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Although desiccation tolerance of Microcoleus species is a well-known phenomenon,
there is very little information about their limits of desiccation tolerance in terms of
cellular water content, the survival rate of their cells, and the environmental factors
inducing their resistance to drying. We have discovered that three Microcoleus strains,
isolated from terrestrial habitats of the High Arctic, survived extensive dehydration (to
0.23 g water g−1 dry mass), but did not tolerate complete desiccation (to 0.03 g water
g−1 dry mass) regardless of pre-desiccation treatments. However, these treatments
were critical for the survival of incomplete desiccation: cultures grown under optimal
conditions failed to survive even incomplete desiccation; a low temperature enabled
only 0–15% of cells to survive, while 39.8–65.9% of cells remained alive and intact after
nitrogen starvation. Unlike Nostoc, which co-exists with Microcoleus in Arctic terrestrial
habitats, Microcoleus strains are not truly anhydrobiotic and do not possess constitutive
desiccation tolerance. Instead, it seems that the survival strategy of Microcoleus in
periodically dry habitats involves avoidance of complete desiccation, but tolerance to
milder desiccation stress, which is induced by suboptimal conditions (e.g., nitrogen
starvation).

Keywords: cyanobacteria, desiccation tolerance, viability, nitrogen starvation, fluorescence staining, SYTOX
Green, CTC dye

Introduction

Terrestrial cyanobacteria are often considered to be desiccation tolerant organisms. Some taxa
of cyanobacteria have evolved a remarkable ability to resist desiccation stress (Caiola et al., 1996;
Potts, 1999). This ability has allowed them to colonize the most hostile places on Earth.

Numerous studies have uncovered that cyanobacteria cope with desiccation stress through a
complex of physiological, biochemical, structural, and morphological adaptations. Mechanisms
contributing to this include: modifying the structure and composition of cell envelopes (Caiola
et al., 1996), decreased respiration (Potts, 1994), down-regulation of photosynthesis (Harel et al.,
2004), producing enzymes eliminating reactive oxygen species (Chen et al., 2012), accumulat-
ing sugars which stabilize the lipid membranes (Hershkovitz et al., 1991; Sakamoto et al., 2009;
Klähn and Hagemann, 2011), secreting extracellular polysaccharides that serve as a physical bar-
rier during desiccation that absorb and retain moisture (Hill et al., 1997; Tamaru and Takani, 2005),
synthesizing UV-absorbing and sun-screening pigments (Roos and Vincent, 1998; Potts, 1999;
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Gao and Ye, 2007), and the presence of multiple copies of
the genome together with an efficient DNA reparation system
(Ehling-Schulz and Scherer, 1999; Potts, 1999).

The closely related genera Phormidium and Microcoleus
(Oscillatoriales) are among the most frequently recorded
cyanobacterial genera in hot and cold deserts worldwide
(Vincent, 2000; Wynn-Williams, 2000), and have often been
mentioned as desiccation tolerant organisms (Davey, 1989;
Hershkovitz et al., 1991; Hawes et al., 1992; Harel et al., 2004;
Šabacká and Elster, 2006; Chen et al., 2012; Olsson-Francis et al.,
2013). The taxonomy of Oscillatoriales has been recently revised
to include some Phormidium species within the Microcoleus
genus (Strunecký et al., 2013). Therefore, in this manuscript we
consider Phormidium andMicrocoleus as synonyms, and refer to
their original names used in publications.

Some studies have suggested that Phormidium might respond
to drying differently than the extremely desiccation tolerant and
well-studied Nostoc and Chroococcidiopsis. These latter two gen-
era were found to withstand regular drying-rewetting cycles,
tolerate rapid water loss to nearly zero water content (Caiola
et al., 1996; Tamaru and Takani, 2005), preserve the structural
integrity of their cell structures after many years of storage
in a dry state (Potts, 1996; Billi, 2008), and resume respira-
tion and photosynthesis within minutes after rewetting (Davey,
1989; Wynn-Williams, 2000). In contrast to Nostoc colonies,
Phormidium-dominated mats from the Antarctic showed a very
slow recovery from extreme desiccation; the population sur-
vived due to migration and the multiplication of a few surviving
middle-layer trichomes (apparently partially hydrated), rather
than recovering the bulk biomass (Hawes et al., 1992). Hot desert
dwelling Oscillatoria and Microcoleus species also demonstrated
desiccation avoidance behavior as they actively migrated to the
soil crust surface when water became available and retreated
to the subsurface under water limitation (Pringault and Garcia-
Pichel, 2004; Rajeev et al., 2013).

The few mechanisms discovered of Phormidium/Microcoleus
desiccation tolerance include accumulating trehalose
(Hershkovitz et al., 1991; Chen et al., 2012), secreting exopolysac-
charides (Chen et al., 2012), stabilizing the photosynthetic
apparatus (Harel et al., 2004), and accumulating UV-protecting
pigments (Quesada and Vincent, 1997). A recent study on the
desert crust-forming cyanobacterium Microcoleus vaginatus
reported the expression of genes involved in the oxidative
and osmotic stress response, the desaturation of membrane
lipids, and the production of EPS at the onset of desiccation.
Rehydration activated the genes responsible for cell signaling
and DNA repair followed by upregulation of anabolic pathways
(Rajeev et al., 2013).

Taken together, it is likely that Phormidium/Microcoleus
evolved a combined strategy for surviving dry periods including
both avoidance and partial tolerance to desiccation, rather than
the ability to tolerate complete desiccation. However, it is not
known whether desiccation tolerance is their constitutive trait as
in some groups of mosses (Oliver et al., 2005), or if it develops
under particular conditions (e.g., suboptimal light and tempera-
ture, osmotic stress, or nutrient starvation), as in many species
of yeasts and bacteria (Morgan et al., 2006). While some of the

mechanisms have been described, there is very little information
about their limits of desiccation tolerance in terms of water con-
tent in dry cells, the survival rate of cells, damage that cells sustain
upon desiccation, and rehydration, and environmental factors
inducing their resistance to drying.

In many previous studies that have addressed desiccation tol-
erance of Phormidium/Microcoleus, the conditions of desiccation,
water content in dried material, and methods for quantifica-
tion of viable cells were often not described. Most of the stud-
ies evaluated the survival and stress response of Phormidium
and Microcoleus at the population level, e.g., ‘bulk’ measure-
ment of respiration/photosynthesis measured by oxygen evolu-
tion/uptake, recovery of photosynthesis, or growth tests (Davey,
1989; Hawes et al., 1992; Chen et al., 2003; Harel et al., 2004;
Šabacká and Elster, 2006; Rajeev et al., 2013). For instance, such
an approach often overlooks the number of cells that survive
and their physiological state upon rehydration. A decrease in res-
piration or/and photosynthesis intensity upon rehydration, for
example, may be attributed to a reduction of those functions in
every cell, complete inactivation of a subpopulation while the oth-
ers remain fully active, or to the differential loss of these in a few
subpopulations. The importance of studying microbial popula-
tions at the single-cell level has often been stressed in recent years
(Davey andWinson, 2003; del Giorgio and Gasol, 2008; Lidstrom
and Konopka, 2010; Tashyreva et al., 2013).

The investigation of desiccation tolerance of filamentous
cyanobacteria is generally complicated by the structure of the
populations they form: cultures form tight colonies during stan-
dard cultivation in a liquid medium (e.g., in Erlenmeyer flasks).
The conditions across such a colony can be markedly different
in terms of light spectrum and intensity, nutrient availability,
and concentration of cell metabolites. In addition, cultivation
on agar plates generates a water content gradient, under which
the filaments on the top of a biofilm are directly exposed to air.
This approach generates physiologically heterogeneous popula-
tions, and, in addition, cannot ensure uniform drying of such a
colony/biofilm.

In order to resolve the above-mentioned methodological com-
plications, we employed cultivating cyanobacteria in thin biofilms
on glass slides immersed into dishes with a liquid medium. Such
a cultivation method provides significantly more homogeneous
conditions in comparison to traditional cultivation methods,
making it possible to vary only one of the cultivation parame-
ters by placing glass slides into different conditions with the other
conditions remaining constant. Drying the thin biofilms helped
to eliminate the development of desiccation tolerance directly
induced by slow dehydration of a thick layer (Hershkovitz et al.,
1991; Chen et al., 2012). Detecting desiccation survivors and
investigating some of their cellular function was carried out
by direct cell counts in combination with staining them with
three fluorescent dyes to visualize the presence, location and
shape of nucleoids, track membrane integrity, and detect respi-
ration.

For our experiments, we selected three strains of Microcoleus
inhabiting terrestrial habitats in the Arctic. The strains were iso-
lated from ephemeral melt water streams and pools that often
become completely dry and frozen in late summer.
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In this study, we endeavored to determine: (1) whether des-
iccation tolerance is a constitutive property or if it is inducible
by suboptimal conditions, i.e., low temperature and nitrogen
depletion, (2) whether the strains are able to tolerate complete
desiccation defined as water content below 0.1 g H2O g−1 dry
biomass (Alpert, 2005) and/or incomplete (85% RH) desiccation
regimes, and (3) which proportion of cells survives desiccation
and what their physiological state upon rehydration is.

Materials and Methods

Cyanobacterial Strains
The experiments were conducted with strains Microcoleus sp.
816 CCALA (previously Phormidium cf. autumnale) isolated
from a stream in the vicinity of a glacial moraine (Northern
Sweden, Lapland, Abisko, 69◦21′N 18◦49′E); Microcoleus vagi-
natus 858 CCALA (previously Phormidium sp.) isolated from a
small pool in a moraine (Svalbard archipelago, 77◦00′N 15◦20′E);
and Microcoleus sp. 845 CCALA (previously Phormidium sp.)
isolated from a stream with moss carpets (Svalbard archipelago,
77◦00′N 15◦20′E). All strains (isolated by Šnokhousová et
Elster) are currently maintained in the Culture Collection
of Autotrophic Organisms (CCALA), Institute of Botany,
Academy of Sciences of the Czech Republic, with a taxo-
nomical revision of these strains carried out by Strunecký
et al. (2013). The strains were previously shown to be non-
diazotrophic by the acetylene reduction method (unpublished
data).

Cultivation
Cyanobacterial cultures were pre-cultivated for 15 days in
Erlenmeyer flasks in liquid BG-11medium (Rippka et al., 1979) at
+20◦C and a continuous photon flux density of 70µmolm−2 s−1

(white light). The biomass was harvested and used as an inoculum
for subsequent cultivation in biofilms.

A piece of the biomass was smeared over both sides of a
glass microscope slide (76 mm × 26 mm); the filaments read-
ily attached to the glass surface. Six glass slides were placed in
an upright position in a rectangular glass dish (13 cm × 10 cm),
and kept upright with a plastic holder. The dishes were filled with
BG-11 medium so that it entirely covered the slides, and closed
with a transparent lid, allowing gas exchange in a similar way as a
Petri dish. The medium was continuously mixed with a magnetic
stirrer at a low frequency (Topolino, IKA). The light source was
located over the dishes, and light from the bottom was reflected
with aluminum foil placed under the dishes. After 2 weeks of
cultivation, half of the cultural medium was replaced with fresh
BG-11 medium.

Previous studies have suggested that cyanobacteria are psy-
chrotolerant but not psychrophilic (Tang et al., 1997). Although
cyanobacteria in the Polar Regions are often subjected to high
solar irradiances, it is known that low-light conditions are prefer-
able for the growth of cyanobacteria (Sinetova et al., 2012;
Jodłowska and Śliwińska, 2014). In our experiments (unpub-
lished data), we found that two polar strains of Microcoleus
yielded the highest biomass and chlorophyll a content at +20◦C

and 70 µmol m−2 s−1 in full BG-11 medium. Therefore, we
consider these light and temperature conditions to be optimal.

After 18–30 days of cultivation, biofilm samples from each of
the six slides were collected for microscopic examination in order
to study their morphology and viability. The biomass was con-
sidered suitable for subsequent experiments if the cells were of
intense blue–green color, with well-pronounced thylakoids, uni-
form in morphology, having evidence of cell fission, lacked any
visible cell inclusions, and containing only a small number of
dead or decaying cells. The homogeneity of these cultures, in
terms of cell viability and respiration activity, was tested with
multicolor fluorescence staining (see below).

Induction of Desiccation Resistance
(Pre-desiccation Treatment)
Two of the glass slides from each of the dishes were trans-
ferred into a dish filled with nitrogen deficient BG-110 medium
(standard BG-11 medium lacking NaNO3), and incubated at
+20◦C and continuous light of 70 µmol m−2 s−1 for 2–3 weeks.
Another two slides were kept in the original dish, which was
placed at +4◦C (70 µmol m−2 s−1 of light), and incubated
for a week. The biomass from the remaining two slides had no
pre-desiccation treatment and was directly used in desiccation
experiments. Hereafter, these will be referred to as ‘control’ or
‘optimally grown’ biomass.

Desiccation and Rehydration
Desiccation of the samples was carried out in two regimes: com-
plete drying over silica gel and incomplete drying at 85% RH at
20◦C. For both tests, several patches of cyanobacterial biofilm
(ca. 1 cm × 1 cm) sampled throughout both sides of the two
slides were placed in a drop of culture medium inside three
Petri dishes, and spread over the surface so that no folds were
formed. Any excess liquid was removed with sterile filter papers.
The temperature and humidity were measured with a digital
thermo-hydrometer (KlimaGuard, TFA, Germany). The device
was calibrated over P2O5 (0% RH) and saturated solutions of LiCl
(11.3% RH) and KCl (85% RH).

Complete desiccation was achieved by placing dishes with
biofilms in a stream of sterile air for 15 minutes and their sub-
sequent storage in a closed chamber over silica gel for 20 days at
low light (<10 µmol m−2 s−1). The RH over the silica gel fluctu-
ated from 10 to 13%. Partial drying was carried out by placing the
dishes for 20 days at low light (<10 µmol m−2 s−1) in a closed
chamber over a saturated solution of KCl, which kept the relative
air humidity at a constant 85%.

The films were rehydrated with a drop of sterile distilled water
for 20 min while protected from light. The rehydrated biomass
formed a thick suspension after being detached from the glass
surface. Half of this suspension was then transferred into an
Eppendorf tube with BG-11 medium for fluorescence staining,
while the other half was used for a growth test.

Viability Tests
Cell viability and physiological activity were evaluated with flu-
orescence staining. SYTOX Green dye (Life Technologies, USA)
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was used to track damage to the plasma membrane, 5-cyano-2,3-
ditolyl tetrazolium chloride, or CTC (Sigma-Aldrich Co., USA)
was used to assess respiration activity, and 4′,6-diamidino-2-
phenylindole, or DAPI (Life Technologies, USA) was employed
to observe the presence, shape, and location of nucleoids. The
samples were treated according to the staining protocol that we
previously described (Tashyreva et al., 2013) with 1 µM SYTOX
Green for 30min, 4 mMCTC solution for 30 min, and 5µgml−1

DAPI for 15 min. All the samples were observed with stan-
dard light microscopy prior to staining with fluorescent dyes.
According to the staining results, the cells were grouped into
three categories: (i) live and intact: CTC and DAPI-positive,
SYTOX Green-negative; (ii) injured: CTC, DAPI, and SYTOX
Green-positive; (iii) dead: CTC-negative, SYTOX Green, and
DAPI-positive, or all negative. The viability test was done prior
to desiccation and 20 min after rehydration.

A growth test was carried out with samples that underwent
desiccation in order to confirm the staining results. The non-
stained half of the biomass suspension was spread onto a BG-11
agar surface, and cultivated for 3–5 weeks under the same condi-
tions as in pre-cultivation. In order to track any hidden growth,
the dishes were periodically observed under a microscope under
transmitted light (magnification 200×). The results of the growth
test were expressed as having a presence or absence of growth.

Fluorescence Microscopy
An aliquot of the stained sample was placed between a glass
slide and a 24 mm × 24 mm cover slip; the edges were sealed
with nail polish to prevent water evaporation. An Olympus
BX53 microscope equipped with a 100 W ultrahigh-pressure
mercury arc lamp (Olympus) was used with 400× magnifica-
tion. The optical system for fluorescence observations included
four UIS2 fluorescence mirror units (excitation filter/emission
filter/dichromatic mirror): U-FBWA cube for SYTOX Green
(460–495 nm/510–550 nm/505 nm), and combined mirror units
for DAPI (360–370 nm/460–510 nm/420 nm), CTC-formazan
(425–445 nm/570–625 nm/455 nm) and phycobiliprotein (565–
585 nm/600IF/595 nm) fluorescence observation. A U-FUN filter
cube (360–370 nm/420IF nm/410 nm) was additionally employed
for observing the fluorescence of the DAPI-stained polyphos-
phate inclusions.

Cell Counts
The biomass for fluorescent staining prior to desiccation was
randomly sampled from both sides of every two slides in each
treatment. After the staining procedure, the biomass was used to
prepare several microscopy slides, where 2–5 fields of view were
photographed from each of them, resulting in a total of 15–20
fields of view observed per sample.

A series of several dark-field images were acquired to record
the fluorescence of each of the signals required and a bright-field
image was taken for total cell counts. The images were captured
with an Olympus DP72 microscope digital camera (Japan). Each
image within a series was divided into 12 squares by applying a
grid in GIMP v.2.8 program, where all cells within 1–3 squares
were counted and distributed among three groups according to

the staining results. For each of the experiments, 1100–1400 cells
were counted in total.

Statistical Analysis
The effects of the treatment, strain, sampling time (i.e., before
and after desiccation), and their interactions on the proportion of
dead cells were tested by repeated measures analysis of variance
(ANOVA) using S-plus ver. 4.5 (Statistical Sciences, 1999). The
repeated-measure factor (the qualitative independent variable)
was the within-subjects factor, while the dependent quantitative
variable on which each participant (one replicate of a strain) mea-
sured was the dependent variable (in proportion of dead cells).
Tests of normality and equality of variances were performed and
the data were found to be non-normal. Therefore, the dependent
variable (proportion of dead cells) was arcsin transformed before
using ANOVA.

Estimation of Water Content
Ten pieces of the biofilms of strains 816 and 845 CCALA were
placed on thin squares of aluminum foil and desiccated in the
same way as in the experiments. The samples were weighted on
analytical-grade scales before and after oven drying for 5 h at
102◦C. The water content was expressed per unit of dry mass.

Results

The general scheme of the experimental procedure is shown
in Figure 1. All experiments were run in triplicate, i.e.,
pre-cultivation and cultivation in biofilms, subsequent pre-
desiccation treatments, desiccation at both regimes, and viability
tests were run three times separately for each of the strains.

Morphology and Viability of Cells in Biofilms
Cyanobacterial cultures grown on glass slides formed thin
biofilms, with loosely arranged filaments (Supplementary Figure
S1). This cultivation regime provided consistent conditions for
growth in terms of nutrient concentrations, light spectrum and
intensity, and gas exchange.

Under optimal conditions, the cells were uniform in size and
morphology, had an intense blue–green color and fluorescence of
phycobiliproteins, well-pronounced thylakoids, lacked cell inclu-
sions, and were arranged in long filaments (Figure 2A). The
viability of these cells was confirmed by the lack of SYTOXGreen
staining (Figure 2B) and the accumulation of numerous small
CTC-formazan deposits within each cell (Figure 2C). The cul-
tures had a low percentage of dead (0.9–4.6%) and injured cells
(0–2%) in different replicates/strains (Figure 3A). Most of the
injured and dead cells occurred at the polar ends of filaments,
possibly because of mechanical disruption of filaments during the
staining procedure (Figure 2B).

All the cultures kept for a week at +4◦C were well-pigmented,
but variable to some extent in morphology and size. In most
of the replicates, the cells had granulated cytoplasm apparently
due to the accumulation of cyanophycin (irregularly shaped
granules), and often formed necridic cells, resulting in the split-
ting of trichomes into short fragments (Figure 2D). There were
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FIGURE 1 | Flow diagram of the experimental procedure for each of the strains.

higher numbers (Figure 3A) of injured (0–4.2%) and dead cells
(2.4–13% in different replicates/strains). The dead cells mostly
occurred singly or in rows within filaments and were often
represented by necridic cells (Figure 2E). Injured cells, both
SYTOX and CTC-positive, were often adjacent to necridic cells
(Figures 2E,F).

Storing the cultures for 15–20 days in nitrogen-depleted
medium led to a degradation of thylakoids, cell bleaching
(Figure 2G), and a decomposition of phycobiliproteins, as was
seen from the absence of their fluorescence in the red part of the
spectrum. Despite this fact, the cultures maintained metabolic
activity as was seen from the accumulation of CTC-formazan
crystals in 87.4–93.5% of the cells (Figures 2G,I), of which 0.6–
8.4% had permeabilized membranes (i.e., injured cells). Under
nitrogen limitation, the quantity of dead cells (Figure 3A),
including those with visibly deteriorated nucleoids, was the high-
est of all treatments (5.4–14.7%); they were scattered between
filaments and across a sample without any obvious pattern
(Figures 2G–I). Live, dead, and injured cells were morpho-
logically similar, or, more often, dead cells appeared decayed
(Figures 2G–I). Nucleoids were either unfolded or slightly con-
densed (data not shown). A proportion of cells accumulated
polyphosphate deposits presumably, detected according to a shift
in DAPI fluorescence from blue to yellow–green (data not shown,
see Tashyreva et al., 2013). Distribution of live, injured, and dead
cells were not significantly different among strains in each of the
pre-desiccation treatments (see statistical comparisons at the end
of results).

Cell Viability after Complete Drying (12% RH)
Samples that underwent a complete drying regime appeared dry
after a few minutes under the stream of air. The samples con-
tained 0.03 ± 0.001 g water g−1 dry mass (mean ± SD) after
drying over silica gel for 2 weeks. No live or viable but injured
cells were detected upon rehydration in any of the replicates

grown under optimal (control) conditions (Figure 3B). In sam-
ples treated with low temperature and nitrogen depletion prior
to drying, no viable cells were observed either (Figure 3B),
despite the presence of sheaths in the nitrogen starved cultures
(Figure 4C). In all treatments/replicates, the filaments started to
disintegrate into single cells a short time after rehydration (usu-
ally within 1 h) followed by their quick decay (Figures 4A,B).
Fluorescence staining (data not shown) revealed that all the cells
were CTC-negative and SYTOX Green-positive, indicating the
absence of respiration and damage to their plasma membranes.
A small number of cells were both SYTOX Green and DAPI-
negative, which indicated deterioration of intracellular compo-
nents, including nucleoids. This staining pattern corresponded to
the category of injured and inactive, or dead cells. The growth test
showed consistent results – no growth was detected after 5 weeks
of cultivation, and the biomass used as inoculum underwent lysis.
No statistical analysis was applied to this group.

Cell Viability after Incomplete Drying (85%
RH)
The samples contained 0.23 ± 0.01 g water g−1 dry mass
(mean ± SD) after being stored over KCl solution for 2 weeks.
In cultures grown under optimal conditions, only a few viable
cells (5–20) per whole sample (i.e., millions of cells) were detected
in some of the replicates, whereas others lacked any viable cells
(Figure 3C). The absence of viable cells also proves that the
drying treatment itself did not induce development of desic-
cation tolerance. Those solitary cells were scattered uniformly
across the sample. They were SYTOX Green-negative and accu-
mulated CTC-formazan deposits (data not shown). However,
the deposits were only few and appeared much bigger in size
(Figure 5A) compared to those in non-desiccated cells grown
under optimal conditions (Figures 2A,C). A similar pattern of
CTC-formazan deposition was observed in cells treated with
sub-lethal concentrations of formaldehyde, possibly indicating
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FIGURE 2 | Microcoleus vaginatus 858 CCALA before desiccation.
(A–C) Culture grown under optimal conditions, viewed by light microscopy
(A), stained with SYTOX Green (B), and CTC (C) fluorescent dyes; injured
cells are marked with arrows. (D–F) Culture, kept at low temperature,
viewed by light microscopy (D), stained with SYTOX Green (E), and CTC

(F); necridic (dead) cells are SYTOX Green-positive and CTC-negative
(asterisks); the injured cells are both SYTOX Green and CTC-positive
(arrows). (G–I) Nitrogen-starved culture viewed by light microscopy (G),
stained with SYTOX Green (H), and CTC (I); dead (in this case, decayed)
cells are marked with asterisks. Scale bars are 20 µm.

cellular damage which cannot be tracked with SYTOX Green
staining (Tashyreva et al., 2013). Apparently, such cells did not
propagate because there was no evidence of growth, even after
5 weeks of cultivation.

Cultures that underwent low temperature treatment prior
to desiccation showed complicated patterns of their desiccation
response. No viable cells were detected upon rehydration in two
of three replicates of strain 858 CCALA and in one of strains 845
and 816 CCALA. The biomass in the remaining replications con-
tained 5–15% of viable cells clustered together (Figure 3C). The
viable cells contained CTC-formazan crystals, which ranged from
a few big ones to numerous small ones (Figures 5B,C), and were
SYTOX Green-negative.

Nitrogen-depleted cultures showed the highest rate of desic-
cation survival. The proportion of viable cells was 39.8–51.3%
for strain 845 CCALA, 41.2 to 65.9% for 858 CCALA, and
56.8 to 62.3% for strain 816 CCALA (Figure 3C). Fluorescence
staining revealed that cells that survived desiccation resumed

their metabolic activity (i.e., respiration) within minutes after
rehydration; their CTC-formazan deposits ranged from a few
big ones to numerous small crystals (Figure 5F). Those cells
remained intact according to the absence of SYTOX Green
staining (Figure 5E), contained unfolded nucleoids (stained
with DAPI, data not shown), and were not notably morpho-
logically different from non-viable cells in the same sample
(Figure 5D). The number of injured cells was very low after dry-
ing in all the replicates/strains, possibly because the injured cells
were either not able to survive desiccation, or recovered after
rehydration.

Statistical evaluation of the proportion of dead cells in the
samples revealed that treatments (especially nitrogen deple-
tion) prior to desiccation (85% RH) significantly improved des-
iccation survival (ANOVA for repeated measures, interaction
Time × Treatment, F = 134.61, p < 0.001), i.e., the num-
ber of dead cells was the lowest after the nitrogen starvation
treatment, followed by the low temperature treatment. Low
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FIGURE 3 | Distribution of live, injured and dead cells in cultures
(means) before desiccation (A), and after rehydration from complete
(B), and incomplete (C) desiccation regimes.

temperature treatment prior to desiccation (85% RH) also sig-
nificantly improved survival compared to control (ANOVA for
repeated measures, interaction Time × Treatment, F = 14.68,
p < 0.001) when tested separately. No significant difference
was found in the response of particular strains to desiccation
during the whole experiment (ANOVA for repeated measures,
interaction Time × Strain, F = 0.05, p = 0.95) and no sig-
nificant difference between strains was found in the effect of
treatment prior to desiccation on their survival (ANOVA for
repeated measures, interaction Time × Strain × Treatment,
F = 0.45, p = 0.78); this means that all the strains

responded similarly to desiccation as well as to pre-desiccation
treatments.

Discussion

Although Microcoleus species inhabit water-deficient habitats
(Pentecost and Whitton, 2012), no attempts have been made to
determine whether they are able to survive complete desicca-
tion. This ability gives a great advantage to organisms inhabiting
arid regions and periodically dry environments. Complete des-
iccation is commonly defined as water loss to a content which
is below 0.1 g g−1 dry biomass (Alpert, 2006) This impor-
tant threshold corresponds to the minimum amount of water
needed to form a monolayer around cell proteins and mem-
branes (Alpert, 2006). Upon removal of this water, cells of most
organisms sustain lethal damage due to irreversible changes in
the native structure of dehydrated membranes and proteins as
well as chemical cross-linking between proteins, sugars, and
nucleic acids (Potts, 1994). The ability to survive such an exten-
sive water loss is termed anhydrobiosis, which is a rare property
among organisms (Alpert, 2006). The upper limit for complete
desiccation (i.e., 0.1 g of water g−1 dry biomass) is roughly
equivalent to air dryness at 50% RH and 20◦C (Alpert, 2005)
or 30–40% RH (Sun, 2002), i.e., conditions that readily occur
in terrestrial cyanobacteria habitats, especially in arid regions.
Natural rates of desiccation often lead to even more extreme
water loss; in hot deserts dry mass water content may drop to
only 5% (ca. 0.05 g of water g−1 dry biomass) or less (Belnap,
2003).

Among cyanobacteria, onlyNostoc and Chroococcidiopsis have
been shown to withstand complete desiccation (Hawes et al.,
1992; Billi and Potts, 2002). These species often co-exist with
Microcoleus species in both hot and cold deserts (Hawes et al.,
1992; Wynn-Williams, 2000; Jungblut and Hawes, 2005), e.g.,
as a part of soil crust communities (Belnap, 2003). However,
we found that none of the Microcoleus strains were able to tol-
erate complete desiccation, even when exposing them to low
temperature and nitrogen starvation prior to desiccation. Our
results suggest that Microcoleus species lack the ability to tol-
erate complete desiccation to 0.03 g of water g−1 dry mass (as
tested in this study), unlike Nostoc, which survives in a com-
pletely dry state for decades with only 0.02 g of water g−1

dry mass (Billi and Potts, 2000). There are no data available
whether the amount of water below the 0.1 g of water g−1

dry biomass threshold affects desiccation survival of cyanobac-
teria. However, we assume that Microcoleus species, which failed
to survive desiccation at 10–13% RH, would also not tolerate
desiccation at higher RH values, which cause the removal of a
monomolecular layer of water (i.e., up to 30–50% RH). That is
because either partial or extensive removal of the monomolecular
water shell around biomolecules requires cells to possess funda-
mentally different adaptations, e.g., replacement of water with
non-reducing sugars (Crowe et al., 1990, 2002; Potts, 1994). In
our experiments, a consistent drying rate of the thin biofilms
was a very important condition for studying the tolerance of
strains to complete desiccation. Drying of thick material would
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FIGURE 4 | Microcoleus vaginatus 858 CCALA after rehydration from complete desiccation, viewed by light microscopy. Cultures grown under optimal
conditions (A), and kept at low temperatures (B), both containing filaments disintegrated into single cells; nitrogen-starved culture (C) with filaments enclosed in
sheaths. Scale bars are 20 µm.

FIGURE 5 | Microcoleus vaginatus 858 CCALA after rehydration from
incomplete desiccation (85% RH). (A) Culture grown under optimal
conditions containing cells with a few large CTC-formazan crystals (arrows),
which are visible under transmitted light as dark-red deposits. (B,C) Culture,
kept at low temperature, viewed by light (B), and fluorescence (C) microscopy;

cells contain CTC-formazan crystals, which range from a few big ones
(asterisks) to numerous small ones (arrows). (D–F) Nitrogen-starved culture,
viewed by light microscopy (D), and stained with SYTOX Green (E), and CTC
(F); live cells are SYTOX Green-negative and CTC-positive; dead cells are
SYTOX Green-positive and CTC-negative. Scale bars are 20 µm.

result in higher hydration of the inner layers of biomass, since
the outer dry layers might provide a physical barrier against
evaporation. Drying of thin biofilms insured against a false
interpretation of desiccation tolerance, because even a very
small increase in cell water content might be critical for cell
survival.

Nevertheless, the results show that Microcoleus strains are
able to survive extensive though incomplete dehydration to only
0.23 g of water g−1 dry biomass. Their resistance is not a con-
stitutive property since cultures in their active phase of growth
under optimal conditions failed to survive this drying treat-
ment. We found that resistance to dehydration is inducible by

prior exposure to suboptimal conditions, to some extent by low
temperature, and to a greater extent by nitrogen starvation.

It is known that both freezing at natural rates (<10◦Cmin−1)
and desiccation stresses result in loss of intracellular water, there-
fore protective mechanisms to these stresses frequently overlap
(Mazur, 1984; Holmstrup et al., 2002; Tashyreva and Elster, 2012).
Thus, this may explain why transfer of the cultures to low tem-
perature might promote their acclimation not only to freezing,
but also to drying, and act as a direct inducer of desiccation resis-
tance. The observed patchiness of viable biomass after the drying
treatment, and the absence of viable cells in some of the replicates,
may be explained by partial acclimation to dehydration, which
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allowed for the survival of cells only in denser parts of biofilms,
which presumably contained slightly more water.

It has been previously widely discussed that cultures of het-
erotrophic bacteria and yeasts that entered a stationary phase of
growth and starved cultures display enhanced resistance to heat
shock and osmotic stress, and better survive freezing and des-
iccation (Gilbert et al., 1990; Jenkins et al., 1990; Morgan et al.,
2006; Welch et al., 2013). The stationary phase is associated with
a complex of stress factors, depending on the specific condi-
tions. However, it is commonly accepted that nutrient starvation
is one of the main inducers for transition of bacterial cultures
into a stationary phase of growth (Siegele and Kolter, 1992; Gefen
et al., 2014). The lack of nutrients triggers not only a response
directed to cope with starvation, but also a general stress response
that provides cross-protection against different kinds of environ-
mental insults (McCann et al., 1991; Siegele and Kolter, 1992).
Moreover, starved cells often have a higher rate of stress toler-
ance than cells pre-adapted to a particular stress by exposing cells
to non-lethal levels of the stress factor. For example, a short star-
vation episode provided Escherichia coli with stronger osmotic
resistance than treatment with hyperosmotic solutions (Jenkins
et al., 1990). Apparently, nitrogen starvation, apart from other
stationary phase stresses, plays a key role in the acquisition of
desiccation tolerance by cyanobacteria.

Microorganisms are able to survive desiccation conditions
through avoidance of water loss (including forming spores that
retain water), or true desiccation tolerance by surviving extensive
water loss (Potts, 1994; Holzinger and Karsten, 2013). Desiccation
tolerance is generally defined as the ability to survive severe
water loss; however, there is no clear threshold between desic-
cation tolerant and sensitive organisms (Walters et al., 2002).
Some authors suggest that desiccation tolerant organisms are
able to survive dehydration below critical points of 0.25 and
0.3 g of water g−1 dry mass, at which point the hydration shell
of molecules is gradually lost (Hoekstra et al., 2001), or loss of
up to 95% of their initial water (Toldi et al., 2009). Since the
studied strains failed to survive complete desiccation, it seems
that Microcoleus species are not truly anhydrobiotic, but evi-
dently tolerant tomilder desiccation rates. Therefore, we consider
that their survival strategy is attributed to tolerance of exten-
sive dehydration, which is induced by suboptimal conditions,
but avoidance of complete desiccation. Microcoleus avoids com-
plete desiccation through active migration of organisms to more

hydrated conditions (Garcia-Pichel and Pringault, 2001), reten-
tion of water by mucilage EPS sheaths (Chen et al., 2012) as
well as by formation of thick multilayered mats that decreases
the surface-to-volume ratio. In addition, such population struc-
tures generate heterogeneous conditions, under which different
parts may be limited with light and nutrients. It may stimulate
higher stress resistance in some of the cells. Hence, those cells
might also be responsible for survival of even sudden desiccation
episodes.

The three studied Microcoleus strains isolated from terrestrial
habitats of the Arctic showed strikingly similar patterns of their
response to drying. However, the results of this study do not
rule out the possibility that otherMicrocoleus species/strains from
extreme habitats (e.g., hot or cold deserts) or aquatic environ-
ments would respond to desiccation differently. Stronger desic-
cation tolerance might be induced by a stress factor other than
nitrogen limitation, e.g., lack of another nutrient(s), changes in
the light regime, slow dehydration, or by a combination of all the
mentioned factors. Nevertheless, the results of this study provide
an important background for further research on Microcoleus
desiccation tolerance.
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