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The recent outbreaks of Ebola virus (EBOV) infections have underlined the impact of the

virus as a major threat for human health. Due to the high biosafety classification of EBOV

(level 4), basic research is very limited. Therefore, the development of new avenues of

thinking to advance quantitative comprehension of the virus and its interaction with the

host cells is urgently needed to tackle this lethal disease. Mathematical modeling of the

EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative

grounds. To the best of our knowledge, a mathematical modeling approach to unravel the

interaction between EBOV and the host cells is still missing. In this paper, a mathematical

model based on differential equations is used to represent the basic interactions between

EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of

pathogens are estimated for EBOV infection and compared with influenza virus infection

kinetics. The average infecting time of wild-type Vero cells by EBOV is slower than

in influenza infection. Simulation results suggest that the slow infecting time of EBOV

could be compensated by its efficient replication. This study reveals several identifiability

problems and what kind of experiments are necessary to advance the quantification of

EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of

standard parameters in viral infections kinetics is the key contribution of this work, paving

the way for future modeling works on EBOV infection.

Keywords: Ebola, mathematical modeling, kinetics, viral dynamics, identifiability, EBOV

1. Introduction

Ebola was characterized for the first time in 1976 close to the Ebola River located in the Demo-
cratic Republic of the Congo (WHO, 1978). Since then, outbreaks of EBOV among humans have
appeared sporadically causing lethal diseases in several African countries, mainly in Gabon, South
Sudan, Ivory Coast, Uganda, and South Africa (CDC, 2014). Among the most severe symptoms of
the EBOV disease are fever, muscle pain, diarrhea, vomiting, abdominal pain and the unexplained
hemorrhagic fever (Calain et al., 1999). Fatalities are predominantly associated with uncontrolled
viremia and lack of an effective immune response. However, the pathogenesis of the disease is still
poorly understood (Peters and Peters, 1999; Feldmann et al., 2003).

Ebola virus belongs to the family of Filoviridae, from Latin filum which means thread (Carter
and Saunders, 2013). Ebola virus is classified in Tai Forest, Sudan, Zaire, Reston, and Bundibugyo.
The human Ebola epidemics have been mainly related to infection by the Zaire and Sudan strains.
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Filovirus virions possess several shapes, a property called pleo-
morphism (Feldmann et al., 2003). These shapes are appearing as
either U-shaped, 6-shaped, or other configurations, e.g., Figure 1.

The natural hosts of EBOV still remain unsettled, but it is
tenable that EBOV persists in animals which transmit the virus
to non-human primates and humans (Knipe et al., 2001). It has
been reported that fruit bats are capable of supporting EBOV
replication without becoming ill and may serve as a major reser-
voir (Swanepoel et al., 1996; Knipe et al., 2001; Leroy et al.,
2009; Formenty, 2014). EBOV can spread from an infected per-
son to others through direct contact with blood or body flu-
ids (e.g., saliva, sweat, feces, breast milk, and semen), objects
(i.e., needles) that have been contaminated with the virus and
infected fruit bats or primates (Peters and Peters, 1999; Feld-
mann et al., 2003; CDC, 2014). The 2014 Ebola epidemic is the
largest ever reported in history, affecting multiple countries in
West Africa and being imported to other countries: one infec-
tion case was reported in Spain while in the United States one
death and two locally acquired cases in healthcare were reported
(CDC, 2014).

EBOV can infect a wide variety of cell types including mono-
cytes, macrophages, dendritic cells, endothelial cells, fibroblasts,
hepatocytes, adrenal cortical cells, and several types of epithelial
cells, all supporting EBOV replication. Monocytes, macrophages,
and dendritic cells are early and preferred replication sites of
the virus (Knipe et al., 2001). Furthermore, murine studies have
revealed that EBOV can infect cells in different compartments,
showing high viral titers in liver, spleen, kidney and serum
(Mahanty et al., 2003).

Due to its high infectivity and fatality, the virus is classified as a
biosafety level-4 agent, restricting basic research for Ebola disease
(Halfmann et al., 2008). Infection parameters and quantification
of the interactions between the virus and its target cells remain
largely unknown. Therefore, the development of new avenues

FIGURE 1 | Ebola virus molecular structure. The Ebola genome is composed of 3 leader, nucleoprotein (NP), virion protein 35 (VP35), VP40, glycoprotein (GP),

VP30, VP24, polymerase (L) protein and 5 trailer (adapted from SIB SWISS Institute of Bioinformatics, 2014).

of thinking to bring forward quantitative comprehension of the
relationship between the virus and the host is urgently needed. To
this end, mathematical models can help to interpret experimen-
tal results on quantitative grounds. Model simulations can infer
predictions to initiate further and conclusive experiments that
may solve relevant scientific questions and advance knowledge
of EBOV infection.

Recently, mathematical models have played a central role
to capture the dynamics of different virus infections (Nowak
and May, 2000). Among the most popular are HIV (Kirschner,
1996; Wu et al., 1998; Duffin and Tullis, 2002; Perelson, 2002;
Hernandez-Vargas et al., 2010; Hernandez-Vargas and Middle-
ton, 2013; Jaafoura et al., 2014), hepatitis virus (Ribeiro et al.,
2002; Reluga et al., 2009; Guedj et al., 2013) and influenza virus
infection models (Baccam et al., 2006; Handel et al., 2010; Smith
and Perelson, 2011; Pawelek et al., 2012; Hernandez-Vargas et al.,
2014). These models have been instrumental to study the mech-
anisms that control viral kinetics in order to provide a quan-
titative understanding and to formulate recommendations for
treatments. Similarities of parameter values for EBOV infection
to other viral infections that promote outbreaks, e.g., influenza
virus infection, could be expected. Nevertheless, to the best of
our knowledge, there has not been any mathematical approach
until now to describe EBOV dynamics. This and the interaction
of EBOV virus with non-human primate epithelial cells is the key
contribution of this work.

2. Materials and Methods

2.1. Mathematical Model
The mathematical model proposed here to represent EBOV
dynamics is based on the well established target cell-limited
model (Nowak and May, 2000), see Figure 2. This has served
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FIGURE 2 | Schematic representation of the model for EBOV infection.

Target cells (U) are replenished with rate λ and die with rate ρ. Virus (V) infects

target cells (U) with rate β. Infected cells are cleared with rate δ. Once cells are

productively infected (I), they release virus at rate p and virus particles are

cleared with rate c.

to model several viral diseases, among them HIV infection (Wu
et al., 1998; Perelson, 2002), hepatitis virus infection (Ribeiro
et al., 2002) and influenza virus infection (Baccam et al., 2006;
Hernandez-Vargas et al., 2014). A detailed reference for modeling
of viral dynamics can be found in Nowak and May (2000).

Using ordinary differential equations (ODEs), the EBOV
infection model is considered as follows:

dU

dt
= λ − ρU − βUV (1)

dI

dt
= βUV − δI (2)

dV

dt
= pI − cV (3)

EBOV target cells can be either in a susceptible (U) or an infected
state (I). Cells are replenished with a constant rate λ and die with
rate ρ. Note that the condition λ = U0ρ should be satisfied to
guarantee homeostasis in the absence of viral infection, such that
only ρ is a parameter to be determined. Virus (V) infects suscep-
tible cells with rate constant β . Infected cells are cleared with rate
δ. Once cells are productively infected, they release virus at rate p
and virus particles are cleared with rate c.

The initial number of susceptible cells (U0) can be taken from
the experiment in Halfmann et al. (2008) as 5 × 105. The initial
value for infected cells (I0) is set to zero. The viral titer in Half-
mann et al. (2008) is measured in foci forming units per milliliter
(ffu/ml). The initial viral load (V0) is estimated from the data
using the fractional polynomial model of second order (Royston
and Altman, 1994). The best model based on the Akaike Infor-
mation Criterion (AIC) is presented in Figure 3, providing an
estimate of 9 ffu/ml for V0. The parameter ρ is fixed from liter-
ature as 0.001 day−1 (Moehler et al., 2005). The effect of fixing
this value on the model output is evaluated with a sensitivity
analysis.

2.2. Experimental Data
As described in the previous section, this paper is mainly focused
on the interaction between the virus and the target cells. A safe
way to study the virus life cycle was proposed in Halfmann

FIGURE 3 | Data preparation. Fitted statistical model for the wild-type Vero

cells infected with EBOV at a low multiplicity of infection (MOI) (Halfmann et al.,

2008)

et al. (2008). The disease pathogenesis of EBOV in non-human
primates is known to be more faithful in portraying the human
condition than in rodents (Knipe et al., 2001). Replication kinet-
ics of EBOV are studied in Vero cells, a cell line derived from
kidney epithelial cells of African green monkeys (Halfmann et al.,
2008). This non-human primate is a known source of Filoviri-
dae virus infection, e.g., the European Marburg outbreak from
1967 (Knipe et al., 2001). Wild-type Vero cells and a Vero cell
line expressing VP30 were tested to reveal their ability to con-
fine EBOV to its complete replication cycle. In this study, viral
kinetics for wild-type Vero cells infected with EBOV at differ-
ent multiplicities of infection (MOI) were considered (Halfmann
et al., 2008). The viral growth data is presented in Figure 3. Fur-
ther details on the data, methods and experiments can be found
in Halfmann et al. (2008).

2.3. Parameter Estimation
Parameter fitting is performed minimizing the root mean square
(RMS) difference on log scale between the model output, ŷi, and
the experimental measurement, yi:

RMS =

√

√

√

√

1

n

n
∑

i= 1

(log10 yi − log10 ŷi)
2 (4)

where n = 5 (Halfmann et al., 2008) is the number of measure-
ments. Differential equations are solved by R 3.1.2 (R Core Team,
2014) using the deSolve package (Soetaert et al., 2010). The min-
imization of RMS is performed using the Differential Evolution
(DE) algorithm employing the DEoptim package (Storn, 1997;
Mullen et al., 2011). The DE global optimization algorithm does
not rely on initial parameter guesses and converged faster than
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the other tested methods, including genetic algorithms and the
quasi-Newton (BFGS, L-BFGS-B) algorithms.

2.4. Parameter Uncertainty
Viral load variability is very large for several viral infectious dis-
eases (Mahanty et al., 2003; Baccam et al., 2006; Toapanta and
Ross, 2009; Groseth et al., 2012). In order to consider the large
variability of biological problems, a bootstrap method is applied
to the data series presented in Halfmann et al. (2008). Bootstrap-
ping is a statistic method for assigning measures of accuracy to
estimates (Davison and Hinkley, 1997; Xue et al., 2010). The
nonparametric bootstrap requires data to be independent and
identically distributed while the parametric bootstrap requires to
impose on the data a distribution assumption which is usually
unknown. For the data in Halfmann et al. (2008), three bootstrap
approaches were considered: (i) the conventional parametric
approach assumes a log-normal distribution of the measurement,
(ii) the nonparametric approach assumes uniform distribution in
the measurement range, and (iii) the weighted bootstrap assigns
to the cost function a vector of random weights from exponential
distribution with mean one and variance one (Ma and Kosorok,
2005; Xue et al., 2010).

For each repetition, the model parameters are refitted to
obtain the corresponding parameter distribution. The 95% con-
fidence interval of parameter estimates is computed using the
outcome of the bootstrap method (Xue et al., 2010). For each
parameter, the 2.5 and 97.5% quantiles of the estimates are used
to form the 95% confidence interval.

2.5. Parameter Identifiability and Sensitivity
A critical obstacle to overcome in mathematical modeling is
how to verify whether model parameters are identifiable based
on the measurements of output variables (Xia, 2003; Xia and
Moog, 2003; Wu et al., 2008; Miao et al., 2011). A system that is
algebraically identifiable may still be practically non-identifiable
if the amount and quality of the measurements is insufficient
and the data shows large deviations. The novel approach pro-
posed in Raue et al. (2009) exploits the profile likelihood to
determine identifiability and is considered here. This method is
able to detect both structurally and practically non-identifiable
parameters.

Identifiability properties are studied for the model Equations
(1–3) and the data set in Halfmann et al. (2008). The idea behind
this approach is to explore the parameter space for each parame-
ter θi by re-optimizing the RMS with respect to all other param-
eters θj 6= i. In particular, for each parameter θi, a wide range of
values centered at the optimized value is generated in an adap-
tive manner. Re-optimization of RMS with respect to the other
parameters is done for each value of parameter θi. The main task
is to detect directions where the likelihood flattens out (Raue
et al., 2009). The resulting profiles are plotted vs. each parameter
range to assess the parameter identifiability visually.

In model fitting, some parameters may have little effect on
the model outcome, while other parameters are so closely related
that simultaneous fitting could be a difficult task. For this
aspect, the scatter plots using pairs of parameters over different
bootstrap replicates will be reported. Furthermore, sensitivity

analysis of the estimated parameters is performed (Brun et al.,
2001; Soetaert, 2014). For each data point the derivative of the
correspondingmodeled variable value with respect to the selected
parameter is computed. The normalized sensitivity function
reads as

∂yi

∂2j
·
w2j

wyi

(5)

where yi denotes themodel variables,2j is the parameter of inter-
est, and the ratio w2j/wyi is the normalized factor correspond-
ing to its nominal value (Soetaert and Petzoldt, 2010). Summary
statistics of the sensitivity functions can be used to qualify the
impact of the parameter on the output variables, i.e., the higher
the absolute value of the sensitivity summary statistics, the more
important the parameter (Brun et al., 2001). For the model in
Equations (1–3), the sensitivity functions will be plotted vs. time
to illustrate the parameters’ role on themodel output. The param-
eters that have little effect do not need to be fine-tuned extensively
in model fitting.

2.6. Cross-Validation
It is important to prove how themodel predictions will generalize
to an independent data set, revealing how accurately the predic-
tive value of a model is in practice. In this paper, the parameter
set obtained from the data of wild-type Vero cells infected at low
MOI is used to predict the replication kinetics of the data at high
MOI presented in Halfmann et al. (2008).

3. Results

Although significant progress has been made to the identification
and characterization of EBOV, human data is very limited due to
the long asymptomatic periods of the virus and its highmortality.
Animal models are pivotal to shed light on this lethal disease. Due
to the very close similarities with the human immune system,
non-human primates are the preferred animal model for several
viral infections e.g., HIV). Moreover, EBOV infection has been
adapted to guinea pigs and mice (Feldmann et al., 2003), serv-
ing as a flexible model in comparison to human and non-human
primates. In this work, we focus on the interaction between the
virus and the host cells. In vitro data can be very convenient due
to the important simplification of the in vivo complexity of bio-
logical problems. Thus, for parameter fitting procedures, we con-
sider the experimental data from Halfmann et al. (2008), which
investigates EBOV kinetics in a Vero cell line.

Before rigorous optimization methods can be applied to esti-
mate the model parameters using experimental data, the ver-
ification of parameter identifiability is required. The omission
of identifiability analyses may result in incorrect fits and con-
sequently incorrect interpretations. The identifiability analysis
in the model Equations (1–3) has been broadly studied (Xia,
2003; Xia and Moog, 2003; Wu et al., 2008; Miao et al., 2011;
Hernandez-Vargas et al., 2014). All parameters in the model
Equations (1–3) were shown to be algebraically identifiable given
measurements of viral load and initial conditions (U0, I0, and
V0) (Wu et al., 2008). However, the difference between struc-
tural identifiability and practical identifiability in the presence
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of measurement error requires further identifiability studies. To
address practical identifiability, the approach proposed by Raue
et al. (2009) is considered here for the data presented in Figure 3.

The resulting RMS profiles in Figure 4 for β , p and c show a
convex shape of which the optimization routine can reach their
minimum. Note that the profile of δ is flat in one tail, suggesting
that parameter δ can be chosen arbitrarily small without affecting
the fit quality (Raue et al., 2009). In spite of this, the lower bound
of this parameter has a clear biological constraint. To be precise,
the half-life of an infected cell cannot be longer than that of an
uninfected cell. There is experimental evidence that the half-life
of epithelium cells in lung is 17–18 months in average (Rawlins
and Hogan, 2008). In view of this, the infected cell death rate (δ)
is fixed at 10−3.

Bootstrapping can provide more insights into the distribu-
tion of parameter values based on experimental data in Halfmann
et al. (2008). For the sake of clarity, we present only the weighted
bootstrap (Xue et al., 2010) in the results, the other two meth-
ods can be found in the supplementary material. Distributions of
the model parameters are shown in Figure 5. Bootstrap estimates
for the viral clearance (median c = 1.05 day−1) is slightly below
other viral infection results (Table 1). For example, clearance of

influenza virus varied from 2.6 to 15 day−1 in (Baccam et al.,
2006; Miao et al., 2011; Pawelek et al., 2012; Hernandez-Vargas
et al., 2014). This may be attributed to the fact that the viral
clearance is computed for in vitro experiments.

EBOV is known to replicate at an unusually high rate that
overwhelms the protein synthesis of infected cells (Sanchez,
2001). Consistent with this observation, bootstrap estimates
revealed a very high rate of viral replication, p = 62 (95%CI :

31 − 580) (Table 1). Although the scatter plot in Figure 5 shows
that the estimate of p can be decreased given a higher effective
infection rate (β), a replication rate of at least 31.8 ffu/ml cell−1

day−1 is still needed to achieve a good fit of the viral replication
kinetics in Figure 3.

Scatter plots are a graphical sensitivity analysis method, and
a simple but useful tool to test the robustness of the results.
The estimated parameters are plotted against each other. Scatter
plots for the parameters in Figure 5 provide visual evidence that
these parameters strongly depend on one another such that their
individual values can not be independently determined. That is,
increasing the values of p increases the estimations of c. Decreas-
ing the estimations of β increases the estimation of both c and
p. However, the green curves in Figure 5 provide the most likely

FIGURE 4 | Parameter Identifiability. RMS profile of model parameters.

Each parameter is varied in a wide range around the optimized value.

Subsequently, the DE algorithm is used to refit the remaining

parameters to the data set of Halfmann et al. (2008). The vertical

dashed lines indicate the value obtained from the optimization for all

four parameters collectively.
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FIGURE 5 | Weighted bootstrap results. Top row: Distributions from

1000 sample estimates are presented for the three parameters: β, p

and c. Bottom row: Scatter plot between bootstrap parameters. The

parameter ρ is fixed during the bootstrapping at 0.001 (Moehler et al.,

2005). Numerical values for the model Equations (1–3) are presented in

the Table 1.

TABLE 1 | Estimates of infection parameters*.

Parameters (units) Best fit** Bootstrap estimates

2.5% Median 97.5%

quantile quantile

β

[

day−1(ffu/ml)−110−7
]

1.91 1.78 4.06 261.95

p
(

ffu/ml day−1cell−1
)

378 31.80 62.91 580.69

c
(

day−1
)

8.02 0.18 1.05 18.76

tinf (hours) 5.64 1.68 9.49 10.79

*Note that these parameter should be interpreted with the discussed identifiability

problems.
**Values obtained from optimization procedure to the low MOI viral titer presented in

Halfmann et al. (2008).

region where the parameters values can be found. In order to ver-
ify this intuition, we fix the viral clearance rate (c) at 4.2 (Miao
et al., 2010) and then estimate the others two parameters (β
and p). The results of 1000 bootstrap replicates reveal that fixing
the parameter c improves the fitting with a narrow confidence
interval (see Supplementary Materials 1.3).

The sensitivity study for the mathematical model Equations
(1–3) is performed in a similar fashion to Brun et al. (2001);
Soetaert (2014). Figures 6A–E show the effect on the viral load
when varying the respective parameter by 10, 20 and 50% around
its nominal value. It can be seen that the healthy cell death
rate (ρ), which in the virus-free steady state represents the cell
turnover, has little effect on the viral load kinetics. This can be
attributed to the fact that the experiment was performed in vitro
and within a short period. Similarly, the effect of the infected cell
death rate (δ) can also be neglected. This could be explained by
the fact that the observed Ebola viral load was not decreasing
(Figure 3), contrary to observations in other viral infections, e.g.,
influenza virus (Baccam et al., 2006). The remaining three param-
eters (β, p, and c) are sensitive, in the sense that a small change
in parameter value can lead to a large difference in viral kinetics.
Figure 6F summarizes in detail the parameter sensitivity func-
tions. It is clear that the three parameters β, p, and c govern the
infection kinetics while the effect of the two parameters ρ and δ

can be neglected for this data set. Therefore, fixing both ρ and δ

is adequate for the presented problem.
Moreover, both β and p can be seen as consistently increasing

the viral load because their respective sensitivity functions are
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B CA

E FD

FIGURE 6 | Sensitivity of parameters. (A–E) Plotting of viral titer variation

vs. time. The dashed line is the viral kinetics obtain from nominal parameter

values. Three color shades in each figure represent the viral load variation

range when varying the corresponding parameter by a percentage denoted

in the legend. (F) Parameters sensitivity function over time, the values in

y-axis are calculated using Equation (5).

always positive, in contrast to the parameter c. Note that the abso-
lute magnitude of change in the sensitivity functions of these
three parameters is approximately equal over time (Figure 6F).
The strong similarity in the sensitivity functions indicates that
the corresponding parameters have equivalent effect on the viral
titer. For instance, the sensitivity functions of β and p are very
similar so that almost the same output of viral titer will be gen-
erated by increasing β if p is decreased correspondingly. A simi-
lar statement can also be made about the relationship between c
and β .

Computational simulations for the best fitting of the proposed
mathematical model Equations (1–3) plotted in Figure 7B show
that the virus grows exponentially from day 1 to 5 post infection.
This is consistent with the mathematical analysis developed in
Nowak et al. (1996), which deduced that the virus initially grows
exponentially and can be better modeled as exp(r0t) while the
susceptible cell population remains relatively constant, where r0
is the leading eigenvalue which solves the equation r20 + (c +

δ)r0 − (βpU0 − cδ) = 0.
Viral titer peaks at high levels, more than 107 ffu/ml, which in

general is 10 fold higher than those reported in influenza virus
infection (Toapanta and Ross, 2009; Hernandez-Vargas et al.,
2014). In addition, the viral titer reaches a plateau at day 6 and

may remain at those levels (Figure 7B). No depletion of infected
cells is observed in the period of observation. This could be a
combined effect attributed to either high infection rate or high
replication rate, and to the slow clearance of infected cells. To
achieve virus titer levels as reported in Halfmann et al. (2008),
either a high infection rate (β) of susceptible cells, or a high repli-
cation rate is required (Figure 5). Note that even though these
estimations were performed in vitro, in vivo murine studies for
EBOV infection (Mahanty et al., 2003) showed similar kinetics
and time scales as those presented in Figure 7B.

3.1. Transmission Measures
Infectivity is a critical parameter to assess the ability of a pathogen
to establish an infection (Diekmann et al., 1990). To determine
infectivity, we compute the reproductive number (R0), which is
defined as the expected number of secondary infections produced
by an infected cell in its lifetime (Diekmann et al., 1990; Heffer-
nan et al., 2005). On the one hand, if R0 is less than one, each
infected individual produces on average less than one infected
individual, and therefore the infection will be cleared from the
population. On the other hand, if R0 is greater than one, the
pathogen is able to invade the susceptible population. This epi-
demiological concept can be applied to the model Equations
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A B

FIGURE 7 | Model fitting for EBOV kinetics. Viral titer data with low MOI from Halfmann et al. (2008) and simulations from the best fit shown in Table 1 are in panel

(A) for the host cells and (B) for the viral titer.

(1–3) and computed as follows (Nowak et al., 1996):

R0 =
λpβ

cρδ
(6)

As expected, the estimated reproductive number in EBOV infec-
tion is very high, see Figure 8A and numerical results in Table 1.
These results can be attributed to the fact that no depletion of
virus was observed and to a slow clearance of infected cells.
Thus, both parameters δ and c increase the value of R0. Note that
very high estimates of the reproductive number in highly viremic
influenza virus strains from in vitro experiments have also been
reported, with an average of 1.7 × 103 (Pinilla et al., 2012). It
is worth to mention that fitting the model to in vitro data in
Halfmann et al. (2008) could lead to small estimates for c and
δ in comparison to an in vivo situation. Nevertheless, estimates
of the epithelial cell half-life were 6 months in the trachea and
17 months in the lungs in average (Bowden, 1983; Rawlins and
Hogan, 2008), which corresponds to a δ equal to 0.003 and 0.001,
respectively. As mentioned previously, the δ was fixed at 0.001
in the computation of R0. Therefore, the estimated values of R0
interval are very likely to be positioned in a biologically plausible
range, especially the upper bound. Notwithstanding, the estimate
of R0 presented here should be interpreted with care within the
limits of the data used.

Recent viral modeling works (Holder et al., 2011; Pinilla et al.,
2012) have also introduced the term infecting time, which repre-
sents the amount of time required for a single infectious cell to
cause the infection of one more cell within a completely suscepti-
ble population. Strains with a shorter infecting time have a higher
infectivity (Holder et al., 2011; Pinilla et al., 2012). From model
Equations (1–3), this measure can be computed as follows:

tinf =

√

2

pβU0
(7)

Bootstrap results showed that EBOV possesses an average infect-
ing times of 9.49 h (Table 1) which is approximately 7 times

A B

FIGURE 8 | Transmission measures. Bootstrap estimate of (A) reproductive

number and (B) infecting time in hours. Numerical values can be found in

Table 1.

slower than the infecting time of influenza virus (Holder et al.,
2011). This number provides a reasonable explanation for the
kinetics of susceptible cells which slowly decrease from day 1 to
day 4 (Figure 7A), and quickly deplete within the last 2 days.
This number could also explain the absence of viral replication
within the first 5.6 h after infection. This period corresponds to
the short decreasing period observed in Figure 7B. The initial
decrease of viral load thus can be attributed to self-clearance of
the virus when some viruses have infected cells but are not yet
able to replicate.

The infectivity parameters in Figure 8 characterize the EBOV
infection kinetics in the data in Halfmann et al. (2008). The slow
infection time of EBOV is compensated by its efficient replica-
tion. As a result, a short delay is followed by a massive amount
of virus. The above infectivity parameters contributed an expla-
nation for the high levels of viral load even when the susceptible
cells were already depleted at the end of the experiment.

The best set of estimated parameters is challenged to validate
the data at high multiplicities of infection (MOI) in Halfmann
et al. (2008). The initial viral load is estimated using the fractional
polynomial model of second order providing V0 at 460 ffu/ml.
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Figure 9 shows that the parameters derived from data at lowmul-
tiplicity of infection are still consistent with data generated at
high multiplicity of infection. The predicted kinetics follows the
experimental data closely when changing the initial condition of
the viral titer to 50 folds higher.

4. Discussion

Ebola virus (EBOV) is highly pathogenic for humans, being
nowadays one of the most lethal pathogens worldwide. Ebola
fatalities are predominantly associated with uncontrolled viremia
and lack of an effective immune response (i.e., low levels of anti-
bodies and no cellular infiltrates at sites of infection) (Feldmann
et al., 2003).

The work presented here focused on the interaction between
EBOV and the host cells, i.e., epithelial cells of green monkey.
Experimental data on the Vero cell line from non-human pri-
mates could help to better understand the virus infection dynam-
ics in humans (Knipe et al., 2001). However, the in vitro studies
must be translated carefully to avoid over-interpretation to the in
vivo context, which can sometimes lead to erroneous conclusions.
Especially, the EBOV infection has been known to have abnormal
behavior in vivo where different cells types and the immune sys-
tem are involved (Knipe et al., 2001). Additionally, given the fact
that EBOV exhibits an asymptomatic period in humans (Leroy
et al., 2000), the viral dynamics model in vivo should take the
eclipse phase into consideration. This feature can be modeled by
adding an appropriate eclipse phase term as has been done previ-
ously (Moehler et al., 2005; Baccam et al., 2006). Nevertheless,

FIGURE 9 | Cross-validation. Test of estimated parameters on an

independent set of data. The viral replication kinetics in wild-type Vero cells

infected with EBOV at a high multiplicities of infection (MOI) in Halfmann et al.

(2008) are modeled starting from a higher initial viral load of V0 = 460 ffu/ml.

The (Mean) indicates the predicted kinetics using parameters obtained from

bootstrap while (Best) refers to the predicted kinetics using the parameters

resulting from the optimization.

given the problem of parameter identifiability exposed in the
results, a complex model would not bring any better understand-
ing. Once more data would become available, future work could
attempt to address this issue, especially in the in vivo context.

The exposed identifiability issues in the results reveal the prob-
lematic of parameter estimation using solemnly the viral load
measurements. Here, our efforts to cope thoroughly with the
identifiability issues spotted the current restrictions on the esti-
mated parameters. These restrictions cannot be resolved without
the progress of new experiments, more measurements are neces-
sary to sort out the identifiability problems presented here, e.g.,
measurements of infected and non-infected cells. Another pos-
sible experiment is to determine the EBOV clearance rate in the
absence of target cells. For instance, Pinilla et al. (2012) employed
an experiment in a similar fashion to determine the viral infectiv-
ity loss (c). Known influenza virus titers were incubated without
target cells and followed up to determine the remaining infectious
titers (Pinilla et al., 2012). In this way the approximate values of
the viral clearance rate could be determined and provide a more
accurate estimates for the whole set of kinetics parameters, as
shown in the Supplemental Material 1.3.

The high EBOV replication reported here is in agreement with
recent findings by Misasi and Sullivan (2014) as well as docu-
mented in Knipe et al. (2001), reporting that early and coor-
dinated disruptions by Ebola genes and proteins (VP24, VP30,
and VP35) lead to elevated levels of virus replication. The boot-
strap results suggested that the EBOV average infecting time
is approximately 9.5 h, at least 5 fold slower than estimations
from influenza virus infection (Pinilla et al., 2012). These sim-
ulations outline the EBOV kinetics in the data from Halfmann
et al. (2008), suggesting that a slow infecting time of EBOV is
compensated by its efficient replication.

Themodel results suggested that the saturation of viral growth
as observed in the data is induced by the loss of susceptible cells.
This result has to be re-evaluated with a more complete data set,
as the present data set would also be appropriately described by
a logistic-growth model (data not shown) with an unspecific lim-
itation of resources. However, a logistic model can explain only
the growth behavior of the virus. As pointed out before (Wu et al.,
2008), a higher resolution of the data and later time points which
exhibit the long-term behavior of the viral load are required for a
full determination of the mechanisms at work.

EBOV infection from in vitro and even murine systems may
differ considerably from humans. The latency phase in human is
much longer than in animals and EBOV symptoms in humans
may appear from 2 to 21 days after exposure to the virus, having
an average time of 8–10 days (Peters and Peters, 1999). Remark-
ably, mice infected by intra-peritoneal injection develop symp-
tomatic infection where EBOV will increase rapidly at day 4 and
continue to increase until day 6, with death occurring at day
6–7 post-infection (Mahanty et al., 2003). These experimental
observations are compatible with our simulation results, suggest-
ing that the growth of infected cells starts at day 3 post infec-
tion (Figure 7) while almost the whole susceptible cell pool is
depleted at day 6 post infection. It is worth tomention that EBOV
kinetics were similar in different tissue compartments (Mahanty
et al., 2003): liver, spleen, kidney and serum. Consequently,

Frontiers in Microbiology | www.frontiersin.org 9 April 2015 | Volume 6 | Article 257

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Nguyen et al. Modeling Ebola virus infection

further modeling approaches should address the EBOV kinetics
in different compartments of the infected host.

The in vitro system may mimick a human context where
the immune response against EBOV is not working adequately.
The onset of a CD8+ T cell response as well as of the anti-
body response (Gupta et al., 2003) rely on early regulation of
cytokines in the asymptomatic phase of the disease (Mahanty
et al., 2003; Ebihara et al., 2006; García-Sastre and Biron,
2006). Human EBOV infection revealed that patients infected
by the Sudan strain had lower levels of tumor necrosis fac-
tor TNF-α and interferon IFN-γ compared to those found in
patients with fatal Zaire strain infection (Hutchinson and Rollin,
2007). Additionally, the levels of IFN-α were found signifi-
cantly higher in surviving patients with Sudan strain infection
(Hutchinson and Rollin, 2007), whereas the levels of IL-6, IL-
8, IL-10, and macrophage inflammatory proteins were higher
in patients with fatal infections (Hutchinson and Rollin, 2007).
Therefore, modeling the effects of IFN-I would limit the num-
ber of infected cells by the introduction of a resistant state
with a possible impact on the value of the viral replication
rate (p). Future modeling studies need to quantify the situation
in vivo where the effect of the immune system is taken into
account.

The modeling work developed in this paper paves the way
for future mathematical models and experiments to shed light
on the reasons for less efficient control of Ebola virus infections.
Determining empirically the EBOV clearance rate in the absence
of target cells would fulfill the picture of EBOV kinetics in

vitro. In addition, due to the critical relevance of the cytokine
effects in EBOV pathogenesis, future modeling attempts should
be directed to establish a more detailed model of interactions
between the relevant cytokines and EBOV. Further insights into
immunology and pathogenesis of EBOV will help to improve the
outcome of this lethal disease.
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