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Co-recognition of β-glucan and chitin
and programming of adaptive
immunity to Aspergillus fumigatus
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The prevalence of fungal infections has increased concurrently with increases in immune
suppressive therapies and susceptible individuals. Opportunistic fungal pathogens such
as Aspergillus fumigatusmay exhibit invasive growth and dissemination resulting in a high
mortality rate. Herein, we discuss how immune sensing of germination directs innate
immune responses and programs adaptive responses that could promote or impair
immune protection during periods of heightened susceptibility. In infected individuals,
Th1 responses are the most protective, while Th2 responses lead to poor disease
outcomes. In particular, the roles of β-glucan and chitin co-recognition in shaping Th1-
and Th2-type immunity to fungal infection are explored.We discuss how fungal responses
to environmental stresses could result in decreased immune protection from infection,
particularly in response to anti-fungal drugs that target β-glucan synthesis. Furthermore,
we consider how experimental modulation of host-pathogen interactions might elucidate
the mechanisms of protective and detrimental immunity and the potential of current
and future studies to promote the development of improved treatments for patients that
respond poorly to existing therapies.

Keywords: Aspergillus fumigatus, fungal infection, aspergillosis, innate recognition, adaptive immunity, β-glucan,
chitin, cell wall modulation

Introduction

Aspergillus fumigatus is an opportunistic fungal pathogen abundant in indoor and outdoor envi-
ronments, causing fungal infection in immune suppressed individuals and exacerbating chronic
pulmonary conditions (Hohl and Feldmesser, 2007; Kwon-Chung and Sugui, 2013). The small size of
A. fumigatus conidia promotes aerosol formation and thus frequent contact with airways of potential
hosts. Small to moderate amounts of conidia are often removed by alveolar macrophages without a
significant inflammatory response. When larger numbers of conidia are inhaled, more conidia are
allowed to germinate, stimulating in an inflammatory response. Swelling of A. fumigatus conidia
follows the degradation of the outermost hydrophobic rodlet layer, thus exposing the inner cell wall
layer composed of a complex network of immune-stimulating polysaccharides (Thau et al., 1994;
Latgé, 1999; Paris et al., 2003; Aimanianda et al., 2009). Since these cell wall components are not
found inmammalian hosts, specific host recognition receptors have evolved as amechanism to signal
appropriate early inflammation and the subsequent development of protective innate and adaptive
immune responses.

Recent studies have indicated a variety of responses to particulate forms of fungal pathogen-
associated molecular patterns (PAMPs). However, in natural A. fumigatus exposure and infection,
fungal PAMPs are recognized in concert on the germinating conidial surface, and it is thus likely
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that this combined recognition results in programming of
immune profiles not observed in studies of purified, particulate
cell wall components. Of the PAMPs contained in the cell wall
of A. fumigatus, many studies have focused on the covalently
linked fibrillary core polysaccharides β1-3-glucan (β-glucan) and
chitin; both known to be immune stimulatory in purified, partic-
ulate form (Lenardon et al., 2010; Drummond and Brown, 2011).
Furthermore, the amorphous cell wall components α1-3-linked
glucan (α-glucan), galactomannan, and galactosaminogalactan
(GAG) also act to modify immune responses to infection (Bozza
et al., 2009; Gravelat et al., 2013; Latge andBeauvais, 2014), though
their direct contributions to the development of protective or
detrimental immunity are less clear. Recent studies reported that
the expression of fungal PAMPs varies considerably depending on
available nutrients, temperature, oxygen levels, and the presence
of anti-fungal drugs (Verwer et al., 2012; Shepardson et al., 2013;
Beauvais et al., 2014). When combined, these and other potential
cellular and metabolic stressors may ultimately result in distinct
patterns of recognition and cell signaling with the potential to
program equally distinct profiles of adaptive immunity. However,
our current understanding of these pathways of recognition and
their influence on adaptive immunity is basic and preliminary,
and more detailed studies of combined recognition of fungal
PAMPs during germination are needed. Herein, we examine the
role of individual and aggregate pattern recognition in the pro-
gramming of immunity to A. fumigatus, focusing on the immune
responses to β-glucan and chitin. We also consider the evidence
that fungal cell wall modulation due to environmental stresses
like antifungal drug exposure could either enhance or diminish
immune protection from infection.

Early Recognition of Fungal Germination

β-Glucan/dectin-1
The A. fumigatus cell wall consists of covalently bound β-glucan,
chitin, galactomannan and α-glucan that are absent in mam-
mals, and thus present prime targets for pattern recognition
receptors (PRRs) on host cells (Chai et al., 2011). β-glucan is
recognized by the C-type lectin receptor dectin-1 and has been
studied extensively with infection models of A. fumigatus and
other pathogenic fungi (Drummond and Brown, 2011). Down-
stream signaling of dectin-1 activation promotes cellular anti-
fungal responses including phagocytosis, ROS production, and
inflammatory cytokine production. Mutations in human dectin-
1 rendered individuals more susceptible to invasive aspergillosis,
and infected dectin-1-deficient mice displayed increased pathol-
ogy with decreased neutrophil recruitment and impaired cytokine
production (Steele et al., 2005; Gersuk et al., 2006; Cunha et al.,
2010; Gessner et al., 2012). The inflammatory response initiated
by binding of dectin-1 receptor on resident cells is strength-
ened when combined with signaling through toll-like receptors
(TLR) that are co-expressed within an immunological synapse
(Goodridge et al., 2011; Inoue and Shinohara, 2014), result-
ing in synergistically increased cytokine production and acti-
vation of inflammatory signaling pathways (Mambula et al.,
2002; Hohl et al., 2005; Gersuk et al., 2006; Dennehy et al.,
2008). Thus, dectin-1 and associated PRR recognition provide

immune signals essential for protective immunity to A. fumigatus
infection.

Conidial surface β-glucan is initially recognized by epithelial
cells, macrophages and dendritic cells (Drummond and Brown,
2011; Osherov, 2012). Epithelial cells act as the first barrier and
immunologically active surface in host tissues, serving as non-
professional phagocytes where engulfed conidia persist in the
pulmonary epithelial space (Heinekamp et al., 2015). Airway
epithelial cells activated a panel of antimicrobial genes in a β-
glucan-mediated response to A. fumigatus (Evans et al., 2010; Sun
et al., 2012), and secreted TNF-α, IL-8 (CXCL-8) and GM-CSF
(Sun et al., 2012), indicating an important role for these cells in
neutrophil recruitment that is essential for protection from inva-
sive infection (Bonnett et al., 2006; Mircescu et al., 2009). Similar
to epithelial cells, alveolar macrophages from dectin-1 knockout
mice lacked the ability to produce IL-1α/β, TNF-α, CCL3/4 (MIP-
1α/β), and CXCL1 (KC) in response to A. fumigatus (Werner
et al., 2011). A dectin-1/CARD9 pathway promoted early neu-
trophil influx, although initial recruitment may be mediated by a
hypoxia inducible factor-α/IL1R1/MyD88 pathway (Shepardson
et al., 2014; Caffrey et al., 2015; Jhingran et al., 2015). In neu-
trophils, β-glucan recognition by dectin-1 promoted production
of reactive oxygen species (Kennedy et al., 2007). Neutrophils
produced dectin-1-mediated IL-17A in the presence myeloid cells
in response to A. fumigatus (Werner et al., 2011) that likely serves
as a feedback signal for increased neutrophil recruitment via
stimulation of epithelial cells to produce TNF-α, IL-8, and G-CSF
(Iwakura et al., 2011). In addition to neutrophils, NK cells are
recruited early after A. fumigatus infection by a CCL2-dependent
mechanism, and provide protection through IFN-γ secretion and
subsequent activation of macrophages (Morrison et al., 2003;
Park et al., 2009) and also potentially through enhanced neu-
trophil killing (Roilides et al., 1993). Inflammatory monocytes
also provide protection from invasive infection, similarly in part
by enhancing neutrophil conidiacidal activity (Espinosa et al.,
2014). In DCs, TLR and dectin-1 signaling mediated β-glucan-
induced secretion of TNF-α and IL-12 (Gantner et al., 2003;
Mezger et al., 2008). In response toA. fumigatus conidia, Dectin-1
also promoted early lung protection and fungal allergy via secre-
tion of IL-22, a cytokine important in activation of antimicrobial
effectors at mucosal surfaces (Gessner et al., 2012; Lilly et al.,
2012). Thus, dectin-1 recognition of β-glucan exposure in A.
fumigatus results in the activation of an array of inflammatory
cytokines and chemokines that promote early protection from
infection.

Chitin
Chitin is a fungal cell wall polysaccharide that is abundant
in parasites, insects, and crustaceans (Da Silva et al., 2010;
Lenardon et al., 2010;Muzzarelli, 2010). Chitinmicrofibrils, cova-
lently linked with β-glucan, impart a strong rigidity to the cell
wall of fungal hyphae. The results of several studies examining
immune responses to purified chitin indicate that particle size,
concentration, and degree of acetylation are important deter-
minants of cytokine profiles and inflammatory cell recruitment
(Shibata et al., 1997; Da Silva et al., 2009; Wagener et al., 2014).
Low concentrations of chitin particles between 1 and 10 µm
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induced macrophage IL-10 secretion, while increased concentra-
tions resulted in increased TNF secretion. In contrast, larger chitin
particles (50–100µm)promoted lung eosinophilia and alternative
macrophage activation (Reese et al., 2007; Kogiso et al., 2011;
Roy et al., 2012). Chitin exposure increased expression of lung
epithelial CCL2, IL-25, IL-33, and TLSP that mediated recruit-
ment of eosinophils and promoted M2 (alternatively activated)
macrophage activation (Islam and Luster, 2012; Roy et al., 2012;
Van Dyken et al., 2014). Furthermore, chitin-induced IL-25, IL-
33, and TLSP induced type 2 innate lymphoid cells (ILC2) to
secrete IL-5 and IL-13, cytokines essential for eosinophil recruit-
ment and M2 macrophage activation (Van Dyken et al., 2014). In
addition to purified particles, inhaled fungal chitin from house
dust, hyphal extracts, and conidia also promoted lung eosinophil
recruitment in mice that was decreased in the presence of con-
stitutively expressed acidic mammalian chitinase (AMCase; Van
Dyken et al., 2011; O’Dea et al., 2014). These studies demonstrate
that innate recognition of purified or fungal chitin induces recruit-
ment of eosinophils and promotes M2 macrophage activation.

In contrast to β-glucan, a distinct chitin recognition receptor
has not been fully characterized. To date, the only chitin-specific
receptor identified is FIBCD1, a type II transmembrane protein
apically expressed in gut tissues (Schlosser et al., 2009). How-
ever, several PRRs specific for other microbial PAMPs are associ-
ated with chitin-mediated responses. Chitin-inducedmacrophage
secretion of IL-17A and TNF-α were dependent on the TLR-
2/MyD88 pathway and dectin-1/TLR2 expression, respectively
(Da Silva et al., 2008, 2009). IL-10 secretion in response to smaller
chitin particles was dependent on mannose receptor, NOD2 and
TLR9 (Wagener et al., 2014). In addition, the cytosolic C-type
lectin RegIIIγ also binds chitin (Cash et al., 2006). Notably, the
well-described ligand shared by TLR2, NOD2, and RegIIIγ is
peptidoglycan, an essential cell wall component of gram-positive
bacteria that, like chitin, consists of a carbohydrate backbone con-
taining N-acetylglucosamine residues (GLcNAc). Furthermore,
RegIIIγ and other C-type lectins that bind GlcNAc containing
polysaccharides also bind mannan (Drickamer, 1992; Cash et al.,
2006). It is possible that this structural similarity enables man-
nose receptor-mediated responses to chitin particles. The innate
immune signals involved in chitin recognition are nonetheless
complex, and future studies are needed to determine the impor-
tance of each of these recognition molecules in innate immune
responses to chitin-containing pathogens.

Innate Immune Effectors Program Adaptive
Immunity

Although alveolar macrophages and neutrophils are critical for
killing dormant or germinating conidia and hyphae, monocytes,
NK cells, NKT cells, plasmacytoid DCs, and eosinophils may
also provide early protection from infection (Morrison et al.,
2003; Mircescu et al., 2009; Cohen et al., 2011; Ramirez-Ortiz
et al., 2011; Espinosa et al., 2014; Lilly et al., 2014). Furthermore,
cytokines produced by these cells are involved in the program-
ming of protective or non-protective adaptive immune responses.
In particular, CD4 (T-helper) and CD8 (cytotoxic) T cells pro-
vide significant protection from A. fumigatus infection and are

therefore considered important targets for vaccination studies
(Cenci et al., 2000; Perruccio et al., 2005; Chai et al., 2010; Romani,
2011; Carvalho et al., 2012). However, Th1 responses are the most
protective, while Th2 responses result in poor disease outcomes.
The level of protection conferred by Th17 cells and IL-17 is not
clear, as conflicting studies reported impaired or enhanced early
protection after antibody depletion of IL-17A (Zelante et al., 2007;
Werner et al., 2009). In amodel of fungal keratitis, IL-17Awas pro-
tective, although the cellular sources of IL-17A attributed to this
protection included neutrophils in addition to Th17 cells (Taylor
et al., 2014). In addition to neutrophils, γδ T cells may also be
an important source of IL-17A, particularly in the lung, although
their role in protection is unclear and may be subset-dependent
(Roark et al., 2008; Romani et al., 2008). NK and invariant NKT
cells may be early sources of IFN-γ during infection (Bouzani
et al., 2011; Cohen et al., 2011), while basophils or NKT cells
may provide innate production of IL-4 in the development of
allergy/Th2 responses (Taniguchi et al., 2003; Liang et al., 2012).
Therefore, in addition to proinflammatory cytokines produced by
innate cells, early production of T helper cytokines provides an
early window into the subsequent development of protective or
detrimental adaptive responses.

Perhaps the most consequential cell in initiating adaptive
immunity to fungal infection is the DC (Romani, 2011; Wuthrich
et al., 2012). Initiation of a protective adaptive immune response
against A. fumigatus is partly dependent on the actions of
DCs stimulated through activation of fungal PRRs. Monocytes
recruited into the lung shortly after A. fumigatus infection differ-
entiated into DCs that were critical for induction of Th1 responses
that are increased in the absence of dectin-1 (Hohl et al., 2009;
Rivera et al., 2011). Rather than promote Th1 responses, dectin-
1 recognition induced Th17 responses to A. fumigatus (Werner
et al., 2009; Rivera et al., 2011). Accordingly, direct stimulation of
DCs with purified β-glucan stimulated TNFα, yet inhibited TLR-
mediated induction of IL-12 (Huang et al., 2009). DC priming
of Th2 responses was promoted by the epithelial cytokines TSLP
and IL-33 that were also induced in epithelial cells by chitin
stimulation (Paul and Zhu, 2010; Van Dyken et al., 2014). Chitin
particles also induced generation of C3a in the lungs of mice that
is required for DC stimulation of Th2 responses to Aspergillus
fumigatus hyphal extracts (Roy et al., 2013). DCs thus respond
to different fungal PAMPs with distinct cytokine profiles and
differentially prime Th responses.

Co-recognition of β-glucan and Chitin
and Programming of Adaptive Immunity

Although many studies have focused on responses to purified
fungal PAMPs, actual responses to viable A. fumigatus are pro-
grammed as a result of co-recognition of multiple PAMPs by
multiple PRRs after these ligands are revealed on the surface of
germinating conidia. Furthermore, since soluble forms of these
ligands are often inhibitory, it has been hypothesized that long
fibrillar polysaccharide fungal PAMPs are able to bind to mul-
tiple PRRs, thus increasing activation signals in PRR-expressing
cells (Latge, 2010). Recognition by multiple PRRs would also
be facilitated by clustering formations within the immunological
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FIGURE 1 | Early lung recognition of β-glucan and chitin
programs distinct profiles of cytokine secretion, leukocyte
recruitment, and adaptive immunity. Left, β-glucan stimulation.

Right, chitin stimulation. Recognition of germinating conidia or migration
of cells is displayed with green arrows, while cytokine stimulation is
shown with blue arrows.

synapse (Goodridge et al., 2011; Inoue and Shinohara, 2014).
Results of studies that examined the effects of co-recognition of
multiple PAMPs withmixtures of particles or in response to intact
conidia provide a contrast to studies focused solely on responses
to purified particles. For example, covalently-linked chitin-β-
glucan particles induced neutrophil and eosinophil recruitment as
well increased chitinase activity, TNF-α and TSLP production in
mouse lungs (Dubey et al., 2014). Furthermore, multiple aspira-
tions of viable A. fumigatus conidia activated Th1, Th2, and Th17
responses, and the relative expansion of these subsets may depend
on the dose, frequency of aspirations, and strain characteristics
of the conidia used (Fei et al., 2011; Murdock et al., 2011; O’Dea
et al., 2014). Our laboratory identified an isolate of A. fumigatus
(Af5517) that expressed increased levels of chitin and induced
Th2-skewed immunity in the lungs ofmice after repeated conidial
aspiration (O’Dea et al., 2014). However, an isolate that we identi-
fied as relatively low chitin-expressing (Af13073) induced allergic
sensitization when the frequency of aspiration was increased
and the interval between aspirations was decreased (Fei et al.,
2011; Lilly et al., 2012; Amarsaikhan et al., 2014). Interestingly,
dectin-1−/− mice displayed increased eosinophil recruitment in
response to single or multiple aspirations of Aspergillus coni-
dia (Werner et al., 2011; Mintz-Cole et al., 2012). Although not
discussed in either report, it is possible that co-recognition of
β-glucan by dectin-1 may inhibit signals generated by chitin
recognition and early programming of Th2 responses. However,
this effect may be overcome by allergic sensitization, as dectin-
1 deficient mice did not exhibit increased lung eosinophilia in a
model of fungal asthma (Lilly et al., 2012). This is not surprising,

considering other differences between models of exposure and
sensitization. For example, chitinase expression promotes allergic
inflammation in models of allergic sensitization, while in the
absence of sensitization chitinase expression decreases eosinophil
recruitment in response to chitin particles, fungal extracts, or
conidia (Zhu et al., 2004; Reese et al., 2007; Van Dyken et al.,
2011; O’Dea et al., 2014). Taken together, these results suggest
that in the absence of sensitization, co-recognition of chitin and β-
glucan may provide antagonistic signals that result in differential
programming of adaptive immunity to A. fumigatus.

Fungal Stress, Cell Wall Modulation, and
Consequences for Treatment of Infection

The clinical relevance of cell wall modulation is an important
area of current and future investigation. Several lines of evidence
suggest that stresses encountered by pathogenic fungi during
infection alter the metabolism and cell wall architecture, and thus
modulate immune responses toward non-protective programs of
adaptive immunity. In the case of A. fumigatus and other fungal
infection, Th2 immune responses inhibit protective immunity
(Cenci et al., 1998, 1999, 2000; Wuthrich et al., 2012). Eosinophils
may be partly responsible for this impairment, as Th2-responding
mice that lacked eosinophils increased fungal clearance, although
themechanism for this inhibition remains unknown (O’Dea et al.,
2014). Numerous reports have demonstrated alteration of fungal
cell wall architecture in response to changes in growth conditions
or environmental stresses encountered during infection, in both
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A. fumigatus and Candida albicans (Ene et al., 2012; Shepardson
et al., 2013; Beauvais et al., 2014). A. fumigatus growth under
hypoxic conditions resulted in increased cell wall β-glucan and
chitin that stimulated increased macrophage and neutrophil acti-
vation (Shepardson et al., 2013). More importantly, classes of
antifungal drugs that directly target the synthesis of cell wall chitin
and β-glucan modulate cell wall architecture over the course of
infection, and these changes may concomitantly affect host pat-
tern recognition and pathogen clearance. For example, echinocan-
dins directly target the synthesis of β-glucan, while nikkomycins
target chitin synthesis (Ostrosky-Zeichner et al., 2010). More-
over, growth of A. fumigatus in the presence of the echinocandin
caspofungin resulted in increased cell wall chitin, while growth
on nikkomycin Z increased β-glucan (Verwer et al., 2012). In a
mouse model of C. albicans infection, increased cell wall chitin
induced by caspofungin treatment mediated echinocandin resis-
tance (Lee et al., 2012). Thus, cell wall modulation in response
to the stresses of infection may influence the development of
protective immunity and the efficacy of antifungal drug treatment.

Summary/Conclusion

Among the cell wall components of A. fumigatus, chitin and
β-glucan may stimulate protective or detrimental immune

responses, depending on their level of expression and recognition.
Other cell wall components such as α-glucan, galactomannan, and
GAG may also promote or inhibit the development of protective
immunity, although their roles are less understood, and thus
require further examination. Early cellular and cytokine signals
induced by innate recognition of covalently linked β-glucan and
chitin initiate Th1/Th17 or Th2 responses that may alter the
balance between protective immunity and damaging inflamma-
tion (Figure 1). This co-recognition may be altered by pathogen
mutation or in response to environmental stresses encountered
during infection, particularly by exposure to antifungal drugs
that directly target β-glucan or chitin synthesis. However, the
consequences of changes in this recognition to protection from
infection are not well understood. Future studies will be required
to more completely define the development of protective immu-
nity at the level of host-pathogen interaction, with the goal of
introducing and validating new therapies that promote protec-
tion and/or target detrimental inflammatory processes that arise
within the spectrum of A. fumigatus-associated disease.
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