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Emergence of antibiotic resistant pathogens is changing the way scientists look for
new antibiotic compounds. This race against the increased prevalence of multi-resistant
strains makes it necessary to expedite the search for new compounds with antibiotic
activity and to increase the production of the known. Here, we review a variety of new
scientific approaches aiming to enhance antibiotic production in Streptomyces. These
include: (i) elucidation of the signals that trigger the antibiotic biosynthetic pathways
to improve culture media, (i) bacterial hormone studies aiming to reproduce intra
and interspecific communications resulting in antibiotic burst, (i) co-cultures to mimic
competition-collaboration scenarios in nature, and (iv) the very recent in situ search for
antibiotics that might be applied in Streptomyces natural habitats. These new research
strategies combined with new analytical and molecular techniques should accelerate the
discovery process when the urgency for new compounds is higher than ever.

Keywords: antibiotics, Streptomyces, co-culture, interactions, signals

Introduction

Since pioneering work leading to the isolation of the antibiotic streptomycin in 1943 by Waksman
et al. (Jones et al., 1944), huge progress has been made in the elucidation of the molecular basis
and mechanism behind the production of these biological weapons by the Streptomyces genus.
Following this initial discovery, thousands of compounds produced by these microorganisms have
been described and utilized in order to fight infections, and they comprise over two-thirds of all
known antibiotic compounds (Omura, 1992; Berdy, 2005; Hopwood, 2007). Nowadays, widespread
antibiotic resistance (McArthur et al., 2013; Mak et al., 2014; Lin et al., 2015) has rendered a large
number of these compounds ineffective and is currently urging the scientific community to push
the boundaries of classical microbiology toward a faster and more efficient secondary metabolite
search.

Antibiotic biosynthesis is carried out by a high number of proteins encoded by genomic clusters
and is tightly regulated (Bibb and Hesketh, 2009). Normally, there is specific regulation for each
product, mediated by Cluster-Situated Regulators and also global or pleiotropic mechanisms of
regulation that can control several pathways at the same time (Rokem et al., 2007; Martin and
Liras, 2012). Therefore, there are complex regulatory networks that control the onset of production
of the secondary metabolites (Liu et al., 2013). These networks respond to multiple signals, many
of which are still unknown, and therefore empirical methods are needed to trigger the production
of cryptic secondary metabolites.

Frontiers in Microbiology | www.frontiersin.org 1

May 2015 | Volume 6 | Article 461


http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2015.00461
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:hrodrig@usal.es
http://dx.doi.org/10.3389/fmicb.2015.00461
http://journal.frontiersin.org/article/10.3389/fmicb.2015.00461/abstract
http://community.frontiersin.org/people/u/223452
http://community.frontiersin.org/people/u/231828
http://community.frontiersin.org/people/u/211361
http://community.frontiersin.org/people/u/234837
http://community.frontiersin.org/people/u/204609

Antoraz et al

Advances in Streptomyces antibiotics discovery

Genome sequencing combined with in silico prediction has
revealed that microorganisms of the genus Streptomyces harbor
a high number of secondary metabolism clusters (Aigle et al.,
2014; Bachmann et al., 2014; Tkeda et al., 2014). Bioinformatics
and “omics” based engineering has become a powerful tool in
this field, allowing the identification of secondary metabolite
gene clusters and their possible products by similarity searching
(Chaudhary et al., 2013) (Figure 1A). The use of techniques
developed in recent years in metabolic engineering will also
be of tremendous value and the perfect complement in this
urgent quest for new antibiotic compounds (Aigle and Corre,
2012; Weber et al., 2015). Changing promoters, introducing
biosynthetic clusters in others species, or rewiring transcriptional
and post-transcriptional regulation are methods for unveiling
new antibiotics or modifying products previously discarded
to obtain new molecules with antibiotic activity (Figure 1B).
Removal of endogenous secondary metabolites gene-clusters,
based on the previously described competition for precursors,
has been also shown as an alternative for improving antibiotic
production (Komatsu et al., 2010; Gémez-Escribano and Bibb,
2011, 2014). Although all these techniques have shown their
efficacy, when cultured in axenic conditions most bacteria
express a limited number of these clusters. That is the reason
that makes the unlocking of Streptomyces cryptic pathways
(potentially abundant) one of the most feasible methods for
antibiotic(s) discovery in this counter clock race against multi-
resistant strains. Moreover, new approaches designed with a
view to awake silent or cryptic pathways will also surely result
in the discovery of highly valuable secondary metabolites with
antifungal, herbicidal, anti-cancer, immunosuppressive, anti-
inflammatory, antihelmintic, or antiviral activities, amongst
others, widening the interest for the research in this area.

Studying Bacterial Sensors to Find Key
Molecules Triggering Antibiotic Burst: The
Nutritional Signals

It is widely known that media composition has a great
impact on microbial secondary metabolites, comprising of
activators of signaling cascades that trigger their production
(Yang et al, 2010). Based on systematic culture modification
of easily accessible parameters, some strategies such as “One
Strain-Many Compounds” (OSMAC) were proven successful
more than a decade ago, leading to the isolation of up to
20 different metabolites from species of Streptomyces (Bode
et al., 2002). In particular, chemical compounds present in
Streptomyces niches but not found in culture media are thought
to play a role in cryptic metabolite activation as signals in
sensory mechanisms, triggering regulatory cascades responsible
for the tuning of the secondary metabolites synthesis. That is
the case of N-acetylglucosamine, the monomer of chitin that
has been shown to act as a signal, mediated by the DasR
global regulator (Rigali et al., 2008), that controls antibiotic
production (Swiatek et al., 2012; Nazari et al, 2013). The
recently reported cellobiose-induced production of thaxtomin

A by Streptomyces scabies is also of interest (Francis et al,
2015). More generally, the effect of carbon source(s) in antibiotic
production is also a subject of study (Figure 1C), since some
of the most used carbon sources, in which bacteria are growing
more “comfortably,” repress secondary metabolism (Sdnchez
etal,, 2010). We could possibly use less “efficient” carbon sources,
which however might induce more antibiotic production in an
effort to establish a balance between growth yield and antibiotic
yield.

Regarding signal translation into responses, two component
systems (TCS) are the main signaling pathways in Streptomyces
and their role in the antibiotic production complex regulatory
network has just been started to be decoded (Rodriguez et al.,
2013). Nevertheless, the signals that activate the different
Streptomyces’ TCS remain mostly unknown and just a few of
them have been described to date (Figure 1D). As an example,
in S. coelicolor phosphate is the signal triggering PhoP/R (Sola-
Landa et al,, 2003), nitrogen balance seems to be related with
AfsQ (Shu et al., 2009) and DraR/K (Yu et al., 2012) regulation,
the level of iron seems to be the signal activating AbrA1/2
activator (Rico et al., 2014) and the presence of heme-oxidative
stress provokes SenS/R reaction (Bogel et al., 2007; Ortiz de Orue
Lucana and Groves, 2009). Most of the signals sensed by the
TCS present in the genome of the Streptomyces spp. sequenced
so far (more than 100 genomes) remain elusive. Phosphate,
nitrogen and iron are compounds present in laboratory culture
media. However, other compounds found in nature but absent
in lab culture might also act as the signals triggering other TCSs
responses (or different regulatory mechanisms) and therefore
controlling antibiotic production. So, the addition of low
concentration of rare earth elements to the culture medium may
activate the secondary metabolism in S. coelicolor and in other
Streptomyces species. Scandium has been the one studied more in
depth but yttrium, lanthanum, cerium, and europium can also
provoke antibiotic production boost (Kawai et al., 2007). The
molecular mechanism under this induction, however, has not
been described yet.

New developments in Streptomyces research, also linked with
nutrients, since their depletion is coupled with sporulation, are
exploring new solutions in order to wake silent pathways through
morphological differentiation, namely sporulation recovery. As
has been recently described, physiological differentiation is
tightly linked to secondary metabolism and therefore recovering
sporulation capacities of some Streptomyces might also lead
to the discovery of new compounds (Chater, 2013; Kalan
et al, 2013). Another nutrient-related deficiency of axenic
cultures is the absence of siderophores. Some Streptomyces
species are defective in the production of these iron-chelating
compounds and need to utilize those released by other species
in order to differentiate, produce secondary metabolites or
even grow in lab conditions (Yamanaka et al., 2005; Eto
et al, 2013; Lambert et al., 2014). Therefore, the addition
of purified siderophores or the co-culture of non-producer
species with siderophore producers are strategies also related
with nutrient supply that might be used to awake silent
pathways.
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FIGURE 1 | Schematic overview of new approaches for antibiotic
discovery in Streptomyces. (A,B) Biosynthetic clusters and regulatory
elements can be predicted with bioinformatic tools, opening up new
possibilities to metabolic engineering. (C) Modification of the culture medium
that is crucial in antibiotic production such as different carbon sources. (D)
Searching for the signals that activate different regulatory systems triggering
antibiotic production. (E) Communication molecules like antibiotics and
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hormones may also boost secondary metabolism. (F) Co-culture of
Streptomyces species with fungi and bacteria might simulate interspecies
interactions and thus induce antibiotic production. (G) The discovery of new
Streptomyces species could also reveal new compounds with antibiotic
activities. (H) The compounds produced have to be identified and isolated.
(1) All these approaches contribute to the elucidation of the nature and
activity of new antibiotics.

Spying Microbial Conversations: Bacterial
Hormones and Antibiotics as Signals

The presence of antibiotics is an important piece of information
for the microorganism in order to respond to threats (as a signal
of the competitors presence) or even to coordinate efforts with
other antibiotic producing neighbors (combining strategies in
order to repel a common menace). Therefore, the addition of
certain antibiotics or bacterial hormones in low concentrations
to the culture medium might also be an alternative for
antibiotic production stimulation (Figure 1E). Over the last 5
years there have been several reports on the role of antibiotic
compounds as auto-inducers of antibiotic production (Romero
et al.,, 2011). Even more, the importance of molecules previously
described as antimicrobials, in inter-specific communication
between Streptomyces species and, as a consequence, in the
regulation of antibiotic production has been recently described
(Nodwell, 2014). For example, the antibiotic jadomycin B,
an angucycline, produced by Streptomyces venezuelae, triggers

different antibiotic production levels in S. coelicolor depending
on the concentration (Wang et al, 2014a). Additionally,
hormones also play a role in communication between bacteria.
Among them, gamma-butyrolactones have been demonstrated
to promote antibiotic production in many streptomycetes
(Sidda and Corre, 2012). These molecules are involved in cell
to cell communication processes (quorum sensing) in which
bacteria use the production and detection of autoinducers
in order to synchronize gene expression and population
growth (Garg et al, 2014). For example, A-factor, a gamma-
butyrolactone, autoinduces morphological differentiation and
secondary metabolite production in S. griseus (Horinouchi and
Beppu, 2007). Recently, an exogenous butyrolactone has also
been showed to increase validamicyn antibiotic production in
Streptomyces hygroscopicus 5008 (Tan et al., 2013). Although,
many Streptomyces species are apparently capable of synthesizing
gamma-butyrolactones (Takano, 2006) a recent research has also
made clear that antibiotic production can also be triggered by
different hormones like avenolide in Streptomyces avermitilis or
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methylenomycin furans in S. coelicolor (Corre et al., 2008; Kitani
et al,, 2011). Regulation of antibiotic production by microbial
signaling molecules such as hormones and foreign antibiotics is
widespread. A better understanding of the nature and functions
of these signals could drive us to their potential use as activators
of silent pathways.

Exploiting Microbial Communal Living:
Co-Cultures

Routine laboratory work with Streptomyces, as with other
microorganisms, has been basically done in axenic cultures.
However, antibiotic functions can only be understood in the
context of Streptomyces’ habitat. Traditionally, antibiotics have
been considered biological weapons that allow the bacteria to
compete with others microorganisms, either by killing them or
inhibiting their growth. Nevertheless, antibiotics are also signals
that trigger adaptive responses (Yim et al., 2007; Fajardo and
Martinez, 2008; Aminov, 2009). Antibiotics have evolved as a
result of interactions (mainly competitive but also cooperative)
with other organisms and their natural role has just started to be
elucidated (Davies, 2009, 2013). It is, therefore, not unreasonable
to think that the presence of either foreign neighboring species
in its environmental niches or its buddy’s signals could trigger
different patterns of secondary metabolites production (Vetsigian
etal.,, 2011).

Although streptomycetes have been considered as normal
inhabitants of soil, recent studies show that Streptomyces species
are also frequent in different habitats in the underwater world,
mainly in sediments from shallow and deep water habitats
and marine dwelling animals, and as symbionts of plants and
invertebrates (Seipke et al., 2012; Raveh et al., 2013). Besides,
the variety of organisms that share these different niches with
Streptomyces is huge. In order to achieve a laboratory scenario
that resembles more closely the environmental conditions, co-
culture of two or three species has emerged as a powerful
tool (Figure 1F). This aims to mimic real simple situations
in nature that will facilitate the discovery of new secondary
metabolites. Although just a limited number of experiments
have been carried out to date using this new approach,
results are promising. One of the seminal experiments in
this area used different combinations of streptomycetes in co-
culture to produce the stimulation of antibiotic production
and differentiation (Ueda et al, 2000). More recently, co-
cultures of several Streptomyces species with different fungi
and bacteria have reported an induction of new molecules
or the stimulation of previously known compounds either in
Streptomyces, in the other partner or even in both partners
(Seyedsayamdost et al., 2012; Watrous et al., 2013; Moody, 2014).
An example shows that pairwise co-culture of Streptomyces
coelicolor with five different actinomycetes produces a range
of compounds of unknown identity, among them, at least 12
different desferrioxamines, that were not produced when .
coelicolor was grown under pure culture (Traxler et al.,, 2013).
Similarly the co-culture of the predator bacteria Myxococcus
xanthus with S. coelicolor showed that S. coelicolor increases

actinorhodin production in order to repel the invader when
it senses the presence of the predator (Pérez et al, 2011). In
some cases substance-mediated induction has been discarded,
with cell-to-cell interaction being the causative agent of antibiotic
biosynthetic pathways “decryption.” Thus, the interaction of
Streptomyces with mycolic acid-containing bacteria such as
Tsukumurella pulmonis in co-cultures provokes the synthesis
of new natural antibiotic products (i.e., alchivemycin A by
S. endus) although not mediated via any chemical substance
(Onaka et al., 2011). Presence of plant pathogens has also been
shown to trigger the production of secondary metabolites able to
suppress Verticillium dahlia, such as prodiginines, by S. lividans
(Meschke et al., 2012). Streptomyces products obtained in the
presence of plant invaders are becoming an interesting tool for
biocontrol initiatives that are being developed in order to fight
plant plagues (Taechowisan et al., 2005; de Oliveira et al., 2010;
Meschke and Schrempf, 2010; Cuesta et al., 2012; Meschke et al.,
2012; Palaniyandi et al., 2013a,b). One step further of “natural
co-culture” lies in the culture of Streptomyces in the presence
of human pathogens pushing the evolutionary mechanisms of
Streptomyces toward the biosynthesis of natural compounds able
to outcompete the pathogen. So, Streptomyces clavuligerus co-
cultured with methicillin resistant Staphylococcus aureus was
able to synthesize holomycin, a S. aureus chemical inhibitor
not detected in axenic cultures (Charusanti et al., 2012). Other
interesting interactions are shown in Table 1. In this way, co-
culture allows the induction of secondary metabolism even
when signals that trigger the response remain unknown or the
induction is due to a combination of factors that is hardly
reproducible in axenic conditions.

Taking the Lab to the Field: In situ Culture
for Antibiotic Discovery

Uncultured bacteria make up approximately 99% of all species.
These “undomesticated” microorganisms are potentially a
huge unexplored source of antibiotic compounds (Lewis,
2013). The recent publication by Ling et al. of new methods
for in situ cultivation of previously uncultivable microbial
species opens up a new world of possibilities enabling the
search for natural products in previously inaccessible sources
(Ling et al, 2015). These new methods are, respectively,
based on cultivation of the microorganism in their natural
environment using a multichannel device that allows diffusion
of nutrients and growth factors (Nichols et al., 2010) and on
the use of siderophores as growth factors, to microorganisms
out of their environment (D’onofrio et al., 2010). As a proof
of concept of the in situ culture approach, teixobactin, a
new antibiotic produced by the Gram-negative bacteria
Elephteria terrae with excellent activity against Gram-positive
pathogens, was discovered in an extract obtained using
iChip devices (Ling et al., 2015). Many new species are
being described every day and it is thought that most of
Streptomyces species remain undiscovered to date, foreseeing
unlimited possibilities for future antimicrobial discovery
(Figure 1G).
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TABLE 1 | Streptomyces co-cultures involved in antibiotic production.

Co-cultured species

Effects

References

Streptomyces coelicolorfive
actinomycetes

Combinations of 76 Streptomyces spp.
Streptomyces coelicolor-Bacillus subtilis

Streptomyces spp.—Tsukamurella pulmonis

Streptomyces coelicolor-Myxococcus
xanthus

Streptomyces clavuligerus—Staphylococcus
aureus

Streptomyces cinnabarinus-Alteromonas
sp.

Streptomyces sp. Mg1-Bacillus subtilis
Streptomyces sp.—Proteobacteria

Streptomyces coelicolor-Corallococcus
coralloides

Streptomyces fradiae 007-Penicillium sp.
WC-29-5
Streptomyces lividans-Bacillus subtilis

Streptomyces lividans-Verticillium dahliae

Production of multiple cryptic compounds
and antibiotics (i.e., prodiginines and
actinorhodines)

Stimulation of various antibiotics

Increase of undecylprodigiosin production.
Earlier onset of production

Production of novel antibiotics (i.e.,
alchivemycin A by S. endus)

Increase of actinorhodin production in S.
coelicolor

Production of holomycin

Induction of lobocompactol production

Production of chalcomycin A
Production of the antibiotic resistomycin

Increase of antibiotic production of
undecylprodigiosin and earlier onset

Production of four aromatic polyketides

Induction of prodiginine production

Increase of antibiotic production of
prodiginines

Traxler et al., 2013

Ueda et al., 2000

Luti and Mavituna,
2011

Onaka et al., 2011
Pérez et al., 2011
Charusanti et al., 2012

Cho and Kim, 2012

Barger et al., 2012
Carlson et al., 2015
Schéberle et al., 2014

Wang et al., 2014b
Vargas-Bautista et al.,

2014
Meschke et al., 2012

Identifying Compounds: Technical
Advances in Secondary Metabolite
Detection

Although production of cryptic secondary metabolites is the
main goal, it is important to consider other aspects, such as the
identification of the compounds produced in each condition.
This is the first step for the purification and elucidation of
their structures and activity. Previous technical problems have
been solved by emerging analytical techniques like nanospray
desorption electrospray ionization (NanoDESI) and matrix-
assisted laser desorption ionization-time of flight (MALDI-
TOF) imaging mass spectrometry that allow researchers to gain
an in situ global chemical view of bacterial secretions (Watrous
et al., 2013; Fang and Dorrestein, 2014; Hsu and Dorrestein,
2015). Therefore, the use of new advanced techniques applied
in addition to classical detection/identification methods such
as High Performance Liquid Chromatography (HPLC) or Mass
spectrophotometry (MS) (Figure 1H) will also be crucial in this
crusade against resistant pathogens.
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