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Anthropogenically induced changes in precipitation are projected to generate increased
river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic
matter and decreasing salinity. To determine how bacterial community structure and
functioning adjust to such changes, we designed microcosm transplant experiments
with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper
bacteria generally reached higher abundances than Bothnian Sea bacteria in both
Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover,
Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest
bacterial production and beta-glucosidase activity. These metabolic responses were
accompanied by basin-specific changes in bacterial community structure. For example,
Baltic Proper Pseudomonas and Limnobacter populations increased markedly in
relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast,
Roseobacter and Rheinheimera populations were stable or increased in abundance
when challenged by either of the waters, indicating an adjustment effect. Transplants
to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae
populations, and transplants to Baltic Proper water triggered Alteromonadaceae
populations. Notably, in the subsequent re-transplant experiment, a priming effect
resulted in further increases to dominance of these populations. Correlated changes
in community composition and metabolic activity were observed only in the transplant
experiment and only at relatively high phylogenetic resolution. This suggested an
importance of successional progression for interpreting relationships between bacterial
community composition and functioning. We infer that priming effects on bacterial
community structure by natural episodic events or climate change induced forcing could
translate into long-term changes in bacterial ecosystem process rates.

Keywords: bacterial community functioning, salinity, DOM, terrigenous carbon, climate change, marine bacteria,
bacterial diversity
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Introduction

A fundamental question in ecology focuses on whether shifts in
diversity and community composition due to changes in envi-
ronmental conditions also result in changes in bacterial commu-
nity functioning (Loreau, 2000; Gamfeldt and Hillebrand, 2008).
Overall, little is known about how bacterial community composi-
tion affects bacterial community functioning and how sensitive
or resistant bacterial communities and individual taxa are to
environmental disturbances (Allison and Martiny, 2008; Comte
and Del Giorgio, 2011). It is, therefore, desirable to examine the
adaptability (i.e., sensitivity, resistance, and responsiveness) and
metabolic plasticity (i.e., the potential to achieve similar ecosys-
tem process rates) of bacterioplankton populations responding
to environmental disturbances. Most bacterial populations are
sensitive to environmental disturbances, and changes in bacte-
rial community composition can influence the rates of ecosystem
processes, suggesting that populations are functionally dissimi-
lar (Bell et al., 2005; Langenheder et al., 2005; Judd et al., 2006;
Allison and Martiny, 2008; Comte and Del Giorgio, 2011; Comte
et al,, 2013). However, little is known about the changes in pop-
ulation dynamics and ecosystem ecology in response to climate
change consequences, such as increased temperature, lower pH,
or increased river runoff (Degerman et al, 2013; Lindh et al,
2013; Von Scheibner et al., 2014). Potentially, knowledge of the
responses of bacterioplankton populations to anthropogenically
induced environmental change could extend the understanding
of the links between population dynamics and ecosystem ecology
and might help to predict and monitor future change in marine
environments.

Projections from climate change models highlight increased
annual levels of precipitation in Northern Europe, decreasing
salinity and increasing loadings of terrigenous (allochthonous)
dissolved organic matter (DOM) to coastal waters through river
outflows (Meier, 2006). Changes in salinity and increased ter-
rigenous carbon inputs have been shown to influence growth
and activity of bacterioplankton (del Giorgio and Bouvier, 2002;
Langenheder et al., 2003; Kritzberg et al., 2004; Rochelle-Newall
et al., 2004; Laghdass et al., 2010; Fasching et al., 2014). Salinity
is an important factor shaping bacterial community composition
in that it influences the spatial distribution of bacterial popu-
lations (Lozupone and Knight, 2007; Herlemann et al., 2011;
Dupont et al.,, 2014). On the other hand, bacterial community
composition is also much dependent on the quantity and qual-
ity of DOM (Lindstrém, 2000; Eiler et al.,, 2003; Kisand and
Wikner, 2003; Kirchman et al., 2004; Rochelle-Newall et al., 2004;
Kritzberg et al., 2006; Kisand et al., 2008; Teira et al., 2009;
Goémez-Consarnau et al., 2012; Grubisic et al., 2012; Rocker et al.,
2012). Yet, empirical data for how bacterial community func-
tioning and the cycling of carbon will be affected in coastal or
semi-enclosed waters like the Baltic Sea under conditions sim-
ulating potential future climate change influences are scarce.
Detailed knowledge on the combined effects of climate change
driven changes in salinity and DOM for bacterial community
composition and metabolic activity would be desirable.

As a semi-enclosed sea, the Baltic Sea is characterized by
seasonally changing inputs in the quality and quantity of

allochthonous DOM (Zweifel et al., 1993). In addition, the promi-
nent salinity gradient ranges from truly marine in the southern
to freshwater salinities in the northern basins of the Baltic Sea,
where large river discharges cause lower salinity. The cause for
differences in the distribution of microbial populations due to
salinity is likely related to the long residence time in the Baltic
Sea (>5 years), allowing niche differentiation and adaptions
to optimum salinity levels (Riemann et al.,, 2008; Herlemann
et al., 2011; Dupont et al., 2014). The combined environmental
disturbances projected from climate change models imply sub-
stantial effects on the structure and function of both macro- and
microorganism communities, including bacterioplankton, in the
Baltic Sea (Wikner and Andersson, 2012). One of the major con-
sequences of such anthropogenically induced disturbances for
marine microbes is expected to be a change in biogeochemical
cycling of carbon that may allocate more energy for heterotrophic
bacterial production in the Baltic Sea (Sandberg et al., 2004;
Wikner and Andersson, 2012).

Transplant experiments have provided insights into key fac-
tors that regulate bacterial community structure, diversity, and
functioning in different aquatic environments (Gasol et al., 2002;
Kirchman et al., 2004; Rochelle-Newall et al., 2004; Langenheder
et al., 2005; Bonilla-Findji et al., 2009; Sjostedt et al., 2012; Comte
et al,, 2013). The aim of the present study was to investigate
how the quality of water originating from geographically distinct
basins of the Baltic Sea influences bacterial community compo-
sition and metabolism. This was done under the premise that
projections of future climate change influence on the Baltic Sea
indicate that increased precipitation will lead to environmental
conditions in the Baltic Proper similar to those currently found in
the northern basins of the Baltic Sea (Bothnian Sea or Bothnian
Bay). We designed a transplant and re-transplant microcosm
experiment and monitored the effects on bacterial commu-
nity composition (by using 16S rRNA gene Illumina Miseq tag
sequencing) and functioning (i.e., bacterial abundance, produc-
tion, and enzyme activities). A conceptual model of potential
outcomes of this study is presented in Figure 1. We hypothesized
that: (i) bacterial community composition would change after
both transplantation and re-transplantation disturbances relative
to controls following the replacement scenario (pathway B in
Figure 1) sensu Allison and Martiny (2008) and Comte and Del
Giorgio (2011) and (ii) bacterial community functioning would
be affected due to limited functional redundancy.

Materials and Methods

Field Sampling

Culture media for the experiments was prepared from seawater
collected from the Baltic Sea Proper (BAL; Linnaeus Microbial
Observatory station, LMO; N 56°55.851, E 17°03.640) and the
Bothnian Sea (BOT; NB1; N 63°31.0000, E 19°48.1166) on the 1
and 2 July 2013, respectively (Figure 2). Seawater was taken using
a Ruttner sampler at a depth of 2 m. BAL and BOT water were
transported in the dark to the laboratory in acid-washed Milli-Q
rinsed polycarbonate bottles and at in situ temperatures within 1
or 12 h, respectively.
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FIGURE 1 | Conceptual model of the potential outcome of this study. We of OTUs, leading to changes in community composition and functioning. Our null-
hypothesized that bacterioplankton responses in community composition and hypothesis is therefore pathway A; black arrows; i.e., adjustment of OTUs, leading
metabolic activity would follow pathway B; red arrows, i.e., replacement to unchanged community composition and bacterial community functioning.
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FIGURE 2 | Geographic location of the Baltic Sea Proper (BAL) and Bothnian Sea (BOT) stations in the Baltic Sea. Arrows indicate direction of transplant
and re-transplant of unfiltered seawater (inoculum) to seawater media.
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Seawater to be used as inoculum with natural bacterioplank-
ton assemblages was collected simultaneously at the BAL and
BOT sites on 15 July 2013, and was transported to the Linnaeus
University within 12 h. This seawater for inocula remained unal-
tered (i.e., no manipulations such as filtrations were carried out).
On both field samplings, measurements of temperature, salin-
ity, and nutrient concentrations were taken. For the second field
sampling, when water for bacterial inocula was obtained, nutrient
limitation bioassays were carried out, and samples for determin-
ing in situ bacterial community composition were collected.

Microcosm Setup

Water from each of the two stations was prepared for sea-
water culture media by sterile filtration (0.2 wm pore size;
Sterivex cartridge; Millipore, USA), whereupon the filtrate was
distributed into acid-washed Milli-Q rinsed 2 1 polycarbonate
bottles followed by autoclaving and subsequent storage in the
dark at 16°C. Prior to inoculation, culture media had <10* cells
ml~!, as determined by flow cytometry. The experiment was
made up of two parts: a transplant and a re-transplant part,
running 5 and 4 days, respectively. In the transplant, unfil-
tered seawater was used to inoculate the sterile filtered and
autoclaved seawater media in triplicates for each treatment at
a ratio of 1:20. For the re-transplant, inoculum from trans-
plant microcosms on day 5 were added to sterile filtered auto-
claved seawater media in triplicates at a ratio of 1:20. This ratio
was used based on our previous experience in obtaining clear
bacterial growth responses in Baltic Sea microcosms (Gomez-
Consarnau et al., 2012). Nomenclature of microcosms is as fol-
lows; station, — stationg,, where subscript “b” indicates bacteria
and subscript “sw” indicates seawater medium. Thus, transplant
microcosms consisted of native Baltic Proper bacteria growing
in either Baltic Proper water (BAL, — BAL,,) or Bothnian
Sea water (BAL, — BOTyy,), and native Bothnian Sea bacte-
ria incubated in either Bothnian Sea water (BOT}, — BOTy)
or Baltic Proper water (BOT}, — BALg,). Re-transplant micro-
cosms consist of Baltic Proper bacteria re-transferred to Baltic
Proper water (BAL, — BOT,, — BALy,) or with continued
growth in Bothnian Sea water (BAL, — BOT,, — BOTsy),
and Bothnian Sea bacteria re-transferred to Bothnian Sea water
(BOTp, — BALgw — BOT,y) or continued incubation in Baltic
Proper water (BOT,—BAL,—BALg,). All microcosms were
incubated at 16°C in darkness. The microcosms were gently
inverted manually twice a day and before sampling of biotic
and abiotic parameters. The experimental setup is summa-
rized in Table 1 and detailed in Figure S1. In the transplant
experiment, salinity was measured daily and total organic car-
bon (TOC) concentrations were measured on day 0, 2, and 5
(triplicates). Bacterial abundance was monitored daily by flow
cytometry (duplicates) and heterotrophic production was deter-
mined on day 0, 2, and 4 (quadruplicates). Extracellular enzyme
activities were measured on day 0, 2, and 4 (quadruplicates).
In the re-transplant experiment, salinity was measured daily
and TOC concentrations were measured on day 0, 2, and 4
(triplicates). Bacterial abundance (duplicates) and production
(quadruplicates) were measured daily and extracellular enzyme
activities were measured on day 0, 2, and 3 (quadruplicates).

TABLE 1 | Simplified experimental setup of the microcosm experiment.

Seawater media
Bacterial Transplant  Transplant Re-transplant  Re-transplant
source control control
BALy BOTsw BALgw BALgw BOTsw
BOTp BALsw BOTsw BOTsw BALsw

Unfiltered water sampled in the Baltic Sea proper (BAL) and in the Bothnian Sea
(BOT) was inoculated in triplicates at 1:20 ratio into sterile filtered autoclaved sea-
water media from these two stations. For re-transplant, samples from transplant
microcosms were inoculated in triplicates at 1:20 ratio.

Nutrient Concentrations

In situ samples from the BAL and BOT stations for dissolved
inorganic nutrient concentrations (NH4F, NO3;~, PO437) were
collected on the 15 July, when the water for the inocula was sam-
pled, and were analyzed following the method of Valderrama
(1995). For measuring TOC concentration, samples of 50 ml
were filtered (0.2 pm Supor Membrane Syringe Filter, non-
pyrogenic; Acrodisc®; Pall Life Sciences, USA), acidified with
0.67 ml of 1.2 M HCl and kept in acid rinsed 50 ml Falcon tubes
at 4°C in the dark until processing. The samples were purged
and measured using a Shimadzu TOC-5000 Analyzer (Shimadzu,
Japan).

Bacterial Abundance, Bacterial

Heterotrophic Production, and Extracellular
Enzyme Activity

Bacterial abundance samples of 900 pl were preserved with
formaldehyde (2% final concentration) and stored at —80°C
until processing. Bacterial abundance was measured by staining
samples with SYTO 13 (5 pM final concentration: Molecular
Probes, USA) and enumerated using a Cube 8 flow cytome-
ter (Partec, Germany) according to the protocol described in
del Giorgio et al. (1996). For bacterial heterotrophic produc-
tion, 1.2 ml samples were collected with two killed controls and
production was measured via the 3H-Leucine method accord-
ing to Smith and Azam (1992). Extracellular enzymatic activities
of beta-glucosidase, leucine aminopeptidase, and alkaline phos-
phatase were determined in technical quadruplicates according to
the fluorometric enzyme assays described in Baltar et al. (2010).

Nutrient Limitation Bioassays

Bacterial nutrient limitation was measured for in situ seawater
by distributing 250 ml of seawater to acid-washed Milli-Q rinsed
polycarbonate bottles adding 24 M glucose (CeH120¢), 4.2 pM
ammonium (NH4Cl), and 0.6 pM phosphate (NaH,;POy; final
concentrations) in duplicate treatments incubating in the dark
for 48 h at 16°C. Differential responses to nutrient addition were
determined by measuring bacterial heterotrophic production.

DNA and lllumina Miseq PCR

Collection of biomass for DNA extraction was done on day 5
for the transplant and day 4 for the re-transplant when 750 ml
of water was filtered onto 0.2 pm 47 mm Supor filters (PALL
Life Sciences) for all treatments except for the in situ samples for
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which 4 1 were Sterivex filtered (Millipore). Phenol-chloroform
extraction of DNA was performed according to Riemann et al.
(2000). Bacterial 16S rRNA was first amplified with HPLC puri-
fied bacterial primers 341F and 805R (Herlemann et al., 2011)
following the PCR protocol of Hugerth et al. (2014) with some
modifications; amplification was carried out in duplicates for
each biological replicate and we used an annealing temperature of
58°Cin the first PCR and 12 cycles in the second PCR. The result-
ing purified amplicons were sequenced on the Illumina Miseq
(Ilumina, USA) platform using the 300 bp paired-end setting at
the Science for Life Laboratory, Sweden (www.scilifelab.se). Due
to problems with either sampling or sequencing some treatments
are only represented by duplicates or a single sample (Table S1).

Sequence Processing and Analysis

Raw sequence data generated from Illumina Miseq were pro-
cessed using the UPARSE pipeline (Edgar, 2013). Taxonomy was
determined against the SINA/SILVA database (SILVA 115; Quast
etal., 2013). After quality control, our data consisted of a total of
1.3 million reads, with an average of 40 086 £ 18 037 reads per
sample. These sequences resulted in a final OTU table consist-
ing of 3920 OTUs (excluding singletons) delineated at 97% 16S
rRNA gene identity. For the OTU based analyses, chloroplast,
mitochondrial, and eukaryotic sequences have been excluded
from all analyses. The maximum likelihood tree was made using
MEGA 5.2.1 and the Tamura-Nei model (Tamura et al., 2011)
to examine the phylogenetic relationship between bacterioplank-
ton responding in different microcosms and for Unifrac analysis.
DNA sequences have been deposited in the National Center
for Biotechnology Information (NCBI) Sequence Read Archive
under accession number SRP048666.

Statistical Analyses

For analysis of variance (ANOVA) statistics we tested the sam-
ple distribution for normality using Shapiro tests, and if the
data was not normally distributed we log-transformed the data.
ANOVA results were complemented with Tukey’s post hoc test.
To investigate patterns of bacterial community composition,
non-metric multidimensional scaling (nMDS, Bray-Curtis dis-
tance) ordination and UPGMA (unweighted pair group arith-
metic mean, UniFrac distance) dendrogram were used. Unifrac
analysis was based on the average relative abundance of replicate
microcosms. Differences in community composition between
microcosms were tested using permutational analysis of vari-
ance (PERMANOVA) on Bray-Curtis distances. In our detailed
OTU analyses (Figure 7; Table 2) we first selected the 200
most abundant OTUs that is OTUs with the highest total rel-
ative abundance across the experiments. These OTUs together
represented 82% of total sequence reads. We further examined
in detail the response in our transplant experiments of bac-
terial OTUs that typically represent abundant populations in
the Baltic Sea (see, e.g., Herlemann et al., 2011; Lindh et al,
2015). Pronounced responses of particular OTUs were deter-
mined by comparing changes in relative sequence abundance
between treatments and experiments. Correlations between com-
munity composition and enzymatic activity for different taxa
were tested using PERMANOVA with Bray-Curtis distances.

For testing the correlation between changes in community func-
tioning and shifts in bacterioplankton community composition
we performed MANTEL tests. We, therefore, combined the dif-
ferential response of bacterial production and enzyme activi-
ties between microcosm treatments and constructed a distance
matrix using the Canberra distance estimation. This community
functioning matrix was compared with Bray-Curtis dissimilar-
ity matrices of community composition at different cluster levels
(99, 97, 95, 93, and 91% 16S rRNA gene identity). All statistical
tests were performed in R 3.0.2 (R Core Team, 2014), using the
packages Vegan (Oksanen et al., 2010) and Picante (Kembel et al.,
2010). Graphical outputs were made using the package ggplot2
(Wickham, 2009).

Results

Initial Environmental Conditions and

Nutrient Limitation Bioassay

When sampling the seawater for culture media, in situ tempera-
ture was 15.5 and 15.8°C and salinity was 7.2 and 3.6 for station
BAL and BOT, respectively. When sampling the inoculum for
initiating the transplant experiment, temperature was 14.8 and
16.7°C and salinity was 7.2 and 3.6, for station BOT and BAL,
respectively. Nitrate and ammonium concentrations were about
1.5 times higher and phosphate around 2 times lower at BOT
(0.19, 0.83, and 0.06 WM, respectively) compared to BAL (0.12,
0.56, and 0.11 WM, respectively). TOC concentrations were ini-
tially different between stations with 3.96 and 4.39 mgL~! for
BAL and BOT, respectively. Although nutrient levels were differ-
ent between BAL and BOT, bacterial nutrient limitation bioassays
showed that bacterial growth was not limited by organic carbon
or inorganic nutrients at any of the two stations within the time
frame of the 48 h experiment (Figure S2).

Transplant Experiment

In the transplant experiment, bacterial abundance increased in
all microcosms until day 4 (Figure 3A). The BOT, — BOTj,
treatment resulted in lower abundance (0.6 x 10° cells ml~!)
on day 4 compared to BAL, — BALgy, (1.3 X 10° cells ml~1;
Figure 3A). Bacteria in BAL, — BOTj, reached slightly higher
abundance than in BOT;, — BOTsy, (0.8 x 10° cells ml~!) on
day 4 (Figure 3A). TOC concentrations decreased in all micro-
cosms from day 2 to 5 (Figure 3B). BAL;, — BOTj,, microcosms
showed a steady decrease in TOC concentrations from 4.75 mg
L~! at the start of the experiment to 3.9 mg L™! on day 5
(Figure 3A).

Bacterial production increased in all microcosms during
the experiment and reached nearly twice as high levels in
BALy, — BOTs, on day 4 (90 pg C Lt 47} Figure 4A)
compared to the other microcosms (Tukey’s test, p = 0.001,
n = 11). Alkaline-phosphatase activity reached similar levels
(10-15 nmol L~! h™1) in all microcosms (Figure 4B). In con-
trast, beta-glucosidase activity remained low in the beginning
of the experiment but on day 4 increases were observed, with
three to sixfold higher responses for both BAL, — BOT, and
BOT}, — BOT,,, compared to the other microcosms (Figure 4C;
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FIGURE 3 | Bacterial abundance (A) and total organic carbon (TOC) concentrations (B) during transplant and re-transplant experiments. Error bars
denote SDs for replicate microcosms. Arrows in (A) indicate when samples for bacterioplankton community composition were collected.

Tukey’s test, p = 0.01, n = 11). Leucine-aminopeptidase activ-
ity generally increased nearly fourfold during the experiment
although levels were variable between treatments (Figure 4D).

Analysis of bacterial community composition by nMDS
showed a visual clustering of samples largely determined by the
source of the inoculum that is either Baltic Proper or Bothnian
Sea bacteria (Figure 5A). Further, there was a pronounced dif-
ferentiation between the in situ samples and the bacterial com-
munities that developed in the microcosms, but also between
communities growing in water from different geographical ori-
gin. Thus, BAL, — BALg, or BAL, — BOTj, microcosm sam-
ples clustered separately from each other, and BOT,, — BOTjy,
or BOT, — BAL;, clustered separately (Figure 5A). Unifrac
analysis confirmed these general patterns, separating samples by
the inoculum source and by origin of water used for growth
medium (Figure 5B). The separation between bacterial inocula,
i.e.,, BAL, vs. BOT}, was statistically significant (PERMANOVA,
p = 0.001, n = 18). Moreover, the in situ composition was sig-
nificantly different from that in the microcosms (PERMANOVA,
p = 0.001, n = 20), but there were no significant differences
between microcosms in either the transplant and re-transplant
experiments.

Nevertheless, there were marked changes in community
composition between microcosms as seen from pronounced
differences both in the presence/absence and in the rela-
tive abundance of a variety of bacterial taxa (Figure 6). At
the phyla/class level, Gammaproteobacteria increased substan-
tially in the experiment compared with their relative abun-
dance in the in situ samples, to comprise nearly three quar-
ters of the relative abundance in all microcosms (Figure 6A).
Cyanobacteria almost disappeared in the microcosms compared

to the in situ samples, likely resulting from the incubation of
microcosms in the dark; accordingly, the diversity within this
taxon was higher in situ. Among the Gammaproteobacteria,
Chromatiaceae increased in all microcosms but on average dis-
played lower relative abundance in BOT}, — BALy, (Figure 6B).
Pseudomonadaceae responded in most microcosms but not in
BAL, — BALg,. Alphaproteobacteria had on average higher
relative abundance in BAL;, — BALg, compared to the other
microcosms. For example, Rhodobacteraceae were more abun-
dant in BAL, — BALg, and BAL, — BOT, microcosms
but also in BOT, — BALs, compared to BOT, — BOTj,.
In contrast, Betaproteobacteria reached higher abundance in
BALy, — BOT,, and BOT;, — BOTj, than in Baltic Proper
water, irrespective of the origin of the bacteria (Figure 6A).
Comamonadaceae increased in all microcosms but were nearly
absent in BAL;, — BALs, and BAL, — BOT,, (Figure 6B).
Flavobacteriaceae were predominant in BOT, — BOT, and
BOT}, — BALg, microcosms but displayed overall low relative
abundance in BALy — BALy, and BALy, — BOTj, (Figure 6B).

Figure 7 shows a summary of the response of the 200 most
abundant individual populations (i.e., OTUs defined by 97%
16S rRNA gene identity), together representing 82% of total
sequence reads. Further detail on particularly important OTUs
is given in Table 2. Members of bacterial clades that typically are
abundant in the Baltic Sea, such as SAR11 (TR_00037), SAR86
(TR_00055), Synechococcus (TR_00025), hgcl (TR_00029), and
NS3a (TR_00036) were abundant (>1% relative abundance) or
common (0.1-1% relative abundance) in our in situ samples
and did not increase in relative abundance in any microcosms
(Figure 7; Table 2). Nevertheless, among the OTUs that increased
in relative abundance in the experiments, a majority (158 OTUs)
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FIGURE 4 | Measures of bacterial activity in the transplant and re-transplant experiments. Bacterial heterotrophic production (A) and extracellular
enzymatic activities (B-D). Error bars denote SDs for quadruplicate technical replicates from biological triplicate microcosms. ND, not determined.

was found to be common and a few (5 OTUs) were even found
to be abundant in situ (see OTUs indicated by larger blue filled
circles in Figure 7). For example, among the alphaproteobacte-
rial OTUs, an OTU affiliated with the Roseobacter clade that was
abundant in the Baltic Proper in situ sample, responded in the
transplant experiment. This Roseobacter OTU TR_000014 was
abundant in BAL,— BALg, microcosms at a relative abundance
around 5.2% but reached an elevated relative abundance (2.7%)
also in BAL;, — BOT,, (Figure 7; Table 2). We also note that an
unclassified Rhodobacteraceae OTU (TR_00019) was abundant in
BALj, — BALgy, but that this OTU was low in BOT}, — BOTgy,.

Regarding Gammaproteobacteria, three Pseudomonas
OTUs (TR_08541, TR_07801, TR_00001) were absent in
BAL, — BALgy, microcosms and rare in situ but became
abundant in microcosms with Bothnian Sea bacteria (Figure 7;
Table 2). Sixty populations affiliated with the Rheinheimera

genus were found among the 200 most abundant OTUs and dis-
played highly variable patterns of occurrence in the experiments
(Figure 7). These Rheinheimera populations were particularly
abundant in transplanted communities and responded both in
BAL, — BOTsy and BOT;, — BAL, microcosms (Figure 7;
Table 2). Thus, for example, Rheinheimera OTU TR_00006 was
highly abundant in BAL, — BALy, at 26.8% relative abundance
and increased to 36.2% in BAL;, — BOTsg,. At the other side of
the spectrum, four Rheinheimera OTUs (TR_02653, TR_00007,
TR_01027, TR_00820) were absent in BAL;, — BALy,. These
Rheinheimera OTUs had low abundance in BOT}, — BOTy, but
increased to a few percent in BOT}, — BALgy (Figure 7; Table 2).

Re-Transplant
Bacterial abundance was higher in most re-transplant micro-
cosms compared to transplant microcosms. However, bacteria
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in BOT, — BALg, — BOTg, microcosms reached much
lower abundance on day 3 (1.0 X 10 cells ml~!) com-
pared to the highest peak (22 x 10° cells ml~!) for
BAL, — BOT,, — BOTy (Figure 3B). TOC concentrations
decreased in most re-transplant microcosms over time, except in
BOTp, — BALgy — BALgy,.

In the re-transplant experiment, bacterial production
increased strongly in all microcosms and was generally about

twice as high compared to the transplant experiment (Figure 4A).
With some variability over time, the highest levels were reached
in BAL, — BOT,, — BOTgy and BOT,, — BAL, — BOTs,
(230 pg C L7 d7! and 180 pg C L= d~1, respectively)
compared with the other microcosms (Figure 4A; Tukey’s test,
p = 0.001, n = 10). Alkaline phosphatase increased over time
from around 10 to 22 nmol L™! h™! over 2 days in all micro-
cosms. As in the transplant experiment, beta-glucosidase activity
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increased more than 20-fold for both BAL, — BOTgy — BOTsy
and BOT, — BALgy, — BOTj, microcosms, while only small
changes were observed in BOT, — BALs, — BAL, and
BAL, — BOTy, — BALgy (Tukey’s test, p = 0.001, n = 10).
For leucine-aminopeptidase, BOTy, — BALy, — BOTj, and
BOT}, — BAL,, — BAL, had twice as high activity, around
4nmol L=! h™!, compared to BAL;, — BOTg, — BALg, on day
2 and 3 (Figure 4A).

Bacterial community composition analysis showed that re-
transplants pushed the system further compared to the transplant
experiment, while at the same time the visual clustering of sam-
ples became more variable (Figure 5A). When incorporating

phylogenetic placement and average relative abundances between
replicate microcosms, Unifrac analysis resolved the differentia-
tion between microcosms by decreasing some of the variation
observed in the nMDS analysis (Figure 5B).

In the re-transplant experiment, Betaproteobacteria reached
overall higher relative abundance in BALy, — BOT,, — BALy,
and BAL, — BOTqw — BOT,, (Figure 6A).
Concomitantly, Alphaproteobacteria were more impor-
tant in BOT, — BALg, — BALg, compared to the
other microcosms. Alteromonadaceae became abundant in
BOT, — BALgw — BALg, and BOT, — BALgy, — BOTgy,
continuing an increase triggered already in BOT, — BALgy
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(Figure 6B). Similarly, Burkholderiaceae continued to increase
in relative abundance in BAL, — BOTgy — BALgy and
BALy — BOT,y, — BOT,y, after being triggered upon growth
in BAL, — BOT,,, (Figure 6B). From here on we refer to this
triggering of populations from transplant to re-transplant as a
“priming effect.”

Several of the OTUs that increased in the re-transplant exper-
iment were not only rare in situ but also remained undetected
or rare during the transplant experiment (Figure 7). For exam-
ple, Brevundimonas OTU TR_000033 accounted for around
5% of the assemblage in the BAL, — BOT,, — BAL, and
BALy, — BOTs, — BOT,, microcosms (Figure 7; Table 2)
but was below the detection limit in the other microcosms
and during the transplant experiment. A priming effect was
observed for three Limnobacter OTUs (TR_005668, TR_000005,
TR_009032) that were rare in situ and virtually absent dur-
ing the transplant experiment, except in BAL, — BOT,.
These OTUs increased substantially in BAL,—BOT,—BALg,
and BAL, — BOTsy — BOTs,. The Pseudomonas OTU
TR_000010 was also primed already in BAL, — BOTj, micro-
cosms and further increased over 10-fold in the re-transplant
BAL, — BOTg, — BALg, and BAL, — BOT,y — BOT,y
microcosms. Similarly, priming effects were observed for three
Rhizobium OTUs (TR_006083, TR_000013, and TR_005269) in
BAL, — BOTs, — BALg, and BAL, — BOTg, — BOT,y.
Further, a Loktanella population (TR_000003) that responded in
all microcosms during the transplant experiment was only found
in BOT, — BALg, — BALs, during the re-transplant exper-
iment (Table 2). In the re-transplant experiment, much lower
levels were observed of the Roseobacter OTU TR_000014 (0.6%
in BALy, — BOTy, — BAL,,) compared to the initial transplant
(2.7%; Figure 7; Table 2).

Diversity

Lower levels of Shannon and Chaol indexes were detected in
BAL, — BOT,, compared to BAL, — BAL,, microcosms
(Table 3). On the other hand, Shannon diversity reached the
highest value in BOT}, — BALg, compared to all other micro-
cosms and the in situ samples. Alpha diversity levels remained
relatively low in the BAL, — BOTsy, — BALg, microcosms and
decreased further in BAL, — BOTgy — BOTgy.

TABLE 3 | Shannon and Chao1 indexes + SD “~” indicate lack of
replicates.

Treatment Shannon Chao1

In situ BAL 4.59 - 1247.03 -

In situ BOT 4.97 - 1296.72 —
BALp—BALgy 4.60 £ 0.11 2352.21 + 164.45
BOTp,—BOTsw 4.68 £+ 0.02 2221.73 + 271.36
BOTp— BALsw 5.06 £ 0.10 2195.57 + 317.30
BALp—BOTsw 3.55 +0.15 1383.66 + 83.91
BALp—BOTsw—BALsw 3.62 £ 0.05 1248.68 + 106.98
BOTp—BALsw—BOTsw 4.65 + 0.09 1843.28 + 95.064
BOTp—BALgw—BALsw 4.68 +£0.12 2045.08 + 759.73
BALp—BOTsw—BOTsw 3.41 - 1222.18 -

Linking Bacterial Community Composition

and Phylogeny with Bacterial Community
Functioning

To determine if specific bacterial taxa could be associated with
responses in enzymatic activities we performed PERMANOVA
tests (Table S2). Although we found significant correla-
tions between enzyme activities and, e.g., Alteromonadaceae
(PERMANOVA, p =0.01, R? =0.28, n = 18), and Chromatiaceae
(PERMANOVA, p = 0.01, R> = 0.26, n = 18), such correla-
tions explained typically less than 20% of the variance (Table
S2). Interestingly though, several taxa were significantly cor-
related with either beta-glucosidase or leucine-aminopeptidase
but not with alkaline-phosphatase. Next, we analyzed bacterial
community functioning (i.e., collective differences in bacterial
production and enzyme activities) versus community composi-
tion clustered at different phylogenetic levels. In the transplant
experiment, absolute shifts in community composition were sig-
nificantly correlated with absolute shifts in bacterial community
functioning, especially at the 97% 16S rRNA gene sequence clus-
ter identity level (MANTEL, p = 0.001, Pearson R?> = 0.65,
n = 17; Figure 8). The correlation between bacterial commu-
nity composition and bacterial community functioning was also
strong at the 99 and 95% cluster level (MANTEL, p < 0.01,
Pearson R?> = 0.59-61, n = 17) but became weak and insignifi-
cant at lower taxonomic resolution (<95%). The absolute shifts
in community composition and absolute shifts in bacterial com-
munity functioning in the re-transplant experiment were not
significantly correlated (Figure 8).

Discussion

Bacterial Responses in Community

Functioning

In our microcosm experiments we used transplants of bacte-
rial assemblages to investigate connections between bacterio-
plankton community composition and metabolic plasticity in
response to contrasting environmental conditions between the
different Baltic Sea basins. Our experimental manipulations
showed substantial differences between microcosms in terms
of bacterial abundance (Figure 3A), organic carbon utilization
(Figure 3B), bacterial heterotrophic production (Figure 4A),
and beta-glucosidase activity (Figure 4C), indicating that bac-
terial community functioning changed when bacteria were
exposed to water from different geographical origins. For exam-
ple, when Baltic Proper bacteria were challenged by new
environmental conditions found in Bothnian Sea water, we
observed increased bacterial production and beta-glucosidase
activity. Similar changes in bacterial production and enzyme
activity occurred also in re-transplant experiments, reinforc-
ing the role of Bothnian Sea water on the observed metabolic
changes.

Our findings indicated that Baltic Proper bacteria show
metabolic plasticity when transferred to Bothnian Sea water, as
deduced from the observation that activity in these treatments
actually increased. This effect was further promoted when trans-
planted Baltic Proper bacteria were allowed to resume growth in
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Bothnian Sea water during the re-transplant experiment. The ele-
vated levels of activity for Baltic Proper bacterial communities
in changed environmental conditions compared to controls may
suggest that higher bacterial activities could be expected in the
Baltic Proper in response to climate change induced reductions
in salinity and increased terrestrial DOM runoff. However, it is
important to consider that results from this study are based on
short-term responses to disturbances, whereas the effects of cli-
mate change implicate long-term changes in the water-chemistry
of the Baltic Sea. Still, disturbance events that in part contribute
to the long-term changes, for example massive river runoff events
following heavy rainfall or storm induced upwelling of nutrient
rich waters, are likely to be more frequent with anthropogenically
induced changes in environmental conditions. These findings
substantiate and support earlier model data and experimental
results from the Baltic Sea, implicating changes from autotrophy
toward microbial heterotrophy with increases in riverine out-
flow due to climate change (Sandberg et al., 2004; Wikner and
Andersson, 2012; Degerman et al., 2013; Lefébure et al., 2013).

Bacterioplankton Community Change

Concurrently with the changes in bacterial community func-
tioning, transplants, and re-transplants of bacterial assemblages
between water from different geographical origins also caused
changes in the composition of bacterial communities. For exam-
ple, shifts in composition were accompanied by increased bacte-
rial production and beta-glucosidase activity in transplants with
Baltic Proper bacteria growing in Bothnian Sea water. However,
the shifts in environmental conditions did not completely trans-
form the communities so that they all became the same, i.e., Baltic
Proper communities did not converge to the same structure as
Bothnian Sea communities and neither vice versa (Figure 5). In
accordance with our results, substantial shifts in bacterial com-
munity composition also occurred when transplanting bacteria
between Baltic Sea and Skagerrak Sea conditions, yet the com-
munities did not become similar (Sjostedt et al., 2012). These
experimental approaches are short-term while in situ responses
may look very different in the long run, emphasizing the need to
carry out longer experiments and in situ time-series to elucidate
the resistance, resilience, and sensitivity of bacterial communities
responding to environmental disturbances. Nevertheless, a mul-
titude of experimental and in situ approaches in coastal waters
have established that bacterial community structure is sensitive
to environmental disturbances, e.g., changes in terrestrial DOM
(Kisand and Wikner, 2003; Rochelle-Newall et al., 2004; Kisand
et al,, 2008; Teira et al., 2009; Grubisic et al., 2012; Rocker et al.,
2012) and salinity (Langenheder et al., 2003; Kaartokallio et al,,
2005; Sjostedt et al.,, 2012). Taken together, our data indicate
distinct responses and links between bacterial community com-
position and community functioning resulting from exposure to
seawater from the northern vs. southern Baltic Sea basins.

We have no immediate knowledge as to the specific chem-
ical characteristics in the seawater from the Baltic Proper and
Bothnian Sea that could have driven changes in bacterioplankton
community structure in our experiments. Salinity is a critical fac-
tor in regulating bacterial community composition (Langenheder
et al, 2003; Lozupone and Knight, 2007; Herlemann et al,

2011; Sjostedt et al., 2012). A recent metagenomic analysis indi-
cated genomic features that may contribute to such regulation
(Dupont et al., 2014). Some of these features were indicative
within the same narrow range of salinities (salinity 3.6-7.2)
that characterize our studied waters. Moreover, salinity can reg-
ulate bacterial community functioning, and low salinity may
have a negative influence on the growth and activity of marine
bacterioplankton degrading terrigenous carbon (Langenheder
et al., 2003; Kisand et al., 2008). Although bacteria can degrade
allochthonous DOM (Rochelle-Newall et al., 2004; Rocker et al.,
2012), autochthonously produced DOM is often more efficiently
utilized due to its less refractory nature (Kritzberg et al., 2004).
However, allochthonous DOM can lead to higher respiration and
not be incorporated into biomass (Fasching et al., 2014). The dis-
charge of allochthonous DOM is higher into the northern basins
of the Baltic compared to the Baltic Proper (Omstedt et al., 2014).
Furthermore, inorganic nutrient concentrations could have influ-
enced the bacterial dynamics in our experiments. However, nutri-
ent limitation bioassays with in situ samples indicated that the
investigated communities were not directly limited by nutrient
availability (Figure S2). Further, physicochemical factors, such
as limitation of trace metals (Church et al., 2000), or top-down
effects, such as protist grazing, or virus predation (Jiirgens et al.,
1999; Bouvy et al., 2011), may contribute to promoting changes
in community structure and bacterial community functioning
of transplanted bacterial communities. In addition, it is also
important to consider that seasonal and inter-annual variation
in environmental conditions, from, e.g., phytoplankton blooms,
result in a succession of bacterioplankton populations and a wide
spectrum of responses in abundances (Andersson et al., 20105
Lindh et al., 2015). Anthropogenically induced changes (in e.g.,
temperature) may influence such seasonal patterns, which could
complicate interpretations of responses to precipitation patterns
of bacterioplankton populations.

In our study, particular bacterial groups and populations
showed distinct responses to water from different geographical
origin in the experiments (Figure 6; Table 2). Thus, although
there were pronounced changes in all microcosms, specific treat-
ment effects resulted in communities that were distinct from
one another at the end of the experiment. Community compo-
sition change due to environmental disturbances often results
in the recruitment of rare OTUs that become abundant, as
demonstrated both experimentally and in situ (Campbell et al.,
2011; Sjostedt et al., 2012; Alonso-Saez et al., 2014). However,
it is noteworthy that among the 200 most abundant OTUs that
responded in the microcosms at the end of the experiments,
a few OTUs were actually abundant (>1% relative abundance,
n = 5), while the grand majority were common (0.1-1% rela-
tive abundance, n = 158) in situ. In contrast, only 33 OTUs that
responded in the experiments were initially rare (<0.1% relative
abundance). These findings show that not all responsive OTUs
represented initially rare copiotrophic populations stimulated by
artificial “bottle-effects” but that common populations in situ are
particularly responsive to environmental disturbances.

Among the initially rare populations several Limnobacter
OTUs increased in abundance when Baltic bacteria were trans-
ferred to Bothnian Sea water, and several Pseudomonas OTUs
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found among the Bothnian Sea bacteria proliferated in Baltic
Proper water; this indicated replacement of populations. Also
adjustment of bacterial populations to the experimental distur-
bances was observed among the bacterial populations (Figure 7;
Table 2). In particular, one Roseobacter OTU was not only abun-
dant in situ and in control microcosms, but also in transplants
of Baltic proper bacteria to Bothnian Sea water. In addition,
Rheinheimera populations were highly variable between micro-
cosms, indicating population adjustment (Figure 7; Table 2).
Collectively, our transplant and re-transplant experiments sug-
gest a balance of adjustment and replacement effects when bacte-
ria encounter distinct water conditions from different geographi-
cal origin.

Priming Effect

Recruitment of rare bacteria as a response to changes in envi-
ronmental conditions can result from proliferation of both spe-
cialist and generalist populations (Mills and Mallory, 1987; Atlas
et al., 1991; Campbell et al., 2011; Lennon and Jones, 2011).
Some bacterial taxa triggered in the transplant experiment, e.g.,
Alteromonadaceae and Burkholderiaceae OTUs, continued to
increase in relative abundance during the re-transplant experi-
ment in both types of seawater media, as a result of a “priming
effect.” Such priming seems to have resulted from the initial
triggering of increases in abundance of a limited number of
populations by exposure to water from a different location; and
this initial growth stimulation then continued upon transfer
also to waters from different basins. This response may result
from challenging a bacterial community that is not immediately
resilient but rather reward generalist OTUs that were successful
in transplants. Therefore, it would be highly interesting to study
the resilience potential of disturbed bacterial communities over
longer time scales, either in long-term experiments or over sev-
eral years in situ to elucidate the pace and frequency at which
specific populations recover their abundances or the bacterial
community returns to previous undisturbed structure.

Diversity
An important ecological mechanism in nature is the insurance
hypothesis or portfolio effect that balances negative (i.e., sensi-
tive species) and positive effects (i.e., responsive species) simply
by carrying a large number of taxa (Loreau, 2000; Allison and
Martiny, 2008). This mechanism can result in a scenario, where
bacterial community composition changes while maintained or
even increased bacterial community functioning can be observed
compared to the undisturbed community. The insurance hypoth-
esis is intriguing; especially in relation to future climate change
and the growing awareness of its substantial long term effects
on biodiversity in all parts of the food-web in marine environ-
ments across the globe (Worm et al., 2006; Awasthi et al., 2014).
Although richness effects on bacterial community functioning
may be less important under current environmental conditions,
they are likely to become important for handling future environ-
mental disturbances (Loreau, 2000; Bell et al., 2005; Awasthi et al.,
2014).

In our experiments, bacterial responses to experimental dis-
turbances heavily influenced alpha diversity. Shannon and Chaol

levels were substantially lower in all microcosms with Baltic
Proper bacteria except the controls (Table 3). Lower alpha diver-
sity due to transplants and re-transplants with Baltic Proper
bacteria could suggest that only few populations are able to
cope with the changes in environmental conditions to which
they were exposed. Alternatively, a few populations that were
highly competitive under the new seawater conditions could
increase in relative abundance to become dominant. In fact,
lower alpha diversity was found when metabolic activity was
high and community composition changed substantially, as
exemplified by Baltic Proper bacteria growing in Bothnian Sea
water. These data suggest that a portfolio effect likely aided
the response of bacterial community composition and bacterial
community functioning in the transplant experiment (Wittebolle
et al., 2009; Awasthi et al., 2014). However, the resulting low
alpha diversity due to transplants possibly led to a chaotic
response in community composition and a more variable effect
on metabolic activity during the re-transplant experiment, sug-
gesting that environmental disturbances such as increased river-
ine discharge may render disturbed communities highly sensitive.
Taken together, many OTUs in the Baltic Proper seem to be
well suited for Bothnian sea-like environmental conditions; that
is future predicted increases in terrigenous organic matter and
lower salinity, but at the cost of overall lower alpha diversity
and potentially a reduced responsiveness to added environmental
change.

Bacterial Community Functioning

The current debate of functionally redundant versus non-
redundant bacterial communities is complex (Loreau, 2004;
Wohl et al., 2004; Allison and Martiny, 2008; Comte and Del
Giorgio, 2011; Miki et al., 2014). However, transplant and re-
transplant experiments can be used to address some of the
fundamental questions regarding the role of community com-
position for bacterial responses in metabolic activity (Figure 8;
Table S2). In the transplant experiment, we observed a positive
relationship between absolute shifts in community composition
and absolute shifts in bacterial community functioning (explain-
ing >60% of the variance, depending on phylogenetic scale).
Interestingly this relationship was most prominent at 97% 16S
rRNA gene sequence identity and only observed at >95%. At
lower taxonomical resolution, community composition and bac-
terial community functioning were not correlated. The lack of
correlation at lower taxonomic resolution thus resulted from
the counterbalancing of differential responses among individ-
ual populations within the same major taxon and highlights
the importance of analyzing specific responses to environmental
disturbances at a detailed phylogenetic level.

In the re-transplant experiment this relationship was lack-
ing regardless of phylogenetic scale, which would lead to the
conclusion that bacterial assemblages were functionally redun-
dant. However, it is important to note here that the relationship
between community composition and bacterial community func-
tioning breaks down in the experiment with continued exper-
imental forcing (i.e., in the re-transplant experiment) in which
the bacterial community had already gone through a pronounced
succession from the original time zero. This could indicate that
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successional progression temporarily offsets perceived relation-
ships between bacterial community composition and function-
ing. In other words, interpretations of levels of redundancy, and
hence the importance of species richness in the context of the
insurance hypothesis/portfolio effect (Loreau, 2000; Allison and
Martiny, 2008), could be heavily distorted both by the com-
plexity of natural bacterial assemblages and by the inability to
adequately determine successional stages of investigated commu-
nities. These findings indicate the efficacy of combining longer
experiments with high taxonomical resolution (>97% 16S rRNA
gene identity) analyses for interpreting distribution patterns of
individual bacterial populations in relation to environmental
forcing. Ultimately, such analyses have the potential to identify
causal relationships between bacterial community composition
and functioning.

Conclusion

According to our hypothesis, bacterial community composition
and functioning would change after both transplantation and
re-transplantation disturbances, following the replacement sce-
nario. Indeed, this hypothesis was confirmed in the transplant
experiment, such that the changes in community composition
accounted for by responsive bacterial populations were reflected
also in adjustment of bacterial activities. However, when adding
a continued experimental forcing to the already disturbed com-
munity in the re-transplant experiment, the linkage between
change in community composition and change in community
functioning became disrupted. Rejection of our hypothesis in
the re-transplant experiment implies that disturbances caused
distinct responses of specialist or generalist bacteria in a man-
ner that was dependent on the successional stage at which the
disturbance took place. Our findings further indicate the poten-
tial of experimental manipulations to aid interpretations of the
adaptability and metabolic plasticity of bacterioplankton com-
munities responding to changes in environmental conditions.
Notably, exposure of Baltic Proper bacteria to humic rich/low
salinity Bothnian Sea water caused higher metabolic activity,
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