
REVIEW
published: 05 May 2015

doi: 10.3389/fmicb.2015.00409

Frontiers in Microbiology | www.frontiersin.org 1 May 2015 | Volume 6 | Article 409

Edited by:

Christopher Scott Henry,

Argonne National Laboratory, USA

Reviewed by:

Shunichi Ishii,

J Craig Venter Institute, USA

Richard Splivallo,

University of Frankfurt, Germany

*Correspondence:

Nathan D. Price,

Institute for Systems Biology, 401

Terry Ave. N., Seattle, WA 98109, USA

nprice@systemsbiology.org

Specialty section:

This article was submitted to

Systems Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 02 January 2015

Paper pending published:

12 February 2015

Accepted: 20 April 2015

Published: 05 May 2015

Citation:

Imam S, Schäuble S, Brooks AN,

Baliga NS and Price ND (2015)

Data-driven integration of

genome-scale regulatory and

metabolic network models.

Front. Microbiol. 6:409.

doi: 10.3389/fmicb.2015.00409

Data-driven integration of
genome-scale regulatory and
metabolic network models
Saheed Imam 1, Sascha Schäuble 1, 2, Aaron N. Brooks 1, Nitin S. Baliga 1, 3, 4, 5 and

Nathan D. Price 1*

1 Institute for Systems Biology, Seattle, WA, USA, 2 Jena University Language and Information Engineering Lab,

Friedrich-Schiller-University Jena, Jena, Germany, 3Departments of Biology and Microbiology, University of Washington,

Seattle, WA, USA, 4Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA, 5 Lawrence

Berkeley National Lab, Berkeley, CA, USA

Microbes are diverse and extremely versatile organisms that play vital roles in all

ecological niches. Understanding and harnessing microbial systems will be key to the

sustainability of our planet. One approach to improving our knowledge of microbial

processes is through data-driven and mechanism-informed computational modeling.

Individual models of biological networks (such as metabolism, transcription, and

signaling) have played pivotal roles in driving microbial research through the years. These

networks, however, are highly interconnected and function in concert—a fact that has

led to the development of a variety of approaches aimed at simulating the integrated

functions of two or more network types. Though the task of integrating these different

models is fraught with new challenges, the large amounts of high-throughput data sets

being generated, and algorithms being developed, means that the time is at hand for

concerted efforts to build integrated regulatory-metabolic networks in a data-driven

fashion. In this perspective, we review current approaches for constructing integrated

regulatory-metabolic models and outline new strategies for future development of these

network models for any microbial system.

Keywords: metabolic networks, transcriptional networks, constraint-based modeling, network integration, flux

balance analysis, signaling, regulation, metabolism

Introduction

Microbial genomes encode a vast repertoire of metabolic pathways that enable physiological
adjustment to changing energy sources and nutrient availabilities. The efficient utilization of
environmental resources requires selective and timely expression of the metabolic machinery to
meet cellular demands. As a consequence, highly interconnected macromolecular networks of
metabolic and regulatory components have evolved to control expression of the genome in response
to internal and external cues (Figure 1) (Gerosa and Sauer, 2011;Metallo and Vander Heiden, 2013;
Chubukov et al., 2014). A primary goal of modern systems biology is to build increasingly accurate

Abbreviations: FBA, Flux balance analysis; rFBA, Regulatory flux balance analysis; SR-FBA, Steady-state regulatory

flux balance analysis; PROM, Probabilistic regulation of metabolism; CBM, Constraint-based metabolic model; TRN,

Transcriptional regulatory network; ME, Metabolism and macromolecule expression; EGRIN, Environmental and Gene

Regulatory InfluenceNetworkmodel; FBP, Fructose-1,6-bisphosphate; GEMINI, Gene Expression andMetabolism Integrated

for Network Inference; ChIP-seq, Chromatin immunoprecipitation followed by high-throughput sequencing.
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FIGURE 1 | Interconnections between regulation and metabolism.

Regulation of flux through metabolic networks is achieved by the control

of enzyme levels ([E]) and/or activities. Enzyme levels can be controlled

transcriptionally via specific regulation of transcription factors (TFs) or via

global mechanisms, which depend on factors such as growth rate (µ).

The expression levels of constitutively expressed genes may be solely

under control of these global mechanisms. In addition, growth rate also

has a significant impact on translation rates. The activities of TFs can

be modulated by specific metabolites ([M]) or via post-translational

modifications by histidine kinases (HK) that sense environmental cues,

among other mechanisms. Enzyme activities can also be modulated via

post-translational (allosteric) interactions with metabolites. All these

networks are dynamic and in constant communication with one another

to determine metabolic state of a cell.

representations of these networks that can be used to predict
how the macromolecular composition of an organism may
change in response to genetic or environmental perturbations.
Such models serve as platforms for hypothesis generation that
ultimately enable many perturbations to be screened in silico
before being tested in vivo, dramatically accelerating the pace and
efficiency of scientific discovery (Tomita, 2001; Bonneau et al.,
2007; Oberhardt et al., 2009).

A number of algorithms to construct metabolic, signaling and
gene regulatory network models have been developed recently
(Thiele et al., 2009; Hyduke and Palsson, 2010; Marbach et al.,
2010; Novichkov et al., 2010; Thiele and Palsson, 2010; Yachie
et al., 2011). Many were spurred by specific technological
advances that enabled comprehensive measurement of microbial
cellular components (Thiele et al., 2009; Henry et al., 2010; Thiele
and Palsson, 2010; Marbach et al., 2012). These methods have
not only been instrumental for contextualizing genome-wide
measurements, but have also provided a systems-level perspective
of biological organization and function (Oberhardt et al., 2009;
Bordbar et al., 2014). Integrated network models that are able to
capture these different layers of biological function, on a genome-
scale, represent major accomplishments with the potential to
revolutionize scientific research (Tomita, 2001).

However, integrating these network models brings about
new challenges, both computational and experimental. For

instance, algorithms need to be developed to handle the
diversity of data types and the various formalisms used to
model different biological processes (Machado et al., 2011).
Additional challenges also arise from the fact that these processes
may occur across vastly different timescales, ranging from
milliseconds to weeks. From an experimental standpoint, further
technological advancements will be needed to obtain the fine-
grainedmeasurements that will be required to build, validate, and
refine thesemodels. In this perspective, we briefly review state-of-
the-art methods for constructing integrated regulatory-metabolic
models, then outline new strategies for constructing data-driven
integratedmodels and suggest how these integratedmodels could
be used to advance basic research, as well as biotechnology.

Advances in the Integration of Metabolic
and Regulatory Network Models

Kinetic and constraint-based modeling approaches have enabled
quantitative modeling of metabolic processes and played key
roles in guiding scientific research (Varma and Palsson, 1994;
Palsson, 2000; Steuer et al., 2006; Tran et al., 2008; Bakker
et al., 2010; Tan and Liao, 2012; Zielinski and Palsson, 2012).
Constraint-based metabolic models (CBMs) have proven to
be particularly useful as they enable genome-scale modeling
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of metabolism. However, these purely metabolic models are
limited in their ability to capture condition-dependent changes
in metabolic activity (Reed, 2012; Machado and Herrgard, 2014).
Thus, to incorporate aspects of the regulatory mechanisms that
control metabolism, models that integrate CBMs with known or
inferred transcriptional regulatory networks (TRNs) have been
developed.

To date, only a handful of methods for the genome-
scale integration of transcription and metabolism have been
described, including regulatory flux balance analysis (rFBA)
(Covert and Palsson, 2002), steady-state rFBA (SR-FBA) (Shlomi
et al., 2007) and probabilistic regulation of metabolism (PROM)
(Chandrasekaran and Price, 2010). The earlier approaches (rFBA
and SR-FBA) used Boolean rules to approximate transcriptional
control of the metabolic network, permitting only two activity
states (on/off) for network components (Covert and Palsson,
2003; Shlomi et al., 2007). With PROM, the Boolean logic
is relaxed by introducing probabilistic weights on regulatory
influences using gene expression data to estimate the probability
that particular TF-gene interactions are functional, allowing for
a full range of potential responses from the strength of either
activating or repressing regulation (Chandrasekaran and Price,
2010).

These integrated models, however, only consider a static,
composite view of a TRN that has dynamic and condition-
specific states, thus limiting their utility. To overcome some
of these shortcomings, approaches have been developed to
identify relevant TRN constraints that allow accurate growth
phenotype predictions of a CBM under a given condition, in
essence generating condition-specific TRNs (Barua et al., 2010;
Chandrasekaran and Price, 2013). Another limitation of these
integrated models is that the regulation of metabolic processes
occurs at several levels (i.e., transcriptional, post-transcriptional,
translational and post-translational), which are not explicitly
accounted for in any of these formalisms. As a result, recent
efforts have been geared toward integrating some or all of these
components into unified models for well-studied microbes (Karr
et al., 2012; Lerman et al., 2012; Carrera et al., 2014).

Metabolism and macromolecule expression (ME) models,
which integrate stoichiometric representations of gene
expression (transcriptional and translational) networks
with CBMs, capture important aspects of the mechanisms
of macromolecule synthesis (Lerman et al., 2012; O’brien et al.,
2013). These models, which impose global growth-related
regulatory constraints on metabolism, have been shown to be
better predictors of cell phenotypes such as growth, metabolic
fluxes and to some extent gene expression levels, than standalone
CBMs (O’brien et al., 2013). ME models thus represent a
significant advance over CBMs for the holistic modeling of
microbial growth. However, ME models currently do not
explicitly account for the specific regulatory mechanisms of the
TRN or environmental cues, representing an important frontier
for enhancing their scope. Recently, Carrera et al. constructed an
integrated model for Escherichia coli that combines information
from its known transcriptional regulatory, signal transduction
and metabolic networks, with high-throughput transcriptomics
and phenomics data (Carrera et al., 2014). This integrated

network was shown to have greater capabilities than CBMs or
ME models for prediction of condition-dependent phenotypes,
and provides a useful framework for data-driven integration of
genome-scale networks.

A major goal of systems biology is the construction of
predictive models of the entire cell or organism (Tomita, 2001).
One of the first efforts directed toward achieving this was the
E-cell platform for simulation of biological processes based
on predefined lists of biomolecules, reaction rules and cell
environments (Tomita et al., 1999). A significant advance on this
front was the construction of the whole cell model ofMycoplasma
genitalium (Karr et al., 2012). While this model also relies on a
very large number of detailed molecular measurements, which
are unavailable for most organisms, it provides the first glimpse
into the future of full-featured, large-scale integrated models that
enable dynamic simulation of cellular processes.

Toward Full-featured Integrated Models

Here we outline the main components that are needed to
construct integrated models that capture the key aspects of
regulation and metabolism in microbes (Figure 2), with a focus
on data-driven approaches that are extensible to any sequenced
microbe.

Genome-scale Metabolic Models
CBMs enable genome-scale modeling of metabolic networks
in the absence of kinetic parameters, and provide a platform
for integrating multi-omic datasets. While calculations from
CBMs often result in a large solution space, which can include
many biologically implausible solutions (Reed and Palsson,
2004; Schellenberger et al., 2011), the addition of biologically
relevant constraints can significantly improve their predictive
accuracy (Reed, 2012). Manually curated genome-scale CBMs
have been constructed for many organisms (Oberhardt et al.,
2009; Kim et al., 2012) (Table S1). As many metabolic pathways
are broadly conserved, these curated CBMs can serve as
scaffolds for automated reconstruction of high-quality organism-
specific CBMs for closely related organism using genomic
information, conceivably making high-quality CBMs available
for any sequenced organism, while minimizing the need for
manual curation (Henry et al., 2010; Karp et al., 2010; Swainston
et al., 2011; Agren et al., 2013; Benedict et al., 2014). Furthermore,
computational tools and databases that facilitate automated
identification of biomass components (Tervo and Reed, 2013)
and minimal media composition (Richards et al., 2014) should
further streamline this process.

Transcription and Translation Network Models
Growth rate-dependent global regulation functions in concert
with TF-controlled specific-regulation to determine the genome-
wide expression profiles under a given condition (Berthoumieux
et al., 2013) (Figure 1). Global regulation has even been
proposed to be the dominant form of regulation under
laboratory conditions in some organisms (Price et al., 2013).
Because the components of the transcription and translation
machinery are relatively well-conserved across bacteria and
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FIGURE 2 | Modeling and integrating of different biological

networks. An overview of the approaches used to model disparate

biological processes and the computational techniques that could be

used for integrating some of these network models. HK, histidine

kinase; M, metabolite; E, enzyme; TF, transcription factor; TRN,

transcriptional regulatory network.

can be discerned from genomic information, the E. coli gene
expression network model (Thiele et al., 2009) provides a
template for the construction of similar network models for
other sequenced bacteria. Thus, we expect that approaches used
for accelerating the generation of genome-scale models will
eventually be extended to the more complex task of constructing
gene-expression networks for other microbes.

Transcriptional Regulatory Network (TRN)
Models
Microbes control the activities and abundance of molecular
components to respond quickly to environmental change. A
primary mechanism through which microbes exert control
over specific cellular processes is through the coordinated
transcriptional regulation of gene expression (Gerosa and

Frontiers in Microbiology | www.frontiersin.org 4 May 2015 | Volume 6 | Article 409

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Imam et al. Integration of biological network models

Sauer, 2011) (Figure 1). Unfortunately, unlike metabolic
networks, TRNs are not highly conserved across lineages. Thus,
transcriptional regulatory interactions learned in one species
may not necessarily exist in others, unless they are related over
short phylogenetic distances or share similar lifestyles (Lozada-
Chavez et al., 2006; Madan Babu et al., 2006). However, data
from high-throughput measurement of global gene expression
levels, along with information encoded in the genome of a target
organism, can be used for data-driven reconstruction of TRNs
(Figure 2) and this has spurred the development of a wide variety
of approaches.

The approaches for reconstructing TRN topology (i.e., the set
of interactions between TFs and their target genes) vary, ranging
from aggregation of experimentally verified interactions (Gama-
Castro et al., 2011) to detection of evolutionary conservation
among gene targets of related TFs (Novichkov et al., 2010)
to data-driven approaches that reverse-engineer TRN topology
from relative changes in gene expression (Bonneau et al.,
2007; Faith et al., 2007; Huynh-Thu et al., 2010) (Table S1).
The advantages and limitations of some of these data-driven
approaches have previously been reviewed (De Smet and
Marchal, 2010; Marbach et al., 2010). Many of these approaches
have also been subjected to unbiased assessments (Stolovitzky
et al., 2007; Marbach et al., 2012), systematically identifying their
strengths and weaknesses.

To understand TRN function, however, it is also important
to know when specific TF-target gene interactions occur. In
other words, condition- and/or context-specific interactions
determine the consequences of regulation. Such knowledge is
particularly important for integrating TRN models with other
genome-scale models. Few approaches currently model the
condition-specific activities of TFs and their effect on TRNs. A
recently published second generation Environmental and Gene
Regulatory InfluenceNetworkmodel (EGRIN 2.0) was developed
to address this limitation by quantifying the condition-specific
regulatory influence of TFs on their target genes and their
role in re-organizing the modularity of TRNs for two microbes
(Brooks et al., 2014). Since these models specify environmental
dependence in addition to topology, TRN models like EGRIN
2.0 are promising candidates for integration with metabolic and
other network models.

Signaling Network Models
Microbes respond to constantly changing environments
by altering their gene expression patterns. Bacteria achieve
this coordination through the use of one-component, two-
component and extra-cytoplasmic function sigma factor signal
transduction systems, which sense stimuli and orchestrate
appropriate cellular responses (Ulrich and Zhulin, 2010). While
environmental signals that elicit certain transcriptional responses
(e.g., catabolite repression, oxidative stress response etc.) have
been well-studied (Farr and Kogoma, 1991; Gorke and Stulke,
2008; Chiang and Schellhorn, 2012), many other signaling
systems remain uncharacterized.

Even though signaling networks in bacteria are generally
simpler than those employed in eukaryotes, reconstruction of
intracellular signaling networks still poses a major challenge.

As a result, large-scale signaling networks exist for only a few
organisms (Covert et al., 2008; Carrera et al., 2014). Since
independent discovery and characterization of these signaling
systems would be costly and time consuming, it is desirable
to predict the effects of environmental changes based on high-
throughput datasets. EGRIN provides one approach to link
signaling to internal cellular processes (Bonneau et al., 2007).
It achieves this by abstract representation of the biological
effect of signaling networks as “environmental factors.” These
environmental factors can be associated statistically to internal
molecular processes, such as transcription. This feature, however,
requires meticulous experimental documentation, including
direct measurement of the relevant environmental factors
(or their proxies). Unfortunately, publicly available datasets
are generally poorly annotated and typically not quantitative,
limiting the current utility of this approach. Consequently, a
greater emphasis should be placed on thorough experimental
annotation to facilitate these data-driven approaches.

Post-translational Regulation
Post-translational mechanisms also play a critical role in
regulating metabolic flux. For instance, internal ligand
concentrations can alter the activities of TFs that regulate
associated pathways (Lim et al., 1987; Ramseier et al., 1995; Leyn
et al., 2011). Furthermore, the activities of numerous enzymes are
controlled via allosteric interactions (Figure 2). Thus, knowledge
of these regulatory metabolites, their effective concentrations
and their target proteins will be crucial for achieving predictive
control.

For model organisms like E. coli, a number of these regulatory
metabolites and their targets are known and approaches exist
for incorporating these into integrated models using Boolean
rules and/or ordinary differential equations (Covert and Palsson,
2002; Covert et al., 2008). While some allosteric interactions
are widely conserved such as fructose-1,6-bisphosphate (FBP)
activation of pyruvate kinase, which is conserved from
E. coli to humans (Waygood et al., 1976; Jurica et al.,
1998; Chubukov et al., 2014), different groups of organisms
likely use different strategies and regulatory metabolites.
For example, the regulators of glycolysis in γ-Proteobacteria
(Cra), α-Proteobacteria (CceR), and β-Proteobacteria (HexR)
are post-translationally regulated by FBP, 6-phosphogluconate
and 2-keto-3-deoxy-6-phosphogluconate, respectively (Ramseier
et al., 1993; Leyn et al., 2011; Imam et al., 2015). Thus,
approaches for high-throughput screening of allosteric effectors
(Tagore et al., 2008; Li et al., 2010) need to be leveraged
to complement standard in vitro approaches to identify
post-translational interactions. This process could be facilitated
by the development of algorithms that borrow from the field of
molecular modeling (Lengauer and Rarey, 1996) to assess the
potential of protein-ligand interactions across the network.

Integrating Disparate Network Models

While individual network models have played important roles
in improving our understanding of biological systems, recent
attention has turned toward integrating them. Such integrated
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models would encapsulate how regulatory mechanisms control
metabolism and how metabolism, in turn, provides feedback
regulation on a genome-scale (Figure 1). The motivation for
network model integration reflects an acknowledgement that
individual models are insufficient to comprehensively describe
their respective cellular processes.

One approach to constraining the solution space of CBM
predictions is the integration of growth-related constraints
on gene expression (i.e., the rates of gene transcription and
mRNA translation). Translation and transcriptional network
models, which have been constructed for E. coli (Thiele et al.,
2009; O’brien et al., 2013) and Thermotoga maritima (Lerman
et al., 2012), including their mathematical formulation and
integration with CBMs to generate ME-models, provide a basis
for construction of similar ME-models for other microbes based
mostly on genomic information. As very few parameters need
to be specified for integration of these stoichiometric models,
construction of ME-models for any sequenced bacterium should
become a relatively straightforward task.

ME-models, however, do not currently account for specific
regulatory interactions at gene promoters, which are also
known to be important drivers of cellular phenotypes. To build
comprehensive models, ME-models need to include regulatory
constraints from condition-specific TF-gene interactions
(O’brien et al., 2013). However, unlike global transcriptional
processes, these may not have straightforward stoichiometric
representations. Hence, alternative formulations need to
be considered. One possibility could involve leveraging a
probabilistic formalism such as PROM for integrating inferred
TRN models with ME-models. If such TRN models were
developed using EGRIN or related approaches, environmental
variables could also be integrated using PROM. Extension

of ME-models with TRN information represents an exciting
frontier that would provide a platform for simulating metabolism
with unprecedented detail.

Integration of signaling information poses some unique
challenges. For instance, signaling mechanisms are typically
dependent on specific (and often unknown) concentrations
of relevant molecules, while constraint-based approaches such
as FBA do not deal directly with metabolite concentrations.
Furthermore, to generate dynamic quantitative signaling
network models, kinetic parameters are required, but these
are rarely available. This limits the approaches via which these
models can be integrated within the paradigm described above.
Thus, qualitative representations of signaling networks using
Boolean (Klamt et al., 2006) or stoichiometric (Papin and
Palsson, 2004) formalisms need to be adopted for integration
of these networks with large-scale regulatory-metabolic models
(Figure 2, Table S1). These approaches have the advantage of not
requiring specification of kinetic parameters or exact molecule
concentrations (which can discretized, Klamt et al., 2006), while
still being able to capture fundamental properties of signaling
networks.

Other challenges to building integrated models are outlined in
Box 1, while approaches that may be useful for validation of such
models are discussed in Box 2.

Using Integrated Models to Drive Scientific
Discovery

Construction and analysis of individual large-scale systems
biologymodels has led to important new biological insights about
novel pathways, regulatory interactions and mechanistic details
(Bonneau et al., 2007; Oberhardt et al., 2009; Hyduke and Palsson,

BOX 1 | Challenges to constructing integrated regulatory-metabolic models.

Here we identify some major challenges to building data-driven integrated models of metabolism and regulation. Some of these challenges also represent significant

opportunities for algorithmic or experimental breakthroughs.

Comprehensive discovery and characterization of biological components. Reconstruction of biological networks requires an exhaustive list of the components and

their functions. However, a large fraction (up to 50%) of the predicted proteins across microbial genomes still have unknown functions (Hanson et al., 2009). This missing

information can significantly impact the predictive accuracy of systems biology models. While this process of parts identification is significantly facilitated by comparative

genomics and related approaches, this can still be a mitigating factor for groups of bacteria that are not yet well studied.

Greater accuracy of data-driven TRN inference. While TRN inference has played a crucial role in identification of new TFs and novel regulatory interactions, the

predictive accuracy and coverage of TRNs constructed from gene expression data is still relatively low. Even for a well-studied bacterium like E. coli for which large

compendia of gene expression data exist, state of the art inference approaches only identify a small fraction of the verified interactions in regulonDB with relatively low

precision (Marbach et al., 2010, 2012; Gama-Castro et al., 2011). While we anticipate that integration of comparative genomics, constraint-based modeling and other

complementary approaches will improve the accuracy and coverage of inferred networks, large gains in predictive accuracy will likely require alternative complementary

high-throughput datasets such as ChIP-seq data with tagged TFs (Aldridge et al., 2013; Gasper et al., 2014), DNase I hypersensitivity or genome-wide promoter activity

assays.

High-throughput approaches for identifying signaling events. As mentioned above, there is a dearth of both experimental and computational approaches for quick

screening and identification of potential signaling interactions. Development of approaches in this area would significantly facilitate reconstruction and integration of

signaling network models.

Functional characterization of post-translational modifications. A vast array of metabolic and regulatory proteins are regulated via post-translational modifications.

While post-translational modifications are more prevalent in eukaryotes than bacteria, a large and growing number of these modifications are being identified in bacteria,

including phosphorylation (Pietack et al., 2010; Schmidl et al., 2010), succinylation (Zhang et al., 2010) and acetylation (Wang et al., 2010)—and each of these can

have major impacts on metabolism. While these modifications can easily be identified by mass spectrometry techniques, determination of their functions, if any, is

more challenging. However, by combining metabolic flux analysis with mass spectrometry data collected across varying conditions, insights into the function of some

these modification can be determined (Wang et al., 2010), though the cost of such analysis may be prohibitive. Integrating such information using stoichiometric

representations would relatively straightforward.

Other challenges such as limitations in availability of quantitative data across conditions, tools for visualization of integrated networks and difficulties in integrating

different network formalisms at genome-scale are also important considerations.
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BOX 2 | Model validation

Model validation is important both to assess model accuracy and identify shortcomings that can be improved in subsequent versions. However, it is not obvious what

validation approaches would be optimal for large-scale integrated models. Traditionally, predictions from CBMs have been validated using substrate utilization and/or

gene essentiality data, which has served as a successful approach both for model validation and refinement (Bochner et al., 2001; Feist et al., 2007; Oh et al., 2007;

Thiele and Palsson, 2010; Imam et al., 2013). Similarly, initial attempts to validate regulatory-metabolic models have focused on the use of gene essentiality data (Covert

et al., 2004; Chandrasekaran and Price, 2010). TRN models, by contrast, have usually been validated by comparison to experimentally derived networks (Stolovitzky

et al., 2007; Marbach et al., 2012).

We argue that both of these binary approaches to validation are insufficient to generate key insights that will drive model improvement. Instead, we suggest that

quantitative phenotypes may be more appropriate. For instance, deletion of regulatory components such as TFs are typically non-lethal. However, this does not imply

that cellular phenotypes are unaffected in these strains. TF deletions may alter growth rates or modify other quantitative cellular phenotypes. In addition, TF deletions

may only show their impact across a narrow range of conditions. Thus, simple gene essentiality may be inadequate to assess model performance effectively. More

informative would be data from high-throughput growth or fitness assays using deletion mutant libraries (Nichols et al., 2011; Vandersluis et al., 2014) or high-throughput

mutagenesis experiments across conditions (Van Opijnen et al., 2009; Khatiwara et al., 2012), which would permit identification and statistical evaluation of genotype-

phenotype relationships. Such large-scale datasets should permit robust assessment of the various components of regulatory models and possibly guide the process

of model refinement.

2010). Given that these networks are highly interconnected,
one might expect that analysis of the properties of integrated
models will provide new insights into biological phenomena not
achievable with individual network models. Such insights could
include how novel inferred transcription-regulatory interactions
might redirect flux through apparent suboptimal routes in
a metabolic network; identification of synthetic rescues/lethal
phenotypes in regulatory components; identification of new
knowledge gaps that could guide experimental design; or
identification of functional roles for previously redundant
network components such as dead-end metabolites (Covert et al.,
2008). In addition to this, we expect full-featured regulatory-
metabolic models will be crucial in driving scientific research in
areas such as:

Metabolic Engineering
CBMs have proved to be very useful tools for guiding the
design of genetically modified microbial strains with desired
characteristics (Alper et al., 2005; Park et al., 2007; Milne
et al., 2009). Many approaches have been developed to identify
metabolic or genetic interventions that result in these traits
(Segre et al., 2002; Burgard et al., 2003; Pharkya et al., 2004;
Shlomi et al., 2005; Kim and Reed, 2010). Currently, these
approaches do not consider the contribution of regulation on
predicted genetic strategies or the benefits of genetic intervention
at the regulatory level. Integrated regulatory-metabolic models
will provide these capabilities, permitting: (i) rational strain
engineering via modification of regulatory components (e.g.,
over-expression of TFs); (ii) exclusion of metabolic interventions
that are inconsistent with the integrated network structure;
or (iii) identification of environmental conditions that might
facilitate production of desired products. Thus, integrated
regulatory-metabolic models could open up several new avenues
for modification of cell phenotypes not currently achievable with
CBMs.

Improved Network Inference
While TRNs inferred from high-throughput data have led to
the identification of novel interactions and mechanisms, these
approaches are error prone (De Smet and Marchal, 2010;
Marbach et al., 2010). Recent analysis has shown that known
or inferred TRN topology can be refined to achieve consistency

with known phenotypes of a target organisms by integration
with CBMs (Chandrasekaran and Price, 2013). For instance,
the algorithm GEMINI uses PROM formalism to integrate
TRN models with CBMs, and then attempts to identify global
regulatory interactions that are consistent with condition-specific
growth phenotypes, thereby refining the TRN and potentially
improving its quality (Chandrasekaran and Price, 2013). While
GEMINI was originally used as a post-processing step, there
exists the potential of incorporating this or similar approaches
into the TRN inference workflow itself to provide inline network
refinement (Figure 2).

While a few applications of integrated models have
been listed here, this is far from exhaustive and the
applications will evolve as new data types and algorithms are
developed.

Concluding Remarks

One of the aims of systems biology is to convert system-
wide measurements into systems-level biological insight.
Computational models that capture the core aspects of biological
complexity will be pivotal to achieving this goal. Models of
metabolism and regulation can be built from a combination
of genomic information, high-throughput measurements,
and prior knowledge for any cultured organism. Integrating
these models will provide deeper insight into fundamental
cellular processes and help contextualize high-throughput
experiments.

While full-featured integrated models will be useful to
generate biological hypotheses, guide experimental designs
and drive biotechnology applications, the level of detail at
which these processes are represented within the model will
depend on the proposed application. Although additional
layers of biological complexity could be included ad infinitum
to make a model more closely resemble the reality, greater
complexity does not necessarily translate into greater
utility.
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