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Stenotrophomonas maltophilia is an emerging multi-drug-resistant global opportunistic
pathogen of environmental, mainly plant-associated origin. It is also used as a
biocontrol or stress protecting agent for crops in sustainable agricultural as well as
in bioremediation strategies. In order to establish effective protocols to distinguish
harmless from harmful strains, our discussion must take into consideration the current
data available surrounding the ecology, evolution and pathogenicity of the species
complex. The mutation rate was identified as one of several possible criteria for
strain plasticity, but it is currently impossible to distinguish beneficial from harmful S.
maltophilia strains. This may compromise the possibility of the release and application
for environmental biotechnology of this bacterial species. The close relative S. rhizophila,
which can be clearly differentiated from S. maltophilia, provides a harmless alternative
for biotechnological applications without human health risks. This is mainly because it
is unable to growth at the human body temperature, 37°C due to the absence of heat
shock genes and a potentially temperature-regulated suicide mechanism.

Keywords: Stenotrophomonas maltophilia, S. rhizophila, biocontrol, bioremediation, risk assessment

Introduction

In recent years, the number of human infections caused by opportunistic pathogens has increased
dramatically. Plant organs, especially the rhizosphere (root) as well as the endosphere (inner
tissues) are natural reservoirs of emerging opportunistic pathogens. Various bacterial genera
including Burkholderia, Enterobacter, Herbaspirillum, Ochrobactrum, Pseudomonas, Ralstonia,
Staphylococcus, and Stenotrophomonas contain plant-associated strains that can encounter dual
interactions with both plant and human hosts (Parke and Gurian-Sherman, 2001; Berg et al., 2005).
Opportunistic human pathogens with saprophytic phases or pathogens residing in environmen-
tal reservoirs, such as those provided by plants, are also referred to as environmental pathogens
(Morris et al., 2009).

The mechanisms responsible for the colonization of plant and human tissues are similar
(Berg et al., 2005). Further, multiple antibiotic resistances are not only found amongst clinical
strains, but also within strains isolated from plants and often caused by multidrug efflux pumps
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(Berg et al.,, 1999; Martinez et al., 2009). High levels of com-
petition, the occurrence of diverse antibiotics and secondary
antimicrobial plant metabolites, and enhanced horizontal gene
transfer and mutation rates in the microenvironment con-
tribute to the development of high levels of natural resis-
tance (Martinez, 2013; Garcia-Ledn et al., 2014). Congruently,
these factors contribute favorably to the enormous potential
application of these inhabitants as biocontrol or stress pro-
tecting agents in sustainable agricultural practices (Hirsch and
Mauchline, 2012; Berg et al., 2013). Although recent research
has elucidated the impact of pathogen ecology in environmen-
tal reservoirs on the evolution of novel or enhanced pathogen
virulence (Morris et al., 2009), less is known about features
that differentiate between pathogens and beneficial bacteria.
Moreover, the question of how we can distinguish beneficial
from harmful strains still remains, and it will be addressed
here as it relates to the historical body of Stenotrophomonas
research.

Plant-Associated Stenotrophomonas
Strains Occupy New Niches and Hosts

For a long time after its description in 1961 as Pseudomonas
maltophilia (Hugh and Ryschenko, 1961), Stenotrophomonas
belonged to the Xanthomonadaceae, a yellow pigmented bac-
terial family strongly associated with plants (Swings et al,
1983). Indeed, most of the species were able to cause diseases
in plants, and in order to substantiate this taxonomic con-
cept, the non-pathogenic Xanthomonas maltophilia was excluded
from the genus. A new genus was established by Palleroni and
Bradbury (1993). At that time, Stenotrophomonas was mainly
known for its occurrence in plants, and many different plant
species were reported as hosts including diverse crops, e.g.,
oilseed rape, maize, potato, cabbage, mustard, and beet (Juhnke
and des Jardin, 1989; Berg et al., 1996). It was interesting to
observe that especially in plants with extraordinary secondary
metabolisms (Brassicaceae, eucalyptus) living in extreme habi-
tats (dune environments) Stenotrophomonas belonged to the
dominant bacterial inhabitants (De Boer et al., 2001; Ribbeck-
Busch et al, 2005). Many of them showed an endophytic life
style, representing a highly intimate interaction with its host
(Krechel et al., 2002; Ryan et al., 2009). Many reports showed
the enormous potential for agricultural biotechnology: strains of
Stenotrophomonas maltophilia were able to promote plant ger-
mination and growth and to suppress plant pathogens (Berg
and Ballin, 1994; Kobayashi et al., 1995; Nakayama et al., 1999;
Dunne et al., 2000; Suckstorff and Berg, 2003; Messiha et al.,
2007; Jin et al, 2011). S. maltophilia was used as an efficient
biocontrol agent, and up until the 1980s, no significant risk to
human health was reported. Use of the species in the decon-
tamination of soil (bioremediation) has attracted considerable
interest because of its capacity to degrade a wide range of xenobi-
otic compounds by a broad spectrum of unique enzymes (Binks
et al.,, 1995; Ribitsch et al., 2012). Interestingly, S. maltophilia
strains, e.g., OS4, was able to reduced silver nitrate (AgNO3)
to generate cuboid and homogenous nanoparticles (AgNPs)

with antimicrobial but without cytotoxic effects (Oves et al,
2013).

On the other hand, S. maltophilia has been reported since
the early 1980s as a new pathogen in hospitals, and now it is
a global pathogen and one of the most common opportunistic
pathogens in hospitals (Ryan et al., 2009; Brooke, 2012). Although
S. maltophilia does not usually infect healthy hosts (community
infection), this bacterial species produce at hospitals bacteraemia
and these infections are often associated with high mortality rates
(reviewed in Brooke, 2012). S. maltophilia strains are character-
ized by multi-resistance to many antibiotics. In agreement with
this situation, antibiotic treatment and the basal situation of the
host (immunocompromised, cystic fibrosis) constitute the main
risk factors for fatal Stenotrophomonas infections (Sanchez et al.,
2009; Hernadndez et al., 2011; Brooke, 2012).

Due to their beneficial interactions with plants on one hand
and on the other hand their facultative pathogenic interactions
with humans, Stenotrophomonas strains challenge us to find
differentiating features. Differentiation of features is of criti-
cal importance in terms of further applications in the field of
biotechnology and in our understanding of the risks of infections
and related epidemiological questions. The prediction of human
health risks is currently one of the main challenges facing envi-
ronmental biotechnology. The assessment of potential risk factors
is the main obstacle in registration procedures, especially within
the European Union (Ehlers, 2011).

Stenotrophomonas: Diversity and
Properties

Stenotrophomonas maltophilia was well-known for its intraspe-
cific heterogeneity, which is already described in the type descrip-
tion by Palleroni and Bradbury (1993). This heterogeneity was
confirmed in physiological studies at a phenotypic level (Swings
et al., 1983; Van den Mooter and Swings, 1990) as well as
at a genotypic level (Gerner-Smidt et al., 1995; Moore et al,
1997; Berg et al, 1999; Hauben et al, 1999). In the 1990s
molecular fingerprinting methods were applied to distinguish
species and find infection routes. These studies did not always
result in clear conclusions, and in some of them a reservoir
of infection was found in hospitals, e.g., in ice machines and
in ventilators, however, other studies identified highly diverse
strain patterns. By contrast, patient to patient transmission was
found to be a rare event. In addition, antibiotic resistance pat-
terns were monitored, and although the pattern varied, most
of the analyzed strains were multi-resistant. It was originally
assumed that multi-resistance was acquired in hospitals as S. mal-
tophilia is naturally competent to acquire foreign DNA; however,
strains isolated from plants also showed multiple antibiotic resis-
tances (Berg et al., 1999). Multilocus sequence typing (Maiden,
2006) was applied for a highly diverse inter-continental selec-
tion of 70 Stenotrophomonas strains of various ecological origins
(Kaiser et al., 2009). Interestingly, also in this study the het-
erogeneity was confirmed while on the other side geno-groups,
which contained only isolates of strictly environmental including
the S. maltophilia type strain, were identified. Gherardi et al.
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(2015) provide an overview of various typing methods includ-
ing proteome-based bacterial identification using matrix-assisted
laser desorption ionization-time of flight mass spectrometry
(MALDI-TOF MS) for clinical epidemiology of S. maltophilia
and suggest novel Web-based platforms for rapid data process-
ing for outbreak investigations and surveillance studies in routine
clinical practices.

We applied diverse typing strategies with the aim of differenti-
ating clinically relevant strains from environmental ones (Berg
et al., 1999; Minkwitz and Berg, 2001). From the 16S rDNA
sequencing analysis, the isolates could be separated into three
genomovars, two of which consisted of isolates originating from
the environment (especially rhizosphere isolates; E1 and E2), and
one which contained clinical and aquatic strains (C). In con-
trast to previous investigations (Denton and Kerr, 1998), most of
the strains could be grouped according to their sources of iso-
lation (Minkwitz and Berg, 2001), in spite of the fact that the
antibiotic resistance profile of S. maltophilia isolates, and their
ability to colonize plant roots, did not correlate with their origin
(Suckstorff and Berg, 2003). However, it was possible to establish
a new, clearly plant-associated species S. rhizophilia DSM14405"
(Wolf et al., 2002) with antagonistic activity toward fungal plant
pathogens that comprised the isolates of the El cluster, and
could be further distinguished from S. maltophilia isolates by (i)
growth temperatures, (ii) xylose assimilation, and (iii) osmolyte
production. Additionally, the smeD gene which is part of the
genes coding for the multidrug efflux pump smeDEF from S.
maltophilia was identified as a further genetic marker, (Ribbeck-
Busch et al., 2005). In contrast to S. maltophilia, no pathogenicity
to humans is known for plant-associated S. rhizophila, and fortu-
nately there have been no reports of the species being associated
with human infections or clinic environments to date.

Can S. rhizophila Provide an
Alternative for Biotechnological
Applications?

Stenotrophomonas rhizophila is a species closely related both phy-
logenetically and ecologically to S. maltophilia (Wolf et al., 2002),
and therefore a careful risk assessment for any biotechnological
use is necessary. S. rhizophila is a model bacterium for a plant-
competent, salt-tolerant plant growth promoting rhizobacterium
(PGPR) with an endophytic lifestyle (Ryan et al., 2009; Berg
et al., 2010). Plant growth promotion by the S. rhizophila strain
DSM 144057 (synthesis strain e-p10) was observed under green-
house conditions (Schmidt et al., 2012) and in the highly salinated
soils of Uzbekistan (Egamberdieva et al., 2011). The differences
between S. maltophilia and S. rhizophila were analyzed by com-
parative genomics (Alavi et al., 2014). Despite the notable similar-
ity in potential factors responsible for host invasion and antibiotic
resistance, other factors including several crucial virulence fac-
tors and heat shock proteins were absent in the plant-associated
S. rhizophilia DSM144057. Instead, S. rhizophila DSM144057
possessed unique genes responsible for the synthesis and trans-
port of the plant-protective spermidine, plant cell-wall degrading
enzymes, and high salinity tolerance. In addition, spermidine

and osmoprotectant production (glucosylglycerol and trehalose)
was the main response of S. rhizophilia DSM14405" to rhizo-
sphere exudates in a transcriptomic study, which suggested the
involvement of these substances in the mode of interaction with
plants (Alavi et al., 2013b). Moreover, the capability of bacteria
for growing at 37°C was identified as a very simple criterion in
differentiating between pathogenic and non-pathogenic S. mal-
tophilia and S. rhizophila isolates. DSM 144057 is not able to grow
at that temperature, most likely in great part due to the absence of
heat shock genes and perhaps also because of the up-regulation
at increased temperatures of several genes involved in a suicide
mechanism (Alavi et al., 2014). The conclusion of these studies is
that S. rhizophila currently does indeed provide an alternative to
biotechnological applications without posing any risks to human
health. The main reason for this conclusion is the demonstration
of a lack of any growth at 37°C and the identified underly-
ing mechanisms, which should prevent or disallow colonization
of the human body. It was suggested that S. rhizophila can be
used as a biocontrol and stress protecting agent (Alavi et al,
2013b), however, as we have learned, host-microbe interaction
is a co-evolutionary process, and the outcome of interaction can
be changed by many factors, which suggest a need for preventive
genomic monitoring.

An Evolutionary Concept to Explain
Stenotrophomonas Diversity and
Plasticity

Within three decades S. maltophilia developed from a typical
plant-associated species into a serious human pathogen. How was
this possible? S. maltophilia belongs to the bacterial group of r-
selected species that places an emphasis on a high growth rate,
and typically exploiting less-crowded ecological niches producing
a high number of bacteria in a short time.

In contrast to the reported heterogeneity of the S. maltophilia
complex, the diversity of pathogenicity and interaction factors
seems to be low. Proteases, siderophores, and biofilm forma-
tions are reportedly regulated by the DSF quorum sensing system
(Alavi et al., 2013a). Multiple efflux systems are responsible for
the resistance to antibiotics, toxins, and metals (Ryan et al., 2009).
Anbitiotics and volatiles were shown to be involved in the anti-
eukaryotic activity (Jacobi et al., 1996; Kai et al., 2007). However,
clinical and environmental S. maltophilia strains presented com-
parable distribution of identified potential virulence genes thus
far (Adamek et al., 2014) and they harbor the same resistance
determinants, which make them highly resistant to antibiotics
currently in use at clinical settings.

Altogether, this suggests that the main reason for the recent
emergence of S. maltophilia as a relevant pathogen may reside
in the host itself more than in a process of bacterial evolu-
tion. As above stated, S. maltophilia is a prototype of highly
resistant microorganism. Debilitated patients at hospitals are
more prone to infection than healthy people. In this situation,
the main factor impeding infection is antibiotic prophylaxis or
treatment. In this situation of high antibiotic load, organisms
highly resistant as S. maltophilia should have higher chances
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for surviving and hence produce infection. Virulence factors and
resistance elements, likely acquired in the field for plant colo-
nization may have allowed S. maltophilia to become an infective
bacterium, just in debilitated patients with underlying diseases.

This does not mean, however, that S. maltophilia cannot fur-
ther evolve during infection. These bacteria are characterized by a
high rate of genomic re-arrangements and hypermutator activity,
which allow rapid adaptation to new niches. We were able to con-
firm the latter for S. maltophilia strains: clinical strains belonged
exclusively to the hypermutators, whereas environmental strains
showed a broader spectrum of mutation rates (Turrientes et al.,
2010). This indicates that the mutation rate is an important crite-
rion of assessing the probability that a bacterial strain can occupy
new niches and hosts. The rate and effects of mutations is one
of the main ecological and genetic factors that may affect the
likelihood of emergence of a pathogen (Gandon et al., 2013). In
a long-term study analyzing S. maltophilia strains from chroni-
cally colonized cystic fibrosis patients, Vidigal et al. (2014a) was
able to demonstrate that different genotypes with different muta-
tion rates including 31.2% strong hypermutators exist. As a sign
of adaption their mutation status switches over time to a less
mutator phenotype without increasing resistance, which suggests
that S. maltophilia attempts to sustain its biological fitness as
a mechanism for long-term persistence. Horizontal gene trans-
fer is another mechanism by which pathogenicity islands can be
acquired. The natural capacity for DNA uptake of S. maltophilia
was shown by strains carrying pathogenicity island from other
species, e.g., from Staphylococcus aureus (Ryan et al., 2009). All of
these factors contribute to the high intra-specific heterogeneity
and genomic plasticity of Stenotrophomonas, which allow them
not only to colonize new hosts but also to develop new genotypes
and species.

Conclusion

The current established theory of opportunistic pathogens is that
the ancestors of virulent bacteria as well as the origin of viru-
lence and resistance determinants are most likely to originate
from environmental microbiota (Martinez, 2013). S. maltophilia
is an appropriate model, which fits into this theory. It is cur-
rently impossible to distinguish between beneficial and harmful
Stenotrophomonas strains. This evidence may compromise the
possibility of any application for environmental biotechnological
purposes. Although bacterial strains adapt to its specific niches
and then develop new properties, S. rhizophila has been clearly
differentiated from the S. maltophilia complex and seems not to
pose a risk.
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