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The soil-borne pathogen Nocardia sp. causes severe cutaneous, pulmonary, and central
nervous system infections. Against them, co-trimoxazole (SXT) constitutes the mainstay
of antimicrobial therapy. However, some Nocardia strains show resistance to SXT, but
the underlying genetic basis is unknown. We investigated the presence of genetic
resistance determinants and class 1–3 integrons in 76 SXT-resistant Nocardia strains by
PCR and sequencing. By E test, these clinical strains showed SXT minimum inhibitory
concentrations of ≥32:608 mg/L (ratio of 1:19 for trimethoprim: sulfamethoxazole).
They belonged to 12 species, being the main representatives Nocardia farcinica (32%),
followed by N. flavorosea (6.5%), N. nova (11.8%), N. carnea (10.5%), N. transvalensis
(10.5%), and Nocardia sp. (6.5%). The prevalence of resistance genes in the SXT-
resistant strains was as follows: sul1 and sul2 93.4 and 78.9%, respectively, dfrA(S1)
14.7%, blaTEM-1 and blaZ 2.6 and 2.6%, respectively, VIM-2 1.3%, aph(3′)-IIIa 40.8%,
ermA, ermB, mefA, and msrD 2.6, 77.6, 14.4, and 5.2%, respectively, and tet(O),
tet(M), and tet(L) 48.6, 25.0, and 3.9%, respectively. Detected amino acid changes in
GyrA were not related to fluoroquinolone resistance, but probably linked to species
polymorphism. Class 1 and 3 integrons were found in 93.42 and 56.57% strains,
respectively. Class 2 integrons and sul3 genes were not detected. Other mechanisms,
different than dfrA(S1), dfrD, dfrF, dfrG, and dfrK, could explain the strong trimethoprim
resistance shown by the other 64 strains. For first time, resistance determinants
commonly found in clinically important bacteria were detected in Nocardia sp. sul1, sul2,
erm(B), and tet(O) were the most prevalent in the SXT-resistant strains. The similarity in
their resistome could be due to a common genetic platform, in which these determinants
are co-transferred.

Keywords: Nocardia species, co-trimoxazole, antimicrobial resistant determinants, integrons

Introduction

Nocardia sp. are branching, aerobic actinomycetes found in soil and water, but which have an
increasingly recognized role in human disease – a consequence of improvement in their iso-
lation from immunocompromised patients. Indeed, these opportunistic bacteria mainly infect
patients with deficient cell-mediated immunity (Minero et al., 2009; Ambrosioni et al., 2010;
Welsh et al., 2013). Cutaneous infections are more prevalent in immunocompetent patients, while
pulmonary and disseminated infections are more prevalent in the immunosuppressed patients

Frontiers in Microbiology | www.frontiersin.org 1 April 2015 | Volume 6 | Article 376

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2015.00376
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fmicb.2015.00376
http://journal.frontiersin.org/article/10.3389/fmicb.2015.00376/abstract
http://community.frontiersin.org/people/u/67699
http://community.frontiersin.org/people/u/219531
http://community.frontiersin.org/people/u/231213
http://community.frontiersin.org/people/u/231214
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Valdezate et al. Antimicrobial resistant determinants in Nocardia species

(Brown-Elliott et al., 2006; Minero et al., 2009). Delays in diagno-
sis, a consequence of the absence of specific signs and symptoms,
are associated with the progression to disseminated disease and
recurrence. In such cases, prolonged antimicrobial treatment is
required (Ambrosioni et al., 2010).

Traditionally, nearly all forms of nocardiosis have been treated
with co-trimoxazole (trimethoprim/sulfamethoxazole or SXT),
either alone or in combination with minocycline, amikacin, or
β-lactams, depending on the organ involved, the severity of infec-
tion, and the presence of comorbidities (Ambrosioni et al., 2010;
Welsh et al., 2013). SXT inhibits the enzymes involved in two
consecutive steps of bacterial folic acid metabolic pathway, i.e.,
dihydropteroate synthetase (DHPS) and dihydrofolate reductase
(DHFR; Huovinen, 2001).

The recognition of resistance to sulfonamide inNocardia sp. is
controversial (Deresinski, 2012). Great differences in the preva-
lence of sulfonamide resistance have been documented within
countries, e.g., Figure 1 of 42 and 2% have been reported from the
USA. These discrepancies have been related to methodological
differences and to difficulties in visually determining minimum
inhibitory concentrations (MICs) by the broth microdilution
(Uhde et al., 2010; Brown-Elliott et al., 2012). In our expe-
rience of identifying Nocardia submitted from across Spain,
this type of resistance is seen in a reduced number of strains
(less than 4%).

Descriptions of resistance determinants in Nocardia –
β-lactamases – or possible determinants – second gyrase B,
an extra copy of rpoB-, detected by partial or whole genome

sequencing (Laurent et al., 1999; Poirel et al., 2001; Vera-Cabrera
et al., 2013), led us to examine, in clinical strains strongly resistant
to SXT, the diversity of acquired antimicrobial resistance determi-
nants commonly detected in clinical and environmental bacteria
and the presence of integrons as vehicles of the resistance gene
recruitment.

Materials and Methods

Bacterial Strains and Identification
Seventy six clinical Nocardia strains belonging to 12 species
were selected according to their high SXT MIC values
(≥32:608 μg/ml). These strains were isolated from patients with
signs and symptoms of bacterial infection in 40 locations of
27 Spanish provinces between 2007 and 2013. All strains were
identified by 16S rRNA partial and full sequencing (Rodriguez-
Nava et al., 2006). The sequences were compared with those
deposited in the GenBank and leBIBi databases and returned
similarities of ≥99.6% with the type species strains (except for
five strains that could be identified only at the genus level)
according to previously used cut-off for this genus (Petti et al.,
2008).

The clinical samples were taken as part of standard patient care
and also for this purpose, the bacterial strains were sent to a public
national reference laboratory for their identification. This study
focused on bacteria and no identifiable human data were used,
therefore ethical approval was exempted.

FIGURE 1 | Antimicrobial resistance determinants detected in SXT-resistant Nocardia strains considering their susceptibilities to the other studied
antimicrobials. The number of strains for each category and agent were showed between brackets.
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Antimicrobial Susceptibility Testing
The Nocardia cultures were incubated during 48–72 h at 37◦C.
The colonies were swabbed from blood agar plate, using a ster-
ile swab and transferred to 4.5 ml of sterile water. To each flask,
5-mm sterile glass beads (5–7) were added and repeatedly vor-
texed, allowing clumps to settle (Clinical Laboratory Standards
Institute [CLSI], 2011). The final inoculum was adjusted to a
1.0 McFarland. MICs were determined by E test (BioMerieux,
Marcy-l’Étoile, France) onto 150 mm MH Blood agar plates,
with maximum of five strips for each plate (Glupczynski et al.,
2006). The tested agents were: SXT, amoxicillin/clavulanic acid,
cefotaxime, imipenem, amikacin, tobramycin, ciprofloxacin, ery-
thromycin, minocycline, sulfonamides, trimethoprim, and line-
zolid. The MICs were read after 48 h of incubation at 37◦C (or
after 72 h if growth was weak; Glupczynski et al., 2006). The
MIC was defined as the lowest concentration of antimicrobial
to inhibit visible growth, except in case of haziness where 80%
of inhibition was considered. Resistance was recorded accord-
ing to CLSI interpretative criteria (Clinical Laboratory Standards
Institute [CLSI], 2011); intermediate values were categorized as
resistant.

Detection of Genes for Antibiotic Resistance
and Integrases
The presence of antimicrobial resistance genes and class 1–3 inte-
grons was analyzed by PCR in all 76 SXT-resistant Nocardia
strains. Most of the resistance genes were chosen because of
the high frequency with which they appear in clinical and
environmental bacteria (given in Table 1). On the basis of
the gyrA sequence of Nocardia farcinica IFM 10152 (GenBank
accession no. AP006618), primers were used that included
the quinolone resistance-determining region (QRDR, 74–113
codons, 5′→3′), i.e., F+61 = CAGCAGGAGATGCAGAACAG,
and R−619 = TGTCCAGCGCCCAGTAGAT. PCR products
were resolved by electrophoresis on 2% agarose gels. All obtained
products were purified using ExoSAP-IT reagent (GE Healthcare,
Piscataway, NJ, USA) following the manufacturer’s recommenda-
tions, and sequenced by capillary electrophoresis in an ABI Prism
3100 apparatus (Applied Biosystems, Foster City, CA, USA)
using the corresponding amplification primers. BLAST software
was used to perform identity searches of the GenBank database
(http://www.ncbi.nlm.nih.gov).

Nucleotide Sequence Accession Numbers
The new sequences identified for int1, int3, sul1, sul2, dfrA(S1),
blaTEM-1, blaZ, VIM-2, aph(3′)-IIIa, gyrA, ermA, ermB, mefA,
msrD, tet(O), tetM, and tetL were deposited in the GenBank
database under accession numbers KM194583–KM194606.

Results

Distribution and Susceptibilities of
SXT-Resistant Nocardia Strains
The distribution of Nocardia species among the 76 SXT-resistant
strains was as follows: N. abscessus (n = 1), N. carnea (n = 8),
N. cerradoensis (n = 1), N. cyriacigeorgica (n = 5), N. farcinica

(n = 24), N. flavorosea (n = 5), N. nova (n = 9), N. otitidis-
caviarum (n = 3), N. rhamnosiphilia (n = 1), N. shimofusensis
(n = 1), N. transvalensis (n = 8), N. veterana (n = 5), and
Nocardia sp. (n = 5). These were isolated from 60 respira-
tory samples (56 sputum, one broncho-aspirate, three broncho-
alveolar lavage), six cutaneous abscess, one ulcer, one catheter, six
cerebral abscesses, one liver abscess, and one cardiac prosthesis.
By species, Table 2 shows non-susceptibility rates of the highly
SXT-resistant Nocardia strains (n = 76).

Distribution of Integrons and sul and dfr
Genes
Seventy five strains (98.68%) harbored class 1 and/or class 3 inte-
grons (Su et al., 2006; Ishikawa, 2011). Class 1 integrons were
more frequently detected than class 3 integrons [93.42% (71/76)
vs. 56.57% (43/76)]. The simultaneous presence of class 1 and 3
integrons was seen in 42.10% (32/76) of strains. There was no
correlation between species and the absence of class 3 integrons
(except in N. nova, in which 7/9 strains lacked such integrons).
High-level sulfonamide resistance is a consequence of the pres-
ence of sul1–sul3 (plasmid-borne variants of DHPS; Byrne-Bailey
et al., 2009; Gosia et al., 2009), and sul genes were found in 74
strains (97.36%): 71 strains (93.42%) had sul1, and 60 (78.94%)
had sul2. Both genes were found in 57 strains (75.0%). No class 2
integrons or sul3 genes were detected in any of the SXT-resistant
strains.

Of the 71 strains carrying sul1, 69 also carried intI1, and 39
also carried intI3. Of the 60 strains carrying sul2, 56 also carried
intI, and 34 also carried intI3. All the strains were fully resis-
tant to trimethoprim (MICs > 32 mg/L). When screening was
performed for the trimethoprim-insensitive dfr genes (known to
be horizontally transferable in Gram-positive organisms; Dale
et al., 1995; Perreten et al., 2005; Cattoir et al., 2009; Argudín
et al., 2011; López et al., 2012), i.e., dfrA(S1), dfrD, dfrF, dfrG,
and dfrK, dfrA(S1) was detected in 12 strains belonging to eight
species; no other dfr gene was detected. The deduced dfr pro-
teins for 11 strains were identical to those of Staphylococcus
epidermidis ATCC 12228 (NP_764674) and Listeria monocyto-
genes (AGU67290). One strain of N. farcinica showed a deduced
Dfr protein with 24 changes compared to that encoded by
dfrA(S1).

β-Lactamases and Metallo-β-Lactamases
Two types of β-lactamase gene were detected. The first, blaTEM−1,
was found in one strain of N. farcinica (isolated from a granu-
loma, with AMC, CTX, and IMP MICs of 32, 4, and 0.5 mg/L,
respectively), and in one of N. nova (isolated from sputum and
with corresponding MICs of 16, 4, and 2mg/L). The second, blaZ,
was found in one strain of N. veterana (isolated from sputum and
with corresponding MICs of 32, 2, and 0.03 mg/L) and in one
of N. flavorosea (isolated from sputum and with corresponding
MICs of 32, 0.15, and 0.012 mg/L).

No other β-lactamase genes, such as ampC, blaCMY−2, and
blaOXA were found (Bou and Martínez-Beltrán, 2000; Frye et al.,
2006; Henriques et al., 2006b). Primers pairs were also designed
on the basis of the FAR-1 and AST-1 sequences (GenBank
nucleotide nos. AF024601 and AF279904; Laurent et al., 1999;
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TABLE 1 | Overview of antimicrobial resistance genes and integrons screened and detected (in bold) in the high-level SXT-resistant Nocardia strains.

Antibiotic resistance
group

Encoded enzymes Target gene(s) or region Reference

Integrase genes Class 1 integrase
Class 2 integrase
Class 3 integrase

int1
int2
int3

Su et al. (2006)
Su et al. (2006), Ishikawa (2011)
Ishikawa (2011)

Folate pathway
inhibitors

Sulfonamide resistance Dihidropteroate synthetases (DHFS) sul1
sul2
sul3

Gosia et al. (2009)
Gosia et al. (2009)
Byrne-Bailey et al. (2009), Gosia et al.
(2009)

Trimethoprim resistance Dyhidrofolate reductases (DHFR) dfrA(S1)

dfrD,
dfrF
dfrG,

dfrK

Perreten et al. (2005), Argudín et al.
(2011)
Dale et al. (1995), Cattoir et al. (2009)
Cattoir et al. (2009)
Cattoir et al. (2009), Argudín et al.
(2011)
Argudín et al. (2011), López et al. (2012)

Betalactam resistance Class A betalactamases blaTEM

blaZ
blaSHV

Chouchani et al. (2012)
Perreten et al. (2005)
Henriques et al. (2006a), Azevedo et al.
(2013)

Class B betalactamasesa blaIMP−1−2−4−7−12, blaVIM−1−2−7, blaGIM−1,

blaSIM−1, blaSMP−1 blaNDM−1

Ellington et al. (2007)
Chen et al. (2011)

Class C betalactamases ampC
blaCMY,

Bou and Martínez-Beltrán (2000)
Frye et al. (2006)

Class D betalactamases oxa-1, oxa-2, oxa-3, oxa-4, oxa-7, oxa-10,
oxa-11, oxa-13, oxa-14, oxa-15, oxa-16,
oxa-17, oxa-19, oxa-21, oxa-28, oxa-30,
oxa-31, oxa-32, oxa-34, and oxa-35

Huovinen et al. (1988), Ouellette et al.
(1997), Henriques et al. (2006b)

Described Nocardia betalactamases FAR-1
AST-1

Poirel et al. (2001)
Laurent et al. (1999)

Aminoglycoside
resistanceb

Aminoglycoside-modifiying enzymes

acetyltransferase aac(6′ )-Ie-aph(2′ ′ )-Ia, Vakulenko et al. (2003)

phosphotransferases aph(2′ ′)-Ib, aph(2′ ′)-Ic, aph(2′ ′)-Id Schmitz et al. (1999)

aph(3′ )-IIIa Schmitz et al. (1999)

adenyltransferase ant(4′ ′) –Ia, ant(6′ )-Ia Clark et al. (1999), Vakulenko et al.
(2003)

16S rRNA methylases rmtA, rmtB, rmtC, rmtD, and armA Doi and Arakawa (2007)

Fluoroquinolones DNA gyrase mutations gyrA This study

Plasmid-mediated quinolone resistance (PMQR)
Aminoglycoside acetyl-transferase
Efflux pump of major facilitator subfamily

qnrA, qnrB, qnrC, qnrS
aac(6′ )-Ib
qepA

Robicsek et al. (2006), Kim et al. (2009)
Cattoir et al. (2007)
Park et al. (2006)
Kim et al. (2009)

Macrolides rRNA adenine N6-methyltransferases erm(A), erm(B), erm(C), Sutcliffe et al. (1996)

Esterases ere(A), ere(B), Sutcliffe et al. (1996)

MFS efflux proteins mef(A/E), msrA/B, msrD, Sutcliffe et al. (1996), Malhotra-Kumar
et al. (2005), Lüthje and Schwarz (2007)

Macrolide 2′-phosphotransferases mph(A) Sutcliffe et al. (1996)

Tetracycline Ribosomal protection protein genes tet(O), tet(M) Ng et al. (2001)

Efflux proteins tet(E), tet(G), tet(K), and tet(L) Ng et al. (2001)

Linezolid 23S rRNA, cfr Marshall et al. (2002), Kehrenberg and
Schwarz (2006)

aScreening only in strains with IMI MIC values ≥ 1mg/L; bgentamicin testing was not included.

Poirel et al., 2001); but again, no target sequences were detected.
Of the metallo-β-lactamases (IMP, VIM, SPM-1, GIM-1, SIM-1,
NDM-1; Ellington et al., 2007; Chen et al., 2011) sought, only

VIM-2 was detected in one N. farcinica strain with no resistance
to imipenem (isolated from a cerebral abscess; AMC, CTX, and
IMPMICs 1, 4, and 1 mg/L, respectively).
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TABLE 2 | Number and non-susceptibility rates of the highly SXT-resistant Nocardia strains (n = 76) by species.

Species (no. of strains)
Antimicrobials

Nocardia farcinica
(n = 24)

N. carnea
(n = 8)

N. nova complex
(n = 14)a

N. transvalensis
(n = 8)

Other speciesb

(n = 22)
Total
(n = 76)

Amoxycillin-clavulanate 4 (16.6%)b 6 (70.5%) 10 (71.4%) 0 19 (86.3%) 39 (51.3%)

Cefotaxime 9 (37.5) 0 4 (28.5%) 3 (37.5%) 5 (22.7%) 21 (27.6%)

Imipenem 2 (12.0%) 0 1 (7.1%) 3 (37.5%) 6 (27.3%) 12 (15.8%)

Amikacin 0 1 (12.5%) 0 6 (75.0%) 2 (9.1%) 9 (11.8%)

Tobramycin 20 (83.3%) 0 10 (71.4%) 7 (87.5) 4 (18.2%) 41 (53.9%)

Ciprofloxacin 11 (45.8%) 1 (12.5%) 12 (85.7%) 2 (25.0%) 9 (40.9%) 35 (46.0%)

Erythromycin 21 (87.5%) 7 (87.5) 3 (21.4%) 8 (100%) 19 (86.3%) 58 (76.3%)

Minocycline 20 (80.3%) 2 (25.0%) 13 (92.8%) 8 (100%) 14 (63.6%) 57 (75.0%)

Linezolid 2 (8.3%) 0 0 0 1 (4.5%) 3 (3.9%)

a Include N. nova (n = 9) and N. veterana (n = 5); bN. abscessus (n = 1), N. cerradoensis (n = 1), N. cyriacigeorgica (n = 5), N. flavorosea (n = 5), N. otitidiscaviarum
(n = 3), N. rhamnosiphilia (n = 1), N. shimofusensis (n = 1), Nocardia sp. (n = 5). bThe following CLSI interpretative criteria for broth microdilution was considered for
non-susceptibilities by E test (mg/L): amoxycillin-clavulanate ≥ 16/8, cefotaxime ≥ 16, imipenem ≥ 8, amikacin ≥ 16, tobramycin ≥ 8, ciprofloxacin ≥ 2, minocycline ≥ 2,
linezolid ≥ 16. For erythromycin was applied the breakpoint of clarithromycin ≥ 4.

Aminoglycoside-Modifying Enzymes and
16S rRNA Methylases
Twenty seven amikacin-susceptible and four non-susceptible
strains (susceptibility breakpoint ≤8mg/L) harbored the aph(3′)-
IIIa determinant that encodes the 3′-aminoglycoside phos-
photransferase [APH(3′)] responsible for amikacin resistance
(Schmitz et al., 1999). The strains belonged to different Nocardia
species, and showed MICs to amikacin ranging from 0.12 to
>256 mg/L. No other aminoglycoside-modifying enzyme (AME)
genes, i.e., aac(6′)-Ie-aph(2′′)-Ia, aph(2′ ′)-Ib, aph(2′ ′)-Ic, aph(2′′)-
Id, ant(6′)-Ia, or ant(4′′) –Ia; Clark et al., 1999; Vakulenko et al.,
2003); nor 16S rRNA methylases (rmtA, rmtB, rmtC, rmtD, and
armA; Doi and Arakawa, 2007), were detected.

Plasmid-Mediated Quinolone Resistance,
gyrA, and other Genes
None of the strains harbored any of the plasmid-mediated
quinolone resistance (PMQR) determinants studied (qnrA, qnrB,
qnrC, and qnr, which encode the pentapeptide repeat proteins
that protect type II topoisomerases from quinolone binding;
Robicsek et al., 2006; Cattoir et al., 2007; Kim et al., 2009), or
the gene for the aminoglycoside acetyltransferase aac(6′)-Ib-cr
(which can modify ciprofloxacin; Park et al., 2006), or that for
the efflux pump qepA (Kim et al., 2009).

None of the nucleotide changes observed in gyrA would have
led to an amino acid sequence with any effect on ciprofloxacin
susceptibility or resistance. Within the SXT-resistant N. carnea,
N. farcinica, N. flavorosea, N. nova, N. transvalensis, N. veter-
ana species, the amino acid sequences encoded by their gyrA
gene always appeared to be the same, irrespective of ciprofloxacin
resistance status. In Escherichia coli it is well known that
the mutation from Ser83Ala in gyrA leads to change from
ciprofloxacin susceptibility to ciprofloxacin resistance. However,
in N. carnea, N. farcinica, N. flavorosea and N. transvalen-
sis, Ser83 appears not to be critical in this respect; all strains
of these species possessed Ser83 but some were susceptible to
ciprofloxacin while others were resistant. In contrast, all the
strains of N. cyriacigeorgica, N. nova, and N. veterana showed
Ser83Ala, but again, some were susceptible to ciprofloxacin

while others were resistant. In all the above Nocardia species,
no variation was seen in the other position involved in resis-
tance, Asp87. Further, in these Nocardia species, the gyrA posi-
tions that affect ciprofloxacin resistance inMycobacterium tuber-
culosis – Gly88 and Asp94 – (Maruri et al., 2012) were all
exactly the same; all had both Gly88 and Asp94. Moreover,
Ala90, another major position affecting ciprofloxacin resistance
in M. tuberculosis, was also found in the gyrA gene of N. cyr-
iacigeorgica, N. nova, and N. veterana, while in N. carnea, N.
farcinica, N. flavorosea, and N. transvalensis it was changed to
Ser90.

Genetic Determinants of Macrolide and
Lincosamide Resistance
Screening was performed for genes coding for RNA methylases,
i.e., erm(A), erm(B), erm(C), for efflux pumps, i.e., msr(A)/(B),
msr(D), mef (A/E), and for inactivating enzymes, i.e., ere(A),
ere(B),mph(A) (Sutcliffe et al., 1996;Malhotra-Kumar et al., 2005;
Lüthje and Schwarz, 2007). The most common was erm(B). This
was identified in 59 strains, i.e., in 46 out of 58 strains with ery-
thromycin MICs of ≥4 mg/L, and in 13 out of 18 strains with
MICs of ≤2 mg/L. It showed full similarity to the correspond-
ing gene of Streptococcus pyogenes (AY357120). The next most
common determinant wasmef (A), which was found in 11 strains
[three N. carnea strains (with erythromycin MICs of 4, 8, and
16 mg/L), five N. farcinica strains (2, 8, 16, 32, and 32 mg/L),
one N. flavorosea strains (2 mg/L), one N. transvalensis strain
(4 mg/L), and one Nocardia sp. (1 mg/L)]. This in turn was
followed by msr(D) in four strains: one N. farcinica, one N. fla-
vorosea, and twoN. transvalensis strains with erythromycin MICs
of 32, 32, 16, and 4 mg/L, respectively. The next most common
was erm(A) subclass ermTR, which was found in two strains (one
strain each of N. farcinica and N. transvalensis (erythromycin
MICs 32 and 64 mg/L).

The resistance genotypes found in combination with erm(B)
were: erm(B) alone in 51 strains, erm(B) + erm(A) in one
strain, erm(B) + mef (A) in one strain, erm(B) + msr(D)
in two strains, erm(B) + erm(A) + mef (A) in one strain,
erm(B) + msr(D) + mef (A) in two strains, and mef (A) alone in
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seven strains. The erm(A) gene in the studied Nocardia species
was identical to those expressed in S. pyogenes, S. pneumoniae,
and Aerococcus urinae (CP000262, CP002121, and CP002512).
The macrolide-efflux gene mef (A) and its protein were the same
as those seen in S. mitis (DQ304773) but with one amino acid
change encoded compared to S. pyogenes, S. pneumoniae, and
S. suis (CP000003, emb FQ312029, CP003922). The macrolide-
specific ABC-type efflux carrier gene msr(D) also coded for one
change at the amino acid level with respect to the correspond-
ing genes in S. pyogenes, S. pneumoniae, and S. suis (CP000003,
emb FQ312029, CP002465). This involved the replacement of
Glu224 (GAA) in msrD of S. pyogenes MGAS10394 (CP000003)
by Gly224 (GGA). This erythromycin efflux resistance gene
has been described for N. seriolae isolated from yellowtail fish
(AB518863-5), but coding for one amino acid difference. None of
the Nocardia under study harbored erm(C), msr(A)/(B), ere(A),
ere(B), ormph(A).

Two N. farcinica strains and one N. cyriacigeorgica strain
showing linezolid resistance by E test (MICs of 64, >256, and
>256 mg/L, respectively) and microdilution, did not show the
mutations in domain V of the 23S RNA (G2576T or T2504A)
described for different Staphylococcus and Enterococcus species
(Marshall et al., 2002). Nor did they harbor the cfr gene, which
has been reported in some resistant strains of the latter bacteria.

Genetic Determinants of Tetracycline
Resistance
Among the 57 minocycline-resistant strains (MIC > 1 mg/L),
the ribosomal protection protein gene tet(O) was the most com-
mon determinant, followed by tetM, and then a long way behind
by the efflux pump gene tetL (in 27, 13, and 2 strains, respec-
tively). Nineteen SXT-resistant, minocycline-susceptible strains
were positive for tet(O), tet(M), and tet(L) (10, 6, and 1 strains).
The tet(O) and tet(M) genes coded for an amino acid sequence
identical to those deduced for S. pyogenes MGAS2096 and SP94
(CP000261 and JQ001862), while tet(L) coded for a sequence
identical to that reported for N. seriolae, S. suis (AB513330,
JQ280448) and Bacillus species. The genotypes (and number
of strains) observed were: tet(O) (25), tet(M) (7), tet(L) (2)
tet(O) + tet(M) (11), and tet(O) + tet(M) + tet(L) (1). tet(E),
tet(G), and tet(K) (Ng et al., 2001) were not detected.

Discussion

Nocardia are environmental bacteria that live in soil, water, rot-
ting vegetation, and other organic matter. However, they can
cause severe infections in the human respiratory tract, skin, and
subcutaneous tissues; on some occasions they may even infect
the central nervous system (Brown-Elliott et al., 2006; Minero
et al., 2009; Ambrosioni et al., 2010). Like other actinobacte-
ria, they recycle organic material and produce a wide range of
biological compounds, including antibiotics (Waksman et al.,
2010). In the environmental setting, the presence of antimicro-
bials can lead to exposed bacteria becoming resistant (Cantón,
2009). Such resistance may involve changes in the permeabil-
ity of the cell wall to the antimicrobial agent, the loss of its

main target, or the increased expression of efflux pumps or
inactivating enzymes. Resistance traits can be acquired via muta-
tions in pre-existing chromosomal genes, or via the capture of
mobile resistance determinants through horizontal gene transfer
(Cantón, 2009; Djordjevic et al., 2013). It is known that resis-
tance genes can move between different parts of the microbial
biosphere. Environmental bacteria participate in this by acting as
conduits for the spread of antibiotic resistant genes (Martínez,
2008; Roberts, 2011; Stalder et al., 2012; Walsh, 2013). Multidrug
resistance is widely considered to be driven via the pressure
exerted by the use of antimicrobials. These agents are com-
monly used in the hospital and community (Woodford et al.,
2014). One might expect that environmental bacteria such as
Nocardia, with niches in soil, water, and vegetation but which
do not make up part of the normal human flora, might be
affected by antimicrobials in a different way. However, the present
results show that resistance determinants are commonly found
in strains of Nocardia sp. causing opportunistic infection in
humans.

This work examines a diverse group of Nocardia strains
strongly resistant to SXT, the standard treatment for localized
and disseminated nocardiosis. Their overall susceptibility pro-
files were studied by the E test, since difficulties (deficient growth
in the microdilution wells, problems reading the endpoints, etc.)
are often encountered with the current CLSI recommendation
for susceptibility testing of Nocardia, the broth microdilution
method. By E test, not yet approved by CLSI, the results are
easily evaluated, and a wide range of dilutions of antimicrobials
can be examined simultaneously. In Nocardia, susceptibility phe-
notypes are strongly species-dependent (Schlaberg et al., 2014).
Thus, to avoid any bias caused by the species composition of the
SXT-resistant group, MICs data were provided separately.

Resistance to SXT may compromise its continued use as
a treatment of nocardiosis. In the present work, resistance to
sulfonamide and trimethoprim can be partially explained by
the presence of dfr genes which encode insensitive DHPS and
DFR enzymes, and even better explained by the presence of
integrons carrying sul genes. Nearly all of the SXT-resistant
strains carried sul1 as one of the backbone genes of the 3′-
conserved segments in class 1 integrons, and three quarters
carried sul2 (probably encoded by a small non-conjugative
plasmid or a medium–large plasmid), as seen in other gen-
era (Hu et al., 2011). Of the trimethoprim resistance genes
reported in Gram-positive bacteria, dfrA(S1), dfr(D), dfr(F),
dfr(G), and dfr(K) (Perreten et al., 2005; Cattoir et al., 2009),
only dfrA(S1) was seen in the present SXT-resistant Nocardia
(14.4%). The dfrA(S1) gene is commonly associated with
class 1 integrons. Another mechanism is required to explain
the strong trimethoprim resistance shown by the other 64
strains.

The clinically important class 1 integrons, which have the
potential to allow for the co-selection of antibiotic resistance, are
widely disseminated in environmental settings, associated with
plasmids of the IncP-1 incompatibility group. These integrons,
and these plasmids, are commonly detected in bacteria living in
estuarine waters, wastewater treatment plants, agricultural soils,
and the rhizosphere (Henriques et al., 2006a; Stalder et al., 2012).
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Class 2 integrons are described as the second most common,
but none was detected in the present work. However, nearly
half of the studied strains carried class 3 integrons – which have
been little reported in the literature. Of the five types of class 3
integrons described to date, three were detected in clinical enter-
obacteria (Arakawa et al., 1995; Correia et al., 2003; Poirel et al.,
2010; Barraud et al., 2013). Those detected in the present work
in Nocardia were identical to those of the environmental bacte-
ria Delftia tsuruhatensis and D. acidovorans (GenBank accession
no. EF469602–EF467661), and correspond to the Inc3-4 type (Xu
et al., 2007). To date, the presence of class 3 integrons in the
clinical setting has been anecdotal, but in environmental ecosys-
tems they might play a role as an important pool of resistance
determinants (Stalder et al., 2012).

Two class A β-lactamases – FAR-1 and AST-1 – were described
in N. farcinica and N. asteroides sensu stricto (Laurent et al.,
1999; Poirel et al., 2001), but they cannot explain the com-
plete β-lactam resistance phenotype. This is the first time that
blaTEM−1 and blaZ, with a ubiquitous distribution in Gram-
positive and Gram-negative bacteria, have been reported for
Nocardia strains (n= 4). One of the so-called “big five” carbapen-
emases, VIM-2, was curiously found in an imipenem-susceptible
Nocardia strain. Most of the carbapenemases acquired by bac-
terial species of clinical importance are thought to have had
their origin in environmental bacteria. However, the environ-
ment might also be contaminated by resistant bacteria of clinical
origin (Woodford et al., 2014). The environmental sources of the
bacteria carrying metallo-carbapenemase genes include rivers,
other water, and sewage, all of which are also common habitats
ofNocardia species. Monitoring carbapenemases in environmen-
tal bacteria might help us determine how widely they become
disseminated.

High-level aminoglycoside resistance is mediated by AMEs.
Curiously, the only AME gene found in the present Nocardia
strains (n = 31) was aph(3′)-IIIa, which inactivates kanamycin
and amikacin. It has also been described in Bacillus anthracis,
Clostridium perfringens, Enterococcus faecalis, Streptococcus, and
Staphylococcus (Perreten et al., 2005; Zarrilli et al., 2005).
However, this very same determinant was also present in the
amikacin-susceptible strains of Nocardia, and has even been
reported in some E. faecalis strains with low to intermediate
amikacin resistance (Zarrilli et al., 2005). In the aminoglycoside-
producing actinomycetes, 16S rRNA methylases have been
detected that are said to protect the 16S RNA in the 30S ribosome
subunit against aminoglycoside (Doi and Arakawa, 2007). None
of the Nocardia strains studied in the present work carried any of
these genes.

High-level resistance to fluorquinolone in Gram-negative bac-
teria is produced by mutations in gyrA, the most common muta-
tion site being Ser83, which can change to code for Leu, Trp,
Phe, or Tyr. However, in M. tuberculosis, which like Nocardia
is an actinomycete, fluorquinolone resistance mainly occurs via
modifications at positions 88, 90, or 94 in the QRDR of gyrA
(Maruri et al., 2012). In the present Nocardia strains, no asso-
ciation was seen between high-level resistance/non-susceptibility
to fluorquinolone and the distribution of mutations in these hot
spots. Among the studied Nocardia species, not only the amino

acid differences in positions 83 (Ser or Ala) and 90 (Ala or Ser),
but also other 20 amino acids of positions 36, 48, 53, 58, 71,
72, 84, 97, 98, 103, 105, 134,141, 146, 147, 151, 152, 153, 154,
and 188 (respect E. coli numbering) varied. These GyrA changes
were not related to ciprofloxacin susceptibility, but yes to species
polymorphism.

Macrolides and lincosamides inhibit the synthesis of protein
by binding to the 50S ribosomal unit, and therefore block peptide
bond formation and/or translation. The dimethylation of the ade-
nine residue in the 23S rRNA produces a conformational change
in the ribosome leading to a constitutive or inducible macrolide –
but not linezolid – resistance phenotype (Roberts, 2011). The
most common bacterial rRNA methylase is ErmB, which confers
high MICs for macrolides; this was seen in the present work for
77.6% of all the Nocardia strains examined. erm(B) is carried on
either conjugative transposons, such as those of the Tn916 family
(in chromosome or plasmids), or in non-conjugative transposons
such as Tn917. It is well known that Tn916 and its relatives
(Tn1545, Tn3703, Tn3704, Tn3872, Tn6002, and Tn6003), as
well as newly found elements, often carry other resistance deter-
minants, including tet(M), tet(O), and mef (A)-msr(D), among
others (Brenciani et al., 2007; Cochetti et al., 2008; Roberts,
2011).

The second most commonly detected resistance mechanism
in the present Nocardia was related to the possession of mef (A),
which was detected in some 14.4% of the studied strains. Both
mef (A) and mef (E) code for an active macrolide efflux pump
mediated by the ABC transporter, the transmembrane domains
of which are encoded by themefA/E genes, and the ATP-binding
domains by msr(D) (Malhotra-Kumar et al., 2005). mef (A)
and msr(D) are always linked in other Gram-positive bacte-
ria (Roberts, 2011), but, in the present work, two of the four
msr(D)-positive Nocardia strains detected showed no such com-
bination. Regarding the three linezolid-resistant Nocardia strains,
the describedmutations of 23S (G2576T or T2504) or the cfr gene
were no detected (Marshall et al., 2002).

The same Tn916 family mobile elements that carry the major
macrolide resistance determinants also carry tetracycline deter-
minants (Roberts, 2005, 2011), as seen in S. pyogenes, in which
the strongly linked erm(B) and tet(M) genes are carried on
highly variable and complex genetic elements (Brenciani et al.,
2004, 2007; Cochetti et al., 2008; Roberts, 2011). However, the
association between these determinants was quite different in
Nocardia. The combination erm(B) + tet(O) appeared nearly
twice as often as erm(B) + tet(M) (33 strains compared to 18).
erm(B) + tet(O) + tet(M) appeared in 12 strains.

The presence of several resistance determinants – VIM-2,
aph(3′)-IIIa, erm(B), mef (A), tet(O), tet(M) – in strains suscep-
tible to the involved antimicrobials, may mean that, in these
strains, these determinants are silent genes or may lack function-
ality. In environmental bacteria, the detection of a specific resis-
tant determinant with susceptible phenotype, could be suggested
a different role of the resistance mechanism to the “weapon-
shield” (Martínez, 2008), or some failure or difference in their
acquisition that affect their expression.

The clinical SXT-resistantNocardia strains analyzed here were
very similar with regard to their antimicrobial resistance traits,
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perhaps the result of a common genetic platform. Although sul-
fonamides are synthetic compounds and their use in human
infections has been reduced for decades, sulfonamide resistance
determinants have been shown to persist in bacteria isolated from
humans, animals, food, and the environment. sul-carrying plas-
mids form a pool of resistance genes that can be transferred to
human and non-human reservoirs, as observed in this work for
the SXT-resistant Nocardia strains. These findings are of some
concern.

Conclusion

This is the first work to describe in Nocardia the pres-
ence of several genetic determinants frequently involved

in antimicrobial resistance in clinical bacteria. The extent
of the environmental resistome, and the recruitment
of multiple resistance genes from it, should be further
studied.
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