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Populations of genetically identical microorganisms residing in the same environment
can display marked variability in their phenotypic traits; this phenomenon is termed
phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is
unknown, because phenotypic characterization of a sufficient number of single cells
of the same species in complex microbial communities is technically difficult. We report
a procedure that allows to measure phenotypic heterogeneity in bacterial populations
from natural environments, and use it to analyze N2 and CO2 fixation of single cells of
the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago
di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions
with and without NH4

+. Subsequently, we used flow cell sorting with auto-fluorescence
gating based on a pure culture isolate to concentrate C. phaeobacteroides from its
natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells
were identified using catalyzed-reporter deposition fluorescence in situ hybridization
(CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific
probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to
measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found
that C. phaeobacteroides fixes N2 in the absence of NH4

+, but not in the presence of
NH4

+ as has previously been suggested. N2 and CO2 fixation were heterogeneous
among cells and positively correlated indicating that N2 and CO2 fixation activity
interact and positively facilitate each other in individual cells. However, because CARD-
FISH identification cannot detect genetic variability among cells of the same species,
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we cannot exclude genetic variability as a source for phenotypic heterogeneity in this
natural population. Our study demonstrates the technical feasibility of measuring phe-
notypic heterogeneity in a rare bacterial species in its natural habitat, thus opening the
door to study the occurrence and relevance of phenotypic heterogeneity in nature.

Keywords FACS, dinitrogen fixation, Lago di Cadagno, green sulfur bacteria, phenotypic noise, phenotypic

variability, diversity, single-cell analysis

Introduction

Research in the recent decade revealed that microbial cells of an
isogenic population can show substantial variability in specific
phenotypic traits even if they share the same environment (Raj
and vanOudenaarden, 2008): this phenomenon is termed pheno-
typic heterogeneity. The inherent stochasticity of gene expression
or cell-to cell variability in cellular components that globally affect
gene expression [e.g., cell cycle proteins, number of ribosomes
and polymerases, and ATP and NAD(P)H concentrations] can
explain the emergence of variable phenotypes resulting in repro-
ducible phenotype distributions in microbial populations with
large numbers of individuals (Elowitz et al., 2002; Davidson and
Surette, 2008). Furthermore, stochasticity of gene expression can
be influenced by genetic factors. For example, changes in pro-
moter sequences or ribosomal binding sites can alter binding
affinities of transcription factors. As a consequence, the degree
of phenotypic heterogeneity in a particular trait can be modu-
lated by natural selection and change in the course of evolution
(Ozbudak et al., 2002). This has raised the fundamental question
whether phenotypic heterogeneity is beneficial and can provide
adaptive functions. Division of labor and bet-hedging are two
functions that can be mediated by phenotypic heterogeneity as
has been proposed based on theoretical and experimental work
with pure cultures (Balaban et al., 2004; Kussell and Leibler, 2005;
Acar et al., 2008; Ackermann et al., 2008, Beaumont et al., 2009;
Ratcliff and Denison, 2010; Ackermann, 2013; Arnoldini et al.,
2014).

Molecular mechanisms and biological functions related to
phenotypic heterogeneity have been investigated for a wide
range of microbial traits including behavior (Korobkova et al.,
2004; Emonet and Cluzel, 2008), stress response (Balaban et al.,
2004; Maamar et al., 2007; Veening et al., 2008; Levy et al., 2012;
Wakamoto et al., 2013) and metabolism (Ozbudak et al., 2004;
Kiviet et al., 2014; Kotte et al., 2014; New et al., 2014; Solopova
et al., 2014). Direct observation of growth, morphologies, quan-
tification of intracellular compounds, and gene expression as
measured by reporter-gene fusions are the main approaches to
study phenotypic heterogeneity. Thus, studies have commonly
focused on laboratory-grown cultures of either model organ-
isms (Young et al., 2012) or libraries of wild isolates of the same
species (Ziv et al., 2013; Holland et al., 2014; New et al., 2014).
In contrast, determining phenotypic heterogeneity directly in the
environment is demanding, because the established approaches
cannot be employed there. Therefore, other quantitative single-
cell methods need to be integrated to investigate phenotypic
heterogeneity in the environment.

Nanometer-scale secondary ion mass spectrometry
(NanoSIMS) is a powerful tool to measure the isotopic

composition of single cells (Lechene et al., 2006; Hoppe et al.,
2013). This allows determining the rate at which single cells
assimilate isotopically labeled substrates into their biomass.
NanoSIMS has been used in combination with 16S rRNA-based
identification by catalyzed-reporter deposition fluorescence
in situ hybridization (CARD-FISH) to link identity and function
of microorganisms in their natural environment (Musat et al.,
2012). These studies reported high levels of heterogeneity in
metabolic activities of microbial populations identified with
species-specific rRNA-targeted FISH probes (Lechene et al.,
2007; Behrens et al., 2008; Musat et al., 2008; Halm et al., 2009;
Woebken et al., 2012, 2014; Berry et al., 2013). It is important
to note that natural cell populations detected with a species-
specific FISH probe likely contain genetic variability (Thompson
et al., 2005; Kashtan et al., 2014). Therefore, we use the term
‘phenotypic heterogeneity’ here in a broader sense than defined
above including genetic variabiltiy as a source for phenotypic
differences between individual cells.

The disadvantage of NanoSIMS is the low sample throughput
(5–10 images per day), the high measurement costs, and the lim-
ited number of available instruments. These disadvantages repre-
sent a major obstacle for using NanoSIMS to quantify and further
investigate the causes and consequences of phenotypic hetero-
geneity in complex microbial populations. The limitation of
NanoSIMS especially applies to bacteria in complex environmen-
tal samples, because many species are part of the rare biosphere
in communities with high diversity (relative abundance <0.1%;
Sogin et al., 2006; Pedros-Alio, 2012). Conventional NanoSIMS
sample preparation using filtration of the total community onto a
filter membranewill lead to relatively few, interspaced cells of rare
bacteria. A typical NanoSIMS image covering 35 μm × 35 μm
contains about 100 cells (each about 1 μm long). Consequently,
a species with a relative abundance of 1% would be represented
with about a single cell per image, which leads to undesirable
long measuring times to assess phenotypic heterogeneity even for
a single sample. Flow cytometry combined with flow cell sort-
ing (also known as fluorescence-activated cell sorting – FACS)
provides the possibility to concentrate subpopulations residing
in complex communities (Müller and Nebe-von-Caron, 2010;
Lomas et al., 2011; Koch et al., 2013). Flow cell sorting has been
combined with radioactive or stable isotope incubations to mea-
sure metabolic activities of specific functional groups on the level
of sorted sub-populations (Zubkov et al., 2001, 2003) or on the
single-cell level for a limited number of individuals (Thompson
et al., 2012).

In this study, we present a procedure that allows quan-
tification of phenotypic heterogeneity in metabolic activities
of rare bacteria. We studied phenotypic heterogeneity in N2
and CO2 fixation in the green sulfur bacterium Chlorobium
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phaeobacteroides residing in the chemocline of the meromic-
tic lake Lago di Cadagno. We chose C. phaeobacteroides in
Lago di Cadagno, because an earlier study indicated strong
heterogeneity in N2 fixation in this population based on the
analysis of a relatively low number of cells with NanoSIMS
(Halm et al., 2009). In addition, bulk 15N2 fixation measure-
ments and molecular data suggested that C. phaeobacteroides
fixes N2 in the presence of NH4

+, despite the high metabolic
costs of N2 fixation as compared to NH4

+ assimilation. In the
present study we sought to investigate this phenomenon in more
detail and to develop a general approach to study phenotypic
heterogeneity of rare microbial populations in the environ-
ment. The approach involved incubation of samples from the
Lago di Cadagno chemocline with 15N2 and 13CO2. Then we
used flow cell sorting with auto-fluorescence gating based on a
pure culture isolate to enrich C. phaeobacteroides. Sorted cells
were transferred to a filter membrane for subsequent NanoSIMS
measurements to assess phenotypic heterogeneity in metabolic
activities.

Materials and Methods

Study Site
Lago di Cadagno is a permanently stratified (meromictic) lake
located in the Swiss Alps (1923 m above sea level). The maximum
depth of the lake is 21 m. It is infiltrated through gypsum-rich,
dolomite rock transporting salts including sulfate to the bottom-
water. This process establishes an anaerobic, sulfidic hypolimnion

with high salinity, and an aerobic, low-salinity epilimnion
separated by a permanent chemocline in 10–14 m depth. The
chemocline is characterized by sharp gradients and a strong
turbidity maximum (ca. 1 m vertical thickness) dominated by
populations of purple and green sulfur bacteria, which grow
by anoxygenic photosynthesis with sulfide. The exact depth of
the turbidity maximum can fluctuate as internal waves built up
depending on the wind conditions. In situmeasurements and sta-
ble isotope incubations were conducted in August, 2013 (bulk)
and September, 2013 (NanoSIMS).

Physicochemical Measurements
Physical and chemical properties of the water column were
examined using a previously described Profiling In situ Analyzer
(PIA) equipped with an oxygen microoptode, a sulfide sen-
sor, a CTD (conductivity, temperature, depth) probe, and a
carousel syringe sampler (Kirf et al., 2013). Ammonium (NH4

+)
and sulfide were measured as previously described (Cline, 1969;
Holmes et al., 1999).

Stable Isotope Incubation at Lago di
Cadagno
We investigated phenotypic heterogeneity in N2 and CO2
fixation in the green sulfur bacterium C. phaeobacteroides in
the chemocline in the presence and absence of NH4

+. Initial
profiles showed that NH4

+ repeatedly increased from concentra-
tions below the detection limit (ca. 0.2 μM) to 5–15 μM right
below the turbidity maximum (Figure 1A). We collected water

FIGURE 1 | Work flow from sampling to determination of phenotypic
heterogeneity with nanometer-scale secondary ion mass spectrometry
(NanoSIMS). (A) In situ profiles of O2 (blue), turbidity (black), sulfide (green), and
NH4

+ (red) in Lago di Cadagno. The arrows indicate the sampling position for
stable isotope incubations with and without NH4

+ and isolation of a Chlorobium
phaeobacteroides pure culture. After incubations, the samples were fixed with
formaldehyde, washed by centrifugation, and subjected to flow cell sorting.
(B,C) Flow cytometry plots of the C. phaeobacteroides pure culture (B) and the
lake community (C) based on forward scatter (FSC) and auto-fluorescence (FL3;
ex.: 488 nm; em.: 664 nm long-pass filter). The sorting gate (black circle) for the
lake sample was determined from the pure culture plot. The color gradient from

red to yellow to blue indicates increasing count density. Sorted cells that were
placed on a membrane filter, hybridized with a CARD-FISH probe targeted
against C. phaeobacteroides (green), and stained with Hoechst general DNA
stain (gray) as shown in (D). A mark etched with a laser into the membrane
filters is shown in the white inset in (D). The etched mark is the thick broken line
underneath the thin gray line that digitally marks the drawing position of the
laser. The mark is used to find the position of the imaged cells for NanoSIMS
measurements. (E,F) 15N atom fractions [12C15N/(12C14N + 12C15N)]·10−3

according to the color scale calculated from nitrogen ion counts obtained with
NanoSIMS for cells shown in (D). (E) All data and (F) data for cells segmented
on the basis of the CARD-FISH signal in (D). Scale bars are 10 μm.
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samples at 12.9 m depth (within the turbidity maximum with-
out NH4

+) and at 14.2 m depth (below the turbidity maximum
with 16.6 μM NH4

+) in 570 ml serum flasks. The serum flasks
were crimp sealed with blue rubber butyl stopper and made
anoxic by five cycles of vacuum and rinsing with argon before
use. The lake water was sampled directly into the anoxic serum
flasks using oxygen-tight Viton-tubing and a peristaltic pump
(IP 24, Ismatec). The serum flasks were kept cold and shaded
from direct sunlight during sampling. The serum flasks were only
filled to 4/5 of their volume with lake water. The incubation was
started immediately after sampling in the on-site laboratory by
filling the remaining volume with pre-prepared isotope-labeled
pulse medium (preparation is described below). The final labeling
percentage was 20% 15N2 and 2.8% 13CO2. The final NH4

+ con-
centration was 13.5 μM in the treatment with NH4

+ and below
the detection limit (ca. 0.2 μM) in the treatment without NH4

+.
The samples were incubated under controlled temperature (6◦C)
and light (1.7 μmol Photons m−2 s−1 emitted by two fluorescent
lamps, Radium BioSun Spectralux

R©
NL-T8 36W/965/G13). The

samples were incubated for 23 h containing a 9.75 h dark phase,
which coincided with the natural night phase. NH4

+ and sul-
fide concentrations were determined at the end of the incubation
confirming that the concentration did not change significantly
during the incubation.

15N2- and 13CO2-labeled pulse medium for the incubation
experiment was prepared on the day before the incubation with
modifications as described by Mohr et al. (2010). Water was
sampled from 12.5 m (i.e., within the turbidity maximum with-
out NH4

+) depth into 2 L bottles using a peristaltic pump
(Amicon LP-1 Peristaltic Pump with Masterflex 7015-21 Pump
Head). The water was first pre-filtered (Durapore Membrane,
HVLP, hydrophilic, 47 mm, 0.45 μm from Millipore) and then
sterile-filtered (Durapore Membrane,HVLP, hydrophilic, 47 mm,
0.22 μm from Millipore). Next, the water was degassed by apply-
ing a vacuum during constant agitation for 1 h. The anoxic
and gas-free medium was transferred anoxically into ethyl vinyl
acetate infusion bags (Bioeaze, Sigma). Subsequently we added
Na2S (150 μM final), 15N2 (17 mL L−1; Sigma, lot EB1169V)
and 13C-NaHCO3 (182 μM final). The infusion bags were kept
dark on a shaker overnight in a water bath to equilibrate the
15N2 within the liquid and to remove residual O2 by reaction
with sulfide. Sulfide concentrations were measured shortly before
starting the incubations and the sulfide lost by reaction with O2
was re-added.

The incubations were stopped by fixing 150 mL lake water
in methanol-free 1% paraformaldehyde (Electron Microscopy
Sciences) amended with 1× PBS (phosphate buffered saline:
8 g L−1 NaCl, 0.2 g L−1 KCl, 1.44 g L−1 Na2HPO4·2H2O,
0.24 g L−1 KH2PO4) overnight at 4◦C . Samples were washed and
concentrated by centrifugation at 1947 g for 1 h. The centrifuga-
tion was supported by the addition of Pluronic

R© F-127 (0.2 g L−1

final concentration), which strongly decreased cells loss. The cen-
trifuged cells were re-suspended in 3 mL 1× PBS and stored at
4◦C until further processing.

One year after we performed the fieldwork it has been reported
that 15N2 gas stocks of Sigma are potentially contaminated with
NH3 ranging from 34 to 1900 μmol NH3 per mole N2 (Dabundo

et al., 2014), which results in the addition of 5–280 nmol L−1
15NH4

+ to our incubations at Lago di Cadagno. The specific lot
that we used during our experiments was not tested, and it is thus
not known whether this lot was also contaminated, and, if yes, to
what degree. In order to evaluate whether a potential contamina-
tion could have substantially affected our main conclusions, we
estimated the impact of a potential contamination as follows: we
measured the 15NH4

+ uptake in the Cadagno chemocline in a
separate experiment in August, 2014, which showed an uptake of
0.19 mol N-NH4

+ per mol C-CO2 similar to the Redfield ratio.
The bulk C-CO2 uptake in our incubation without NH4

+ sam-
pled at 12.9 m depth was 1370 nmol L−1 h−1 resulting in a NH4

+
uptake potential of 260 nmol NH4

+ L−1 h−1. Thus, we expect
that the added 15NH4

+ based on the contamination in the range
reported by Dabundo et al. (2014) will be consumed within 1 min
to 1 h of incubation, which is only a small fraction of the total
incubation time (23 h). We therefore conclude that a possible
contamination would only have a minor effect on our results. The
incubation in presence of NH4

+ sampled at 14.2 m depth showed
no detectable 15N enrichment of C. phaeobacteroides excluding
an effect of the contamination on these results.

In addition, we measured bulk N2 fixation rates by preparing
the pulse medium according to Mohr et al. (2010) as described
above. We experimentally added NH4

+ to some incubations. We
used 15N2 gas provided by Cambridge Isotopes Laboratory (lot I-
15312), which has been reported to have consistently low NH3
contamination between different lots (0.014–0.052 μmol NH3
per mole N2) and will not affect N2 fixation rate measurements in
the nmol L−1 d−1 range in samples with a background of unla-
beled 14NH4

+ above 1 μmol L−1 (Dabundo et al., 2014). 15N
enrichment in the biomass and particulate nitrogen was mea-
sured with an elemental analyzer connected to an isotope ratio
mass spectrometer as described previously (Halm et al., 2009).
N2 fixation rates were calculated as described previously (Mohr
et al., 2010).

Flow Cell Sorting and Filtration
Sorting of the lake samples was carried out using a MoFlo
cell sorter (BeckmanCoulter, USA) equipped with a water-
cooled argon-ion laser Innova 70◦C (Coherent, Santa Clara,
CO, USA). 400 mW excitation at 488 nm was used for ana-
lyzing the scatter signals, forward scatter (FSC) and side scat-
ter (SSC). The orthogonal SCC was first reflected by a beam-
splitter and then recorded after reflection by a 555 nm long-
pass dichroic mirror, passage of a 505 nm short-pass dichroic
mirror and a band pass filter 488/10 nm. The red auto-
fluorescence (FL3) passed a BLP01-664R-25 long-pass filter
(Semrock, Rochester, NY, USA) prior to detection. Amplification
of signals was carried out on the logarithmic scale. The SSC
was used as the trigger. Fluorescence beads (yellow-green flu-
orescent beads: 2 μm, FluoSpheres 505/515, F-8827, blue flu-
orescent beads: 1 μm, FluoSpheres 350/440, Molecular Probes,
Eugene, OR, USA, and bright blue Fluoresbrite carboxylate
microspheres: 0.5 μm, 360/407, Polyscience, Warrington, PA,
USA) were used for calibration. Cells were collected in plastic
tubes using the most accurate sort mode (Single Cell One, highest
purity 99%).
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The sorted cell material was finally transferred to confined
areas (ca. 0.3 mm2) of membrane filters. Prior to filtration fil-
ter pieces of 5 mm diameter were stamped from polycarbon-
ate filters (GTTP, Millipore) sputter-coated with gold/palladium.
Sorted cells were transferred onto the surface of these filters by
a vacuum-sandwich-procedure. The filters were placed between
two parafilm layers that had been previously punched using a
0.8 mm (face down, filtrate side) and a 0.6 mm (face up, feed side)
needle. The sandwich was placed onto a glass frit connected to a
vacuum filtration unit. The parafilm piece on the filtrate side was
smaller than the frit diameter, while the parafilm piece on the feed
side fully covered the frit. After applying vacuum, the filter was
wetted with water and the sorted cells were pipetted as drops into
the hole of the upper parafilm layer.

CARD-FISH and Marking
CARD-FISH was performed on the filters carrying the sorted
cells. The filters were coated with 0.1% low melting agarose
pre-warmed to 37◦C to avoid cell loss during the hybridiza-
tion procedure. The HRP-labeled oligonucleotide probe Chlp441
(AAATCGGGATATTCTTCCTCCAC;pos. 441–464) was used to
target C. phaeobacteroides (Tonolla et al., 2003). An unlabeled
competitor probe (AAACCGGGATATTCTTCCTCTAC) target-
ing C. chlatratiforme was added (1:150 v/v) to the hybridization
buffer to avoid false positives. Permeabilization, hybridization,
and tyramide signal amplification were performed as previously
described (Musat et al., 2008). Pre-hybridization and hybridiza-
tion were performed with 30% formamide at 35◦C.

The filter pieces were mounted onto glass slides with a mount-
ing solution containing five parts citifluor AF1 (Citifluor Ltd,
UK) and one part vectashield (Vectorlabs, UK), and the general
DNA stain Hoechst (10 μg mL−1). Areas of interest were marked
with lasermicro-dissection (PALMmicro-dissection, Zeiss 200M
equipped with a 355 nm pulsed UV laser and epifluorescence
illumination). For each mark we gathered images of total DNA
fluorescence (Dapi filter: ex. 387/11; em. 440/40) and CARD-
FISH fluorescence of Oregon Green 488-X (Molecular Probes;
GFP filter: ex. 485/20; em. 525/30) that we could use to overlay
with the subsequent NanoSIMS images.

Nanometer-Scale Secondary Ion Mass
Spectrometry
The marked areas were analyzed with a NanoSIMS 50L
(CAMECA, Gennevilliers Cedex-France) at the Laboratory for
Biological Geochemistry of the EPFL Lausanne. The areas were
pre-sputtered with a Cs+ primary ion beam of 4–4.2 pA (D1–
D2) to remove surface contamination, to implant Cs+ ions into
the sample, and to achieve an approximately stable secondary
ion emission rate. A primary Cs+ ion beam with a beam cur-
rent between 1 and 1.2 pA (D1–D3) and a beam diameter of
around 100 nm was rastered across the cells for analysis with
a dwell time of 5 ms per pixel. Secondary ion images for 19F−,
12C12C−, 13C12C−, 12C14N−, 12C15N−, and 32S− were simul-
taneously recorded from analysis areas of 30 μm × 30 μm to
40μm× 40μmwith a resolution of 256× 256 pixels. Five and six
planes from each individual area were measured. Mass resolving
power was around 10 000 (Cameca definition), enough to resolve

all potential mass interferences from the measured secondary
beams.

Analysis of NanoSIMS imageswas performed with theMatlab-
based software Look@NanoSIMS (Polerecky et al., 2012). The
images were first corrected for a possible drift of the stage
during the measurement and then the counts in each pixel
were accumulated over the multiple z-planes measured through
the cell. We used the fluorescence image and the 12C14N−
ion-image to identify cells and to manually mark these cells
as regions of interest (ROI’s). We found that many uniden-
tified cells showed higher 15N enrichment than C. phaeobac-
teroides (Figure 1E). Special care was taken to not relate
pixels belonging to these unidentified cells to C. phaeobac-
teroides ROIs. The accumulated counts, c, were averaged over
the area of a ROI and the atom fractions for 15N-nitrogen,
X(12C15N)cell = c(12C15N)cell/{c(12C14N)cell + c(12C15N)cell}
and 13C-carbon, X(13C)cell = c(13C12C)cell/{c(12C12C)cell +
c(13C12C)cell} were calculated for each ROI. These fractions are a
measure of the N2 fixation and CO2 fixation rates, respectively. A
standard consisting of cells from a pure culture of C. phaeobac-
teroides grown in the absence of isotopically labeled substrates
was prepared and analyzed in the same way. Statistical analy-
sis was performed with Prism 5 Software (GraphPad Software
Inc., La Jolla, CA, USA). We used non-parametric statistical
tests for within population statistics, because normality tests
(D’Agostino-Pearson omnibus K2 and Shapiro-Wilk) indicated
that some populations deviated from a Gaussian distribution.
Statistical significance between correlation coefficients was tested
at vassarstats.net/rdiff.html.

Isolation of C. phaeobacteroides
The N2-fixing green sulfur bacterium C. phaeobacteroides was
isolated from Lake Cadagno in September, 2012. The strain was
isolated from water samples collected with a Niskin Bottle from
the turbid layer (at around 12 m depth). A water sample of
2 ml was inoculated into 120 ml NH4

+-free, autotrophic growth
media for green sulfur bacteria (described below) and grown
at 20◦C under a Radium BioSun Spectralux R© fluorescent lamp
(NL-T8 36W/965/G13, Radium, Germany).

To cultivate the green sulfur bacterium C. phaeobacteroides,
sulfide-reduced and bicarbonate-buffered media was prepared in
a 5 L Widdel-bottle. The basal medium contained per liter of
distilled water: 0.5 g KH2PO4, 0.34 g KCl, 0.5 g MgSO4·7H2O,
0.25 g CaCl2. After autoclaving at 121◦C for 20 min and cool-
ing to 90◦C the headspace was exchanged with 100% N2 gas for
15 min. After cooling the medium to room temperature under
positive gas pressure, the following anaerobic and sterile solu-
tions were added per liter of basal medium: 30mlNaHCO3 (1M),
5 ml Na2S·9H2O (0.5 M), 0.5 ml Vitamin B12 (1 M) and 1 ml
trace element solution for sulfate reducing bacteria. The trace
element solution contained 2.1 g FeSO4·7H2O, 13 ml 25% HCl,
5.2 g Na2EDTA, 30 mg H3BO3, 100 mg MnCl2·4H2O, 190 mg
CoCl2·6H2O, 24 mg NiCl2·6H2O, 2 mg CuCl2·2H2O, 144 mg
ZnSO4·7H2O, and 36 mg Na2MoO4·2H2O per liter of distilled
water and was adjusted to pH 6.0 with NaOH before autoclaving.
Finally, the medium was adjusted to a pH around 6.8 and was
stored at room temperature in crimp-sealed serum bottles.
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Pure cultures were obtained by repeated application of anaer-
obic agar plating. Anaerobic plating was realized in 500 ml Schott
bottles sealed with black rubber stoppers. Agar (4.5% Agar-Agar,
Bacteriology Grade, Applichem) and growth media were mixed
1:3 in an anaerobic bench (240 ml total volume). After setting the
agar, 200 μl of diluted culture (about 100 cells) were evenly dis-
tributed over the surface. The colonies can be stored dark at 4◦C
for a few weeks. The identity and purity of the strain was con-
firmed by CARD-FISH (as described above) and by sequencing
a 147 bp fragment of the 16S rRNA with a universal eubacterial
primer (27F; 5′-AGAGTTTGATCCTGGCTCAG).

Stable Isotope Incubations of C.
phaeobacteroides
Cells were grown in anoxic isolation medium without NH4

+ as
described above. The incubation temperature was 20◦C and the
ambient light intensity was 20 μmol Photons m−2 s−1 emitted
by two fluorescent lamps (Radium BioSun Spectralux R© NL-T8
36W/965/G13). Pre-cultures were initiated from a single colony
and used to inoculate experimental cultures in 18 mL medium in
a 36 mL serum vial. These cultures were grown for three gener-
ations. Subsequently, growing cultures were pulsed with 18 mL
medium that was equilibrated with 15N2 (17 mL L−1; Sigma, Lot
MBBB0968V) and amended with 13C–NaHCO3. The final label-
ing percentage was 50% 15N2 and 10% 13CO2. The cultures were
incubated for additional 17 h in the presence of the stable iso-
topes. The incubations were stopped and samples were prepared
for NanoSIMS analysis as described above.

The 15N2 gas lot that we used for these experiments was
apparently contaminated with 1900 μmol 15NH4

+ per mole N2
(Dabundo et al., 2014). We calculated the fraction of 15N-NH4

+
molecules fixed into new biomass formed during the incubation
per 15N-N2 molecules fixed using (i) the cell counts before
and after the incubation, (ii) particulate nitrogen concentrations

measured at the end of the incubation with an elemental ana-
lyzer connected to an isotopic ratio mass spectrometer, (iii) the
15N2 labeling%, (iv) the quantity of N2 gas amended to the incu-
bation, (v) the apparent contamination reported by Dabundo
et al. (2014), and (vi) by conservatively assuming that all intro-
duced 15NH4

+ will be taken up even though its potential starting
concentration after label amendment might be at a kinetically
limiting concentration of approximately 640 nmol L−1. We find
that 15N-NH4

+ makes up 6 ± 4% (SD, N = 3) of the new
15N-labeled biomass and thus expect a minor influence on the
estimate of phenotypic heterogeneity in N2 fixation.

Results and Discussion

Flow cell sorting ofC. phaeobacteroides from the Lago di Cadagno
microbial community enriched this rare species to abundance
levels that allowed the quantification of phenotypic heterogeneity
with NanoSIMS (Figures 1 and 2). C. phaeobacteroides was not
visible as a distinct subpopulation based on its cell size and auto-
fluorescence because its abundance is very low (1.74 ± 0.14·103
cells mL−1; SD; N = 9; equivalent to 0.2% of total bacteria at
12.9 m) and it shares similar cell properties with other abun-
dant phototrophic bacteria in the chemocline (Figures 1B,C).
This complicates the localization and optimization of the posi-
tion of the sorting gate. Thus, we determined the sorting gate
based on cell size and auto-fluorescence (ex./em.: 488/>664 nm)
of a pure culture isolated from the lake (Figure 1B) and applied
this gate to lake samples (Figure 1C). We detected only very few
C. phaeobacteroides cells when we investigated sorted popula-
tions from adjacent regions (data not shown). This is important,
because exclusion of a significant number of cells based on
their fluorescence or morphological properties could lead to sys-
tematic exclusion of a subpopulation that could potentially be
different in its metabolic activity. This issue has to be considered

FIGURE 2 | CARD-FISH identification and 15N2 fixation activity of single
C. phaeobacteroides cells in Lago di Cadagno (turbidity maximum
12.9 m without NH4

+). (A) Cells that were sorted with flow cell sorting,
spotted on a membrane filter, hybridized with CARD-FISH probe targeted
against C. phaeobacteroides (green), stained with Hoechst general DNA stain
(gray), and imaged with epifluorescence microscopy and NanoSIMS.

NanoSIMS imaging was done as mosaic-scan overnight. (B) The
corresponding 15N atom fractions [12C15N/(12C14N + 12C15N)]·10−3

according to the color scale calculated from nitrogen ion counts obtained with
NanoSIMS for the cells shown in (A). The cells were segmented on the basis
of the CARD-FISH signal in (A) and the area outside the cells was set to zero
(black) for clarity.
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for other enrichment procedures of cells based on flow cell
sorting linked to downstream analysis of the sorted popula-
tion.

Flow cell sorting greatly enhanced our ability to measure
many cells within a single NanoSIMS field-of-view (typically
30 μm × 30 μm). If we directly filtered the lake samples onto
the membrane filters, the average cell density was only 0.016 cells
per 30μm× 30μm (field of view). In this case it would have been
possible to analyze one cell per field of view if its spatial position
was identified and marked before the NanoSIMS measurements.
In contrast, flow cell sorting enrichedC. phaeobacteroides to a rel-
ative abundance of 26.5%. Together with identifying andmarking
spatial positions enriched for cells we were able to measure 7.5
cells per field of view. In total our approach allowed us to measure
252 cells (161 and 91 cells at 12.9 and 14.2 m depth, respectively)
in seven individually tuned NanoSIMS images and an overnight
mosaic scan (the mosaic scan is shown in Figure 2). Therefore
our approach allowed quantification of phenotypic heterogeneity
for two incubation conditions within 1 day NanoSIMS analysis
time.

The NanoSIMS data showed that N2 fixation of C. phaeobac-
teroides populations in Lago di Cadagno depended on the avail-
ability of NH4

+. Cells incubated in the absence of NH4
+ were

significantly enriched in 15N2, whereas cells incubated in the
presence of NH4

+ were not enriched in 15N2 as compared to

a non-labeled control (Figures 2B and 3A). Significant levels of
single-cell 13C enrichment showed that C. phaeobacteroides is
actively growing regardless of the presence and absence of NH4

+
(Figure 3B), confirming that differences in N2 fixation activi-
ties between both conditions are not due to differences in overall
activity. These findings are in line with a previous study that used
NanoSIMS to show 15N2 fixation in C. phaeobacteroides incu-
bated with 15N2 in waters from a depth that does not contain
NH4

+ (Halm et al., 2009). In addition, Halm et al. (2009) found
nifH (coding for a subunit of the N2-fixing enzyme nitroge-
nase) transcripts related to C. phaeobacteroides at depth where
NH4

+ was present at a concentration as high as 30 μM and
also reported significant levels of bulk (total community) N2 fix-
ation rates in the presence of NH4

+. This is in contrast to our
data showing that C. phaeobacteroides did not actively fix N2
in the presence of NH4

+. These different results could be due
to (i) a change in the physiological properties of C. phaeobac-
teroides between the two sampling events [in 2006 for Halm et al.
(2009) and in 2013 for this study], (ii) differences in sampling
the depth fine-structure below the chemocline as compared to
Halm et al. (2009), (iii) a lower level of N2 fixation in the presence
of NH4

+ by C. phaeobacteroides than in the absence of NH4
+

resulting in N2 fixation activities below our detection limit, or
(iv) a decoupling between the expression of nifH and nitrogenase
activity in C. phaeobacteroides, as is known in purple non-sulfur
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FIGURE 3 | Phenotypic heterogeneity in 15N2 and 13CO2 fixation of
natural and pure culture C. phaeobacteroides populations incubated
with and without NH4

+. 15N2 fixation is represented by the 15N atom fraction
calculated from the 12C15N− and 12C14N− ion counts according to
12C15N/(12C14N + 12C15N). 13CO2 fixation is represented by the 13C atom
fraction calculated from the 13C12C and 12C12C ion counts according to
13C12C/(13C12C + 12C12C). (A,B) Box-and-whisker plots of non-labeled
background cells obtained from a C. phaeobacteroides pure culture population
(five biological replicates, cell number n; n1 = 49; n2 = 57; n3 = 77; n4 = 34;
n5 = 72) and 15N2 and 13CO2 labeled C. phaeobacteroides populations from
Lago di Cadagno grown in the presence of NH4

+ (14.2 m depth, n = 91 cells),
from Lago di Cadagno grown in the absence of NH4

+ (12.9 m depth, n = 161
cells), and from a C. phaeobacteroides pure culture grown in the absence of
NH4

+ (three biological replicates, n1 = 93; n2 = 100, n3 = 124). The horizontal
line shows the median, the hinges of the box show the 25th and 75th percentile,

and the whiskers show the entire range of 15N and 13C atom fractions in
individual cells. The stars indicate a significant difference from the mean of the
non-labeled population, the diamond indicates a significant difference from the
mean of the Cadagno population incubated with NH4

+, and the circle indicates
a significant difference from the Cadagno population incubated without NH4

+
based on a 1-way ANOVA (Kruskal–Wallis test) and Dunn’s multiple comparison
test at p < 0.05. The numbers above or below the boxes indicate the coefficient
of variation ± SD (N according to biological replicates measured) if applicable.
(C) 15N atom fraction plotted against the 13C atom fraction for individual cells
from the 12.9 m population labeled with 15N2 and 13CO2 in the absence of
NH4

+ (Spearman r = 0.3; p < 0.0001). The error bars denote the Poisson
counting error of the NanoSIMS measurement indicating the precision of the
measurement. The dashed line represents the mean and the shaded area the
maximum 15N and 13C atom fractions of cells in the non-labeled background
population.
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bacteria such asRhodospirillum rubrum (Nordlund andHögbom,
2013). In our opinion, the fourth explanation is unlikely because
a BLAST search showed that the reported C. phaeobacteroides
full genome sequences do neither contain annotated proteins
involved in post-translational control of nitrogenase [i.e., dini-
trogenase reductase ADP-ribosyl transferase (DraT) and dini-
trogenase reductase activating glycohydrolase (DraG)] nor gene
sequences similar to the gene sequences of those regulatory pro-
teins. Taken together, our data supports previous observations of
C. phaeobacteroides being capable to fix N2 in lakes, but shows
that its N2 fixation rate is considerably lower or absent in the
presence of NH4

+. Moreover, we confirmed the occurrence of
bulk 15N2 fixation below the chemocline (17.3 ± 12.8 nmol
N L−1 day−1; SD; N = 5) in the presence of NH4

+ concen-
trations ranging between 5 and 1000 μM. Consequently, our
NanoSIMS data suggests that bacteria other than C. phaeobac-
teroides conduct 15N2 fixation in the presence of NH4

+ in Lago
di Cadagno.

The absolute 15N and 13C incorporation rates in single C.
phaeobacteroides cells are low requiring rigorous statistical testing
to ensure that differences between cells have a biological origin
and are not due to measurement noise. The theoretical precision
of the measurement in each cell is represented by the Poisson
counting error (σ) that can be obtained from the total accumu-
lated ion counts (μ) in each cell, because the counts during the
measurement follow a random variable with a Poisson distribu-
tion (Polerecky et al., 2012), in which the variance is equal to the
measuredmean. The Poisson counting error is calculated for each
cell using the relation σ = √

1/μ. This error can serve as a way
to visually inspect the measurement noise in relation to the sig-
nal (Figure 3C), but it cannot be used for standard statistical tests
such as ANOVA, because it is not calculated from replicated mea-
surements. We statistically investigated the difference between
cells in three steps as suggested by Polerecky et al. (2012): (i)
calculation of mean and standard error for each cell by averag-
ing over consecutively measured planes, (ii) 1-way ANOVA and
Tukey’s post-test to identify cell pairs that differ significantly from
each other in both 15N and 13C fixation, and (iii) correlation anal-
ysis between the accumulated 15N and 13C atom fractions. The
1-way ANOVA showed that differences between cells were highly
significant for 15N and 13C fixation (both p < 0.0001). Tukey’s
post-test detected significant differences with a 95% confidence
interval in 60 and 12% of all comparisons between cell pairs
with respect to 15N and 13C, respectively. The analysis showed
that a difference of 0.425·10−3 in the 15N-atom fraction and
0.255·10−2 in the 13C-atom fraction between two cells is required
to statistically resolve a difference. The lower resolution for 13C
along with the lower number of significant cross-comparisons
can be explained by the lower isotopic labeling in 13C (2.8%)
as compared to 15N (20%) during our incubation. Generally, it
is advisable to choose the concentration of the isotopic label as
high as possible if phenotypic heterogeneity is the focus of the
study.

Correlation analysis of accumulated 15N and 13C atom frac-
tions showed a significant, weak positive correlation between
absolute 15N and 13C fixation for the Lago di Cadagno popula-
tion (Figure 3C; Spearman r = 0.3, p < 0.0001) and the pure

culture (Spearman r = 0.42, p < 0.0001) incubated in the absence
of NH4

+. In contrast, we did not find significant correlations
between C and N uptake of single-cells in Lago di Cadagno popu-
lations incubated in the presence of NH4

+ (Spearman r = −0.08,
p = 0.46) and unlabeled background populations (Spearman
r = 0.003 p = 0.96). These two correlation coefficients are sig-
nificantly different from the correlation coefficient of the Lago
di Cadagno population incubated without NH4

+ (p = 0.0035
and p = 0.0044, respectively). This suggests that correlated dif-
ferences in C and N between cells in the presence of NH4

+
are of biological and not of technical origin. Further, the pos-
itive correlation between 15N and 13C fixation in the absence
of NH4

+ suggests that the uptake of both N2 and CO2 interact
and positively facilitate each other in individual cells. However,
it remains unclear if cell-to-cell variability is driven by differ-
ences in N2 fixation activity that translate into differences in
CO2 fixation or vice versa. One hypothesis would be that inher-
ent stochasticity in the expression of N2 fixation genes results
in variation in the N2 fixation activity between individual cells.
According to this hypothesis, these differences would then trans-
late into differences in CO2 fixation (i.e., overall growth), because
in the absence of NH4

+ growth of an individual cell is limited by
its N2 fixation activity. An alternative hypothesis would be that
cells in the population strongly vary in intracellular components
that globally affect gene expression resulting in correlated differ-
ences in CO2 (i.e., growth) and N2 fixation. These differences in
intracellular components could be driven by stochastic processes
(e.g., unequal distribution of enzymes during cell division) or by
genetic differences between cells.

We calculated the coefficients of variation (CV = SD/mean)
to compare intra-population variability between populations that
have different mean activities. We found that non-labeled pure
cultures have a CV of 0.05 ± 0.02 (SD, N = 5), which sets the
lower bounds for detecting phenotypic heterogeneity as it can
be expected that this variability is caused solely by measure-
ment noise. Consequently, the CV of the Lago di Cadagno C.
phaeobacteroides population incubated in the presence of NH4

+
was in the same range (0.07, N = 1), because it showed no
significant 15N-enrichment. In contrast, the CV of the active
Lago di Cadagno C. phaeobacteroides population incubated in
the absence of NH4

+ (0.11, N = 1) was more than twice as
high as the CV of the unlabeled population. The CV of a
C. phaeobacteroides pure culture incubated in the absence of
NH4

+ (0.1 ± 0.01, SD, N = 3) was in the same range as
the actively N2-fixing Lago di Cadagno population and signif-
icantly different from the non-labeled control (unpaired t-test;
p = 0.0033). We are missing the appropriate number of bio-
logical replicates in the samples from Cadagno to show a sta-
tistically significant difference between the CV’s of non-labeled
controls and the actively N2-fixing Lago di Cadagno popula-
tion. However, the actively N2-fixing pure and natural popula-
tions have both a rather low heterogeneity in the same range,
which indicates that cells of the natural C. phaeobacteroides
population grow rather homogenously similar to batch culture
growth.

It is important to note that we cannot exclude that genetic dif-
ferences within the natural C. phaeobacteroides population are a
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source for phenotypic heterogeneity observed here.We identified
cells based on sequence similarities in their 16S rRNA gene with a
species-specific CARD-FISH probe. It is likely that genetic differ-
ences are present between cells even if they share a high identity
on the 16S rRNA gene as has been shown for wild Vibrio splen-
didus and Prochlorococcus populations (Thompson et al., 2005;
Kashtan et al., 2014). However, the activity distribution does not
show evidence for a distinct functional differentiation in subpop-
ulations, which would be expected if the presence of populations
of different genotypes would underlie the phenotypic differences.
In the future, it would be desirable to develop tools to inte-
grate single-cell sequencing with phenotypic characterization by
NanoSIMS to investigate the effect of genetic diversity on pheno-
typic heterogeneity in populations of the same bacterial species in
an environmental context.

Further, our data show no evidence for a distinct func-
tional differentiation with respect to N2 fixation in the absence
of NH4

+. The 15N data clearly show that the population was
not divided into active and inactive subpopulations, but rather
spread around an average value. This is in contrast to Halm
et al. (2009) who reported that one out of four C. phaeobac-
teroides cells was highly enriched with 15N, while the other
three measured cells were apparently inactive. A possible expla-
nation for the discrepancy is that Halm et al. (2009) added
the 15N2 tracer as a gas bubble to the incubation, whereas
we used a recently developed, modified 15N2 tracer method in
which lake water was pre-equilibrated with 15N2 and evenly
mixed with the sample water (Mohr et al., 2010). The bubble
method might lead to strong 15N2 gradients within the incu-
bation bottle (Großkopf et al., 2012), whereas the modified
method mixes 15N2 evenly at the beginning of the incubation.
Consequently, individual cells might be exposed to different 15N2
concentrations during the incubations by Halm et al. (2009),
which artificially established the observed heterogeneity in 15N2
fixation.

The procedure described in this paper allows the determina-
tion of phenotypic heterogeneity in metabolism of a rare species
within its natural microbial community. This will pave the way to
systematically study phenotypic heterogeneity in metabolism in
its natural context and test for the relevance of this phenomenon,
which has been extensively and exclusively studied in the labo-
ratory. Our data demonstrate significant differences in N2 and
CO2 fixation between individual cells in a natural population
of the green sulfur bacterium C. phaeobacteroides and a posi-
tive correlation between both activities. Our work also highlights
the problems associated with studying phenotypic heterogene-
ity in nature: measuring a sufficient number of cells, the low

activity of cells, and measuring enough replicates to statistically
compare the CV’s of populations grown under different envi-
ronmental conditions. Here, we describe a procedure to measure
a sufficient number of cells and provide a solution for the first
problem. However, it is important to note that the enrichment
of cells in our procedure was based on auto-fluorescence and
a pure culture isolate. For many bacteria in nature both might
not be available. This limitation might be alleviated by perform-
ing CARD-FISH or immunodetection procedures before flow
cell sorting (Biegala et al., 2003; Sekar et al., 2004; Mou et al.,
2007; Yilmaz et al., 2010; Tada and Grossart, 2014). However, the
CARD-FISH protocol involves cell permeabilization and many
washing steps that negatively influence cell integrity especially if
cells are transferred in solution during or after CARD-FISH to
facilitate flow cytometric measurements. Thus, we recommend
to sort cells based on morphological characteristics or cell stains
followed by CARD-FISH whenever possible. The challenge of
low activity can only be overcome by using high isotopic label
concentrations or long incubation times. Both solutions might
severely impact the physiology of the target organism, because
of concentration changes of the metabolic substrate and the bot-
tle effect during long incubation times might lead to changes in
the associated microbial community, which potentially interacts
with the target population. These factors have to be carefully con-
sidered before the experiment and suitable controls should be
designed.
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