosphate
L-(+) lactic acid

D-(+) melezitose
1-methyl nicotinamide
3-phosphoglyceric acid
pyrophosphate

D-(+) trehalose

urea

xylopyranose

Increase in late
afternoon/early evening
(14:30-22:00)

fructose
sucrose

E@) Increase at night
(19:00-22:00)

aClusters are the same as those shown in Figure 2. Numbers in parentheses correspond
to the numbers of metabolites comprising the cluster.
“Metabolites identified by the NIST spectral library only.

amino acids identified in the mat, precursors for the synthesis
of nucleic acids, such as hypoxanthine, inosine, phosphoric acid,
ribose, thymine, and uracil, as well as intermediates in glycolysis
(e.g., glucose and glucose-6-phosphate) and the citric acid cycle
(e.g., fumaric, malic, and succinic acids). The abundance profile
of maltose, an a-1,4 disaccharide of glucose, paralleled that of
glucose, whereas maltotriose, an a-1,4 trisaccharide of glucose,
initially increased in abundance, gradually declined and then
remained low with minor oscillations throughout the afternoon.
A number of metabolites (e.g., asparagine, glycine, malic acid,
phenylalanine, succinic acid, threonine, tyrosine, and valine)
showed maximal abundances at 11:00 h, followed by an abrupt
decrease near mid-day, which was then followed by a secondary
maximum around 14:00-15:00 h.

Metabolites assigned to Cluster C showed highest abundance
in the early afternoon, a time that correlates to peak photosyn-
thetic activity over the diel cycle (see Discussion). Organic acids
such as citric, glyceric, glycolic, oxalic, 2-oxo-glutaric acid (a-
ketoglutaric acid), and pyruvic acids were detected in highest
abundance during the period of 12:00 to 16:00 h. In contrast to
the proteinogenic amino acid serine, the abundance of homoser-
ine was highest from 11:00 to 14:00 h, during which there was an
abrupt decrease at mid-day.

Cluster D metabolites accumulated in the late afternoon.
Among these, the amounts of lactate and urea dramatically
increased from 12:30 to 15:30h, then gradually decreased until
mid-night. In contrast, benzoic acid, glycerol-3-phosphate and
trehalose, an a,a-1,1 disaccharide of glucose, showed peak abun-
dance in the early evening (17:00 h).

Only two metabolites, fructose and sucrose, were assigned to
cluster E; these accumulated around 19:00 to 22:00 h, decreased
at 23:00 h, and then exhibited a relatively low but constant abun-
dance from midnight to noon.

Volatile Fatty Acids in the Mat

To quantify acetate and propionate in the mat accurately, '3C-
labeled acetate was spiked into samples as an internal standard
before metabolite extraction, and the ratios of unlabeled acetate
and propionate peak areas to !3C-acetate peak area were com-
pared to a calibration curve. Using this quantitative approach,
the levels of acetate and propionate were observed to be highest
at midnight, followed by a gradual decrease to 17:00 h (Figure 3).
Opverall, the abundances of acetate and propionate were similar
to each other over the diel cycle.

Carbon Storage Polymers in the Mat
PHA was measured over the diel cycle in the form of the major
components 3-hydroxybutyric acid (3-HB) and 3-hydroxyvaleric
acid (3-HV) (Figure 4A). 3-HV was three times more abundant
than 3-HB, with both fluctuating over the diel cycle, although
the general trend was for accumulation from 19:00 to 10:00 h
followed by a decrease between 10:00 and 19:00 h.

The mat contained a mixture of C39-Cs35 #,n and i,n wax esters.
In total, 42 species were identified (Supplemental Table S1),
although we present data for the 10 most abundant species here
(representative data shown in Figures 4B,C; all data shown in
Supplemental Figure S2). The abundances of these wax esters
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FIGURE 2 | Heat map view of z-scored polar metabolite abundances
over a diel cycle. A total of 58 metabolites were reproducibly detected

(n = 3) and confidently identified in the mat samples. The scale bar indicates
the z-score transformed average intensity values of metabolites. K-means
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clustering was performed to categorize the metabolites based on their diel
abundance patterns. Cluster A—increase in early morning; Cluster
B—increase in late morning; Cluster C—increase in afternoon; Cluster
D—increase in late afternoon/early evening; Cluster E—increase at night.

changed throughout the diel cycle in a complex pattern. In gen-
eral, the wax ester abundances showed decreases from mid-night
to mid-day, except for increases in morning and afternoon, fol-
lowed by an increase again in the evening. Interestingly, i,n forms
of C31, Csp, and Cs5 wax esters increased before n,n forms.

Metabolite Partitioning in the Mat

To evaluate the potential for metabolite exchange among mem-
bers of the community, we analyzed additional mat core samples
that were collected during four time points over the diel cycle
and measured metabolites that were excreted or were otherwise
extracellular. For this experiment, warm, filtered hot spring water
was used to rinse the mat samples on site to avoid release of
metabolites due to osmotic shock. Glycolate and lactate were
the only metabolites confidently identified in the rinse waters
within the detection limits of our instrumentation (data not
shown). We compared the levels of these metabolites between
the rinsed and control mats (Figures 5A,B) at 4 time points
during the diel cycle. The highest level of glycolate in con-
trol and rinsed mat samples occurred at 13:00h. Otherwise,
the level of glycolate was relatively the same at 03:00, 09:00,
and 19:00 h. In contrast, the abundance of lactate in the rinsed

mat samples was equal across the four time points. The lev-
els of lactate in the control mat were much higher than in
the rinsed mat and increased from 03:00 to 19:00 h. Figure 5C
shows data for glycolate and lactate over the full diel in unrinsed
mat samples. The diel trends for glycolate in Figure 5A (con-
trol mat) and Figure 5C (unrinsed samples from the full diel
sampling) clearly track each other. Similarly, the data for lac-
tate in control mat from the rinsing experiment (Figure 5B)
shows a rise in lactate abundance beginning at 13:00h, which
matches the time of the rise in lactate in the unrinsed sam-
ples from the full diel sample collection (Figure 5C). How-
ever, while the lactate abundance continues to rise to 19:00h
in the control mat from the rinsing experiment, it has begun
to decline by 15:30h in the unrinsed samples from the full diel
experiment.

Gases in the Overflowing Water

The amounts of three gaseous molecules in the water overflow-
ing the 60°C mat—CO,, H;, and CHy—were also measured
over the diel cycle (Figure 6). While the levels of hydrogen and
carbon dioxide were lower during the day, methane abundance
fluctuated, with maxima at 07:00, 12:30, and 23:00 h.
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FIGURE 3 | Volatile metabolites over the diel cycle. Solar irradiance (solid
gray) and acetate and propionate concentrations in unrinsed mat samples are
shown. Metabolite values plotted are mean + standard error (n = 3).
Discussion

The application of systems biology approaches is expanding from
lab-cultured samples to complex environmental communities.
In this way, integrated studies are becoming more common
for understanding biological systems through the combina-
tion of data from metagenomics, metatranscriptomics, metapro-
teomics, and metametabolomics analyses. Interpreting data from
metabolomics analyses of a complex microbial community is
challenging because many taxa may contribute to metabolite
pools and because they may do so at different times during a diel
cycle. Furthermore, metabolite concentrations represent pools
that are influenced by production and consumption, as well as
by diffusion, and all three factors are closely coupled in aquatic
microbial mats. Thus, metabolite fluctuations with time likely
represent periods of net production/accumulation or consump-
tion/diffusion. Nevertheless, the data obtained in this study sup-
ported existing hypothesized metabolisms of major taxa in the
mat and led to new hypotheses based on novel observations, as
discussed below.

Integration of Metabolomics and Gene Expression
Data: Support of Existing Hypotheses on
Synechococcus spp. and Roseiflexus spp.
Metabolisms within the Mat Community

In this section, we interpret certain metabolomics results in the
context of hypotheses generated from previous diel metatran-
scriptomics studies (Liu et al., 2011, 2012; Klatt et al., 2013).
Although the metatranscriptomics results are from a different
year (September 2009), the long-term stability of the mat com-
munity, its composition and structure (Ramsing et al., 2000;
Ferris et al., 2003; Ward et al., 2006; Becraft et al., 2011; Melen-
drez et al, 2011), processes conducted during diel cycles by
phototrophic community members based on O, concentration
profiles, and expression of Synechococcus photosynthesis and N,
fixation genes (Ramsing et al., 2000; Ward et al., 2006; Steu-
nou et al., 2008; Jensen et al.,, 2011; Liu et al., 2011, 2012) as
measured between 1996 and the present, make comparisons of
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FIGURE 4 | PHAs and wax esters over the diel cycle. Solar irradiance
(solid gray) and amount of monomers from hydrolysis of PHAs (A); Cz» wax
esters (B); C33 wax esters (C). Metabolite values plotted are mean =+ standard
error (n = 3).

data collected at comparable temperature sites and times of the
year valid. Indeed, comparison of solar irradiance and glyco-
late levels over a diel cycle in mat samples collected in 2011
showed very similar abundance profiles as the data presented
here (Supplemental Figure S3).

Synechococcus spp.
Based on diel changes in glycogen (Van Der Meer et al,
2007) and metatranscriptomics analyses (Liu et al., 2012), we
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hypothesized that Synechococcus spp. shift from daytime photo-
synthesis and the production of glycogen to nighttime glycogen
fermentation (Van Der Meer et al., 2007). Consistent with
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FIGURE 6 | Gaseous metabolites over the diel cycle. Solar irradiance
(solid gray) and CO», Ho, and CHy levels in water overflowing the mat are
shown. Metabolite values plotted are mean + standard error (n = 3).

this hypothesis, fermentation products that mat Synechococcus
populations have the genetic potential to produce (e.g., acetate
and lactate) accumulated during the afternoon and night
(Figures 3, 5C).

Mid-day extremes of light and O, concentration, as well as
CO; depletion (suggested by a rise in pH, which shifts the car-
bonate equilibrium) have been shown to lead to photorespira-
tory production of glycolate (Bateson and Ward, 1988). Thus,
we hypothesized that Synechococcus spp. in the mat experience
photorespiration during periods of high light irradiance. Sup-
porting this hypothesis, CO; in the water flowing over the mat
decreased during the day (Figure 6), and glycolate accumulated
between ~12:00 and ~16:00h (Figure 5C). Production of gly-
colate at peak solar irradiance correlated with the expression
of Synechococcus spp. genes encoding photosynthesis machinery
(Liu et al., 2012).

Additionally, nighttime and early morning N, fixation by
Synechococcus has been demonstrated (Steunou et al., 2006,
2008), and because mat Synechococcus lack an uptake hydroge-
nase, we hypothesized that H, accumulation should temporally
follow N, fixation. Diel patterns of H, concentration in the water
above the mat (Figure 6) are consistent with this prediction.

Roseiflexus spp.

Noting the diel cycling of transcript abundances encoding
enzymes associated with the 3-hydroxypropionate pathway and
the production and consumption of polymers known to be pro-
duced by Roseiflexus spp., Klatt et al. (2013) hypothesized that
Roseiflexus spp. shift from a photomixotrophic metabolism lead-
ing to glycogen synthesis during the day to nighttime fermen-
tation of glycogen, coupled with nighttime synthesis of PHA
and/or wax esters, whose breakdown during the day could in turn
provide the necessary metabolites for photomixotrophy. Consis-
tent with this hypothesis, diel glycogen cycling was previously
demonstrated by Van Der Meer et al. (2007). Also consistent
with the hypothesis, levels of CO, in the water overflowing the
mat and of intracellular fermentation products known to be
used by Roseiflexus [e.g., acetate, propionate, and lactate; based
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on genomic (Van Der Meer et al, 2010; Bryant et al., 2012)
and metagenomic (Klatt et al., 2011) analyses and on laboratory
growth experiments (Hanada et al., 2002)] are lower during
the day.

In addition, PHAs, measured by their constituent monomers
(e.g., 3-HB and 3-HV) after acid hydrolysis of the polymers,
were relatively higher at night and in the early morning, fol-
lowed by a decrease during the day (Figure 4A). The accumu-
lation of 3-HB and 3-HV as free monomers in the morning
(Figure 2, Supplemental Figure S1), together with methyl-citrate,
an intermediate in the oxidation of propionate (which could
be derived from 3-HV), provides evidence that PHAs are being
degraded in the early morning. These observations are consistent
with previous metatranscriptomics data on expression of Rosei-
flexus spp. PHA biosynthesis genes, and our previous hypothesis
that these molecules might be used for mixotrophic metabolism
by filamentous anoxygenic phototrophic bacteria (Klatt et al.,
2013).

Wax esters generally cycled in a manner consistent with
the expression patterns of Roseiflexus genes associated with
their production and degradation, supporting their hypothesized
involvement in photomixotrophy. However, these compounds
fluctuated in a complex manner, possibly reflecting differences
due to the timing of metabolisms of different Roseiflexus species
(see below).

Novel Observations Leading to New Hypotheses
In this section, we highlight novel observations of metabolism
in the Mushroom Spring microbial mat community with respect
to metabolites identified or measured for the first time, as well
as to the time of day at which certain metabolites showed peaks
in accumulation. These observations were then used as the basis
upon which new hypotheses have been formulated.

Detection and Accumulation of Previously
Unreported Metabolites

The accumulation of CHy in the mat at mid-day was unexpected
(Figure 6), since methanogenesis is an anaerobic process that
should only occur in the anoxic nighttime mat (Ward, 1978;
Sandbeck and Ward, 1981). However, genomic and metagenomic
analyses indicate that Synechococcus spp. have the potential to
metabolize phosphonate (Gomez-Garcia et al., 2011), which can
also lead to methane production. We therefore hypothesize that
the mid-day peak in methane concentration is a result of Syne-
chococcus spp. metabolism of phosphonates.

Metabolites in cluster B accumulated specifically in the morn-
ing and in general reached their highest levels at 11:00 h. The
metabolites present in this cluster (most amino acids, hypox-
anthine, inosine, phosphoric acid, ribose, thymine, and uracil)
imply that amino and nucleic acid biosynthesis occur maxi-
mally during the early morning period. Interestingly, all of these
nitrogen-rich compounds reached peak levels shortly after the
maximal period of N, fixation by Synechococcus spp., which
occurred between 06:00 and 10:00h in the morning (Steunou
etal., 2008). This period also corresponded to the time when total
mRNA levels increased sharply in members of the major pho-
totrophic taxa that occur in the mats Liu et al., 2011, 2012; Klatt

et al., 2013). While not unexpected, these collective observations
lead to the hypothesis that the morning hours represent a time
when RNA, DNA, and protein biosynthesis rates are maximal for
major taxa in the mat.

At midday (11:00 to 12:00 h) there is an abrupt decline in all
metabolites of cluster B, when metabolites of cluster C, includ-
ing glycolate, oxalate, carbonate, citrate, and phosphoenolpyru-
vate, accumulated (Figure 2). The accumulation of glycolate (as
discussed above), glycerate, and oxalate is likely due to photores-
piration by Synechococcus spp. (Bateson and Ward, 1988; Bauwe
et al., 2010). Interestingly, the abundance of carbonate ion also
increased at this time, consistent with extreme CO; consumption
and elevated pH during peak periods of photosynthesis shift-
ing the equilibrium of dissolved inorganic carbon (Revsbech and
Ward, 1984; Jensen et al., 2011). Also of interest is the observa-
tion that peak production of glycolate coincides with the abrupt
decrease in levels of certain metabolites (asparagine, glycine,
malic acid, phenylalanine, succinic acid, threonine, tyrosine, and
valine) in cluster B, suggesting a decrease in activity in these
metabolic pathways possibly due to photoinhibition. At the same
time as the abrupt decrease in abundances of cluster B metabo-
lites and just after the peak in glycolate abundance (~12:00h),
the levels of lactate in the mat begin to increase, with maxi-
mal abundance at ~15:00 h and correlating with a second peak
in glycolate abundance (Figure 5C). We hypothesize that Syne-
chococcus spp. may be a source of the peak in lactate abundance
at this time via fermentation either as an alternative metabolism
for photoinhibited cells closest to the mat surface, or because
cells deeper in the mat experience a shorter period of peak solar
irradiance (Becraft et al., this issue; Olsen et al., this issue), or
both.

Metabolite Exchange

Metabolic interactions among community members are key fea-
tures stabilizing the composition and function of microbial com-
munities. In a chlorophototrophic microbial community, organic
compounds produced and excreted by CO;-fixing taxa could be
used as nutrients by (photo)-heterotrophic or mixotrophic mat
community members. Indeed, diurnal transcription patterns of
the genes involved in CO, fixation have suggested that Rosei-
flexus spp. in the Mushroom Spring mat community can conduct
photomixotrophic metabolism, presumably using organic com-
pounds produced and excreted by other community members.
In this section, we discuss the potential for metabolic exchange
between Synechococcus and Roseiflexus spp.

Two metabolites, the photorespiration product glycolate and
the fermentation product lactate, were identified in the extra-
cellular fractions of the rinsing experiment and were therefore
available as nutrients for members of the mat community. Gly-
colate was most abundant in the mat during the early after-
noon (Figures 2, 5C, and Supplemental Figure S1). At 13:00h,
the amount of glycolate associated with mat biomass was much
lower (25-30%) in the rinsed compared to the unrinsed con-
trol samples, suggesting that glycolate is excreted into the intra-
cellular milieu (Figure 5A). At other time points examined, the
amounts of glycolate were similar in rinsed or unrinsed sam-
ples, suggesting a balanced consumption and production or
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that photorespiration is less active at lower irradiance levels.
Although, Klatt et al. (2013) did not observe significant changes
in transcription patterns in Roseiflexus spp. during the same time
period as the peak in mat glycolate abundance, these organisms
are still the most likely consumers of glycolate because glyoxy-
late derived from glycolate by oxidation can readily be assim-
ilated by the 3-hydroxypropionate bi-cycle (Klatt et al., 2007).
In contrast, a very sharp and large increase (~60-fold above the
minimum) in transcript abundance for lactate permease in Rosei-
flexus sp. at approximately 18:00h has been observed (Bryant
et al, unpublished data), just after the afternoon increase in
lactate abundance in unrinsed vs. rinsed mat samples in our
experiment (Figure 5B). This observation suggests that Rosei-
flexus sp. might utilize a significant proportion of the lactate
produced. Indeed, lactate levels declined in the early evening
hours after the spike in lactate permease transcripts occurred.
As with glycolate, the lower levels of lactate during the night
may indicate an efficient balance between production and con-
sumption. Based on these observations, we hypothesize that
glycolate, and possibly lactate (as discussed above), are mostly
produced and excreted by the cyanobacteria (i.e., Synechococcus
spp.) during the early afternoon and are available to other mat
inhabitants, particularly Roseiflexus spp., as a carbon and energy
source.

It is interesting that only glycolate and lactate were identified
in the rinse water. We have considered several possible explana-
tions for this observation. It is possible that other extracellular
metabolites (e.g., volatile fatty acids, ethanol) may have been lost
during the in vacuo drying of the rinse water samples, as pre-
vious analyses have shown that these compounds accumulate in
the aqueous fraction during dark, anaerobic incubation of mat
samples (Anderson et al., 1987). Alternatively, our sampling of
extracellular metabolites, which occurred at 03:00, 09:00, 13:00,
and 19:00h, may not have occurred during the peak times of
metabolite excretion. A third possibility is that certain metabo-
lites are rapidly scavenged from the extracellular milieu as soon

as they are excreted. The last possibility is that there were no other
metabolites that were excreted.

Depth- or Temporally-Resolved Metabolisms

As mentioned above, a complex pattern of wax ester abun-
dances was observed, with peak abundances in the predawn,
morning, and afternoon periods, and differential timing of i,n-
and n,n-forms of the same wax esters. Such complexity might
arise because of contributions from multiple taxa capable of wax
ester synthesis with different diel timing. As shown in Table 3,
although Roseiflexus wax esters are a better match to wax esters
found in the mat, Chloroflexus also makes n,n forms of Cj,
Cs;, and C35 wax esters, and the different abundances of these
forms might relate to differential timing of wax ester synthesis
in members of these two genera. Such could also be the case for
different Roseiflexus species. Zeng et al. (1992) showed that the
ratio of i,n- to n,n-forms of C3;_35 wax esters increased nearly
5-fold in mat layers 4-5 mm below the surface of the highly sim-
ilar Octopus Spring mat, raising the question of whether differ-
ent species of Roseiflexus, with different vertical distributions,
experience different light regimes and have different timing of
wax ester synthesis and degradation. Taxon-related and/or depth-
related differences in metabolisms may be generally important,
because similar small-scale fluctuations were observed in PHA,
glycolate, and fermentation products. Furthermore, a number of
metabolites (e.g., asparagine, glycine, malic acid, phenylalanine,
succinic acid, threonine, tyrosine, and valine) showed maxima
in abundances at 11:00h, followed by an abrupt decrease near
mid-day, which was then followed by a secondary maximum
around 14:00-15:00 h. Metabolomics analyses were conducted on
the top 5 mm region of the mat, whereas the transcription results
of Klatt et al. (2013) were from the top 2 mm region. Different
taxa (and/or different species within these taxa) inhabit different
vertical regions of the mat (Ramsing et al., 2000; Becraft et al.,
2011), and we hypothesize that they exhibit maximal metabolic
rates for specific processes at different times during the diel cycle.

TABLE 3 | Wax ester content of mat and Chloroflexi and timing of abundance changes in the mat.

Wax ester Roseiflexus® Chloroflexus® mat? Evening rise start Night peak Morning peak Afternoon rise start Afternoon peak
C31n,n + ++ 19:00 01:00 05:00 14:30 15:30
C31in + + 17:00 22:00 03:00 11:30 14:30
C32n,n ++ + +4++ 19:00 01:00 05:00, 09:00 14:30 15:30
C32in +++ ++ 19:00 01:00 05:00, 09:00 12:30 15:30
C33n,n + + +4++ 19:00 01:00 05:00, 09:00 14:30 15:30
C33in + ++ 19:00 01:00 05:00, 09:00 14:30 15:30
C34 n,n +++ ++ ++ 19:00 01:00 05:00, 09:00 13:30 15:30
C34in +++ + 19:00 01:00 05:00, 09:00 13:30 15:30
C35n,n + ++ + 19:00 01:00 05:00, 09:00 15:00 17:00
C35in + + 19:00 01:00 05:00, 09:00 13:00 17:00
C36 n,n ++

C37 n,n +

4Relative abundances of wax esters in Roseiflexus spp., Chloroflexus spp., and the Mushroom Spring microbial mat are indicated by “+” for low abundance, “++" for moderate
abundance, and “+ + +” for high abundance. Data for Roseiflexus spp. and Chloroflexus spp. are from Van Der Meer et al. (2010).
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Indeed, evidence that Synechococcus species with different depth
distributions (Becraft et al., this issue), light adaptations (Nowack
et al., this issue) and gene expression timing (Olsen et al., this
issue), strongly supports this hypothesis.
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