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1 Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben,
Germany, 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research (MPIPZ), Köln,
Germany, 3 Faculty of Science and Central European Institute of Technology, Masaryk University, Brno, Czech Republic

In the carnivorous plant genus Genlisea a unique lobster pot trapping mechanism
supplements nutrition in nutrient-poor habitats. A wide spectrum of microbes
frequently occurs in Genlisea’s leaf-derived traps without clear relevance for Genlisea
carnivory. We sequenced the metatranscriptomes of subterrestrial traps vs. the aerial
chlorophyll-containing leaves of G. nigrocaulis and of G. hispidula. Ribosomal RNA
assignment revealed soil-borne microbial diversity in Genlisea traps, with 92 genera of
19 phyla present in more than one sample. Microbes from 16 of these phyla including
proteobacteria, green algae, amoebozoa, fungi, ciliates and metazoans, contributed
additionally short-lived mRNA to the metatranscriptome. Furthermore, transcripts of
438 members of hydrolases (e.g., proteases, phosphatases, lipases), mainly resembling
those of metazoans, ciliates and green algae, were found. Compared to aerial leaves,
Genlisea traps displayed a transcriptional up-regulation of endogenous NADH oxidases
generating reactive oxygen species as well as of acid phosphatases for prey digestion. A
leaf-vs.-trap transcriptome comparison reflects that carnivory provides inorganic P- and
different forms of N-compounds (ammonium, nitrate, amino acid, oligopeptides) and
implies the need to protect trap cells against oxidative stress. The analysis elucidates
a complex food web inside the Genlisea traps, and suggests ecological relationships
between this plant genus and its entrapped microbiome.

Keywords: Genlisea, plant carnivory, lobster pot trapping, metatranscriptomics, RNA-sequencing, whole-genome
gene transcription analysis, algae commensalism, plant-microbe interaction

Introduction

Carnivory, including trapping and subsequent digestion of prey, has evolved several times in plants.
About 800 species from five angiosperm orders (Albert et al., 1992; Ellison and Gotelli, 2009) are
known to be carnivorous. Although carnivorous plants are distributed worldwide, their occurrence
is ecologically restricted to open, wet, nutrient-poor habitats. This indicates that the nutritional
benefit from carnivory supports survival of carnivorous plants in such environments. On the other
hand, high costs for maintenance of trapping organs and reduced photosynthetic capacity exclude
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botanical carnivores from most other habitats (Soltis et al., 1999;
Farnsworth and Ellison, 2008; Fedoroff, 2012; Król et al, 2012).

Lentibulariaceae, the largest monophyletic carnivorous plant
family, comprises three genera, Pinguicula, Utricularia and
Genlisea,with three different trapping mechanisms (Jobson et al.,
2003; Muller et al., 2006). Similarly to Drosera, the primitive
butterwort (Pinguicula) secretes mucilagous adhesive substances
in order to capture insects on its leaves (Legendre, 2000).
However, Utricularia (bladderwort) and Genlisea (corkscrew
plant) use modified leaves either as suction traps (Utricularia)
or as lobster pot traps (Genlisea). The bladder-like suction
traps of Utricularia generate a water flow that carries small
prey (e.g., Daphnia species) within 10 −15ms into the bladder
(Vincent et al., 2011). The prey is digested inside the bladder
by means of numerous hydrolases and reactive oxygen species.
RNA-seq analysis revealed similar transcriptomes between
Utricularia vegetative leaves and chlorophyll-free traps (Ibarra-
Laclette et al., 2011), but traps contained more transcripts
for hydrolytic enzymes for prey digestion and displayed an
overexpression of genes involved in respiration compared to
aerial photosynthesizing leaves. Colonizing oligotrophic white
sands and moist outcrops in tropical Africa and South America,
rootless Genlisea species evolved corkscrew shaped subterranean
traps to catch protozoa and small metazoa (Barthlott et al., 1998;
Plachno et al., 2007; Fleischmann et al., 2010). Trap inward-
pointing hairs prevent prey escape and allow only one-way
movement toward the “digestion chamber”. Numerous secretory
glands in traps apparently produce hydrolases such as acid
phosphatases, proteases and esterases in order to digest prey
to gain additional N, P and minerals (Adamec, 1997; Ellison
and Gotelli, 2001). In spite of detailed knowledge of Genlisea
trap anatomy, the complexity of interactions within lobster
traps is still not well understood, for instance whether the
prey needs to be actively motile to invade traps or whether a
passive invasion via a liquid turn-over is also possible. There
are multiple reports on specialized organisms surviving and
propagating in the traps of carnivorous plants (Siragusa et al.,
2007; Peterson et al., 2008; Adlassnig et al., 2011; Koopman
and Carstens, 2011; Krieger and Kourtev, 2012). Inside the
Utricularia and Genlisea traps, diverse microbial communities,
mainly comprising bacteria, algae, protozoa and rotifers, could
live as epiphytes or parasites or might support plant fitness in the
context of prey digestion before or without becoming digested
themselves (Skutch, 1928; Jobson and Morris, 2001; Richards,
2001; Sirová et al., 2003, 2009; Płachno et al., 2005; Adamec,
2007; Plachno and Wolowski, 2008; Caravieri et al., 2014). So
far, little is known about host-microbiome interactions other
than microbe’s role as source of nutrients, and about possible
mutually beneficial impacts of entrapped microbes and their
host species. Nevertheless, soil microbes which are associated
with root systems of plants (named as root or rhizosphere
microbiomes) or live inside plants (named as bacterial/microbial
endophytes) have been shown to be important for plant growth
and health (for review see Lugtenberg and Kamilova, 2009;
Reinhold-Hurek and Hurek, 2011; Berendsen et al., 2012; Rout
and Callaway, 2012; Bakker et al., 2013; Vandenkoornhuyse et al.,
2015). On the other hand, increasing evidence from different

plant systems suggest that plants predominantly influence
and modulate the root microbial communities by the active
secretion of compounds in so-called root exudates (Broeckling
et al., 2008; Badri et al., 2013; Kierul et al., 2015). Moreover,
specialized soil microbes with high biomass-degrading capacity
could be selected or cultivated, for example in an herbivore
microbiome of the leaf-cutter ant (Atta colombica) (Suen et al.,
2010).

A trap dimorphism has been described for several Genlisea
species (Studnicka, 1996; Fleischmann, 2012), e.g., for G.
nigrocaulis, which possesses thick, short-stalked surface traps and
filiform, long-stalked deep-soil traps (Figure 1A). In contrast, G.
hispidula traps are all filiform. Whether different traps contain
specific soil microbial communities is still an open question.
Here we present, based on a metatranscriptomics approach,
a comprehensive diversity characterization of microbial food
webs inside the G. nigrocaulis and G. hispidula traps under
homogeneous laboratory conditions. Ribosomal RNA reads,
ribotags, from deep sequencing libraries were used to define
an “active” community composition across kingdoms which
was not achieved in previous studies on prey composition in
Genlisea species. In order to investigate profound plant-microbe
interactions in the Genlisea trap environment, active metabolic
pathways of the entrapped microbiome were reconstructed and
Genlisea trap-specific and differentially expressed transcripts
were analyzed.

Materials and Methods

Plant Sampling, RNA Isolation and Sequencing
G. nigrocaulis STEYERM and G. hispidula STAPF [obtained
from commercial sources: Best Carnivorous Plants
(bestcarnivorousplants.com), Merzig (carnivorsandmore.de)
and Nüdlingen (falle.de)] were cultivated in the greenhouse of
the IPK Gatersleben, Germany. Plants were grown in pots with
a mixture of peat and sand. The soil was kept wet by rain water,
containing small organisms living naturally inside. Leaves and
traps of both species were collected in summer season 2010
(SS) and winter season 2011 (WS) after thorough cleaning with
2 l of running cold distilled water. Total RNA samples were
isolated using RNeasy Kit (Qiagen) with DNaseI treatment.
The sample quality was controlled on a 2100 Bioanalyzer
(Agilent). Illumina RNA-TruSeq libraries were prepared from
1µg RNA of each sample without mRNA enrichment or rRNA
depletion. Illumina Hiseq2000 paired-end sequencing (2x100
bp reads, 200 bp insert size) resulted in at least 31 million reads
per library (Table 1). The raw RNA-seq data is deposited in
the project “PRJEB1867” at the European Nucleotide Archive
(www.ebi.ac.uk/ena/).

Taxonomic Assignment of RNA-seq Reads
RNA-Seq reads from total RNA libraries were trimmed for
sequence quality using the standard pipeline (quality limit 0.05,
minimum read length 80) of the CLC Genomics Workbench
v5.5.1 (CLC bio, Cambridge, MD). Using the RNA-seq module
of the CLC Genomics Workbench, trimmed and high quality
reads from each dataset were mapped to the non-redundant
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FIGURE 1 | Morphology and (micro)biome composition in Genlisea
traps. (A) G. hispidula has only filiform rhizophylls, while G. nigrocaulis
displays a trap dimorphism with thick, short-stalked surface traps and
filiform, long-stalked deep-soil traps. (B) Relative abundance and occurrence
of microbe genera of five categories: bacteria, SAR protists (Stramenopiles,
Alveolata, and Rhizaria), metazoans and other eukaryotic microbes.
Occurrence reflects the number of times a specific genus is found across the
8 different Genlisea metatranscriptome libraries. (C,D) Number of genera in

Genlisea traps according to species (C) or season (D). The
active-(micro)biome of Genlisea traps containing preferentially entrapped
genera is defined as (i) ≥0.1% relative abundance among each of the five
categories; (ii) occurred at least in two trap samples regardless of species or
seasonal sampling time; and (iii) trap enrichment with ≥2-fold-change of
abundance between traps and leaves. Asterisk indicates significant
difference (p < 0.05, paired Student’s t-Test). HIS, G. hispidula; NIG, G.
nigrocaulis; SS, summer season; WS, winter season.

and truncated version of the ribosomal RNA SILVA reference
sequences [LSURef_115 and SSURef_NR99_115, (Quast et al.,
2013)]. With standard mapping parameters (minimum length
90% and minimum similarity 80%), on average 0.4% reads of
each library could be mapped to rRNA reference sequences
(Table 1). In order to remove potentially false assignment,
more strict mapping parameters with minimum similarity
97% were applied. Mapping outputs (total mapped reads) of
SILVA reference sequences which were mapped by at least

one unique read were summarized for each phylotype using
the SILVA taxonomy description by MEGAN software (v
5.8.6, Huson et al., 2011). Taxonomy rarefaction plot was
performed in MEGAN for all bacterial taxa (Figure S1). For
taxonomic affiliation, ribosomal sequences of eukaryotic cellular
organelles (mitochondria, chloroplast) were not taken into
account.

Relative abundance (read count per total million reads) and
reoccurrence of each assigned genus were categorized as Bacteria,
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SAR protozoans (Stramenopiles, Alveolata, and Rhizaria), green
algae (Chlorophyta), metazoan or other eukaryote groups. For
each category, a relative abundance cutoff of 0.1% and at least
appearance within two samples was applied at genus level
for each library. Trap enrichment was calculated as the fold
change in abundance of each phylotype between trap sample
and its corresponding leaf sample. For every phylotype, a
paired t-test was used to determine significant differences for
pairwise comparisons between trap and leaf samples of each
plant species, and for the winter season vs. the summer season
(seasonal effect). NCBI Taxonomy IDs of assigned genera were
extracted by the Tax Identifier tool (http://www.ncbi.nlm.nih.
gov/ Taxonomy/TaxIdentifier/tax_identifier.cgi) and used for
drawing a phylogenetic tree by the phyloT tree generator (http://
phylot.biobyte.de) and iTOL graphical editor (http://itol.embl.
de/).

Clustering and Phenotype Enrichment Analysis in
Comparison with Reference Environmental
Datasets
The same taxonomy assignment pipeline was applied for 18
published metatranscriptome Illumina sequencing datasets of
creek, soil, feces, marine sediment, marine water body and lake
habitats (Table S1, Caporaso et al., 2011). A total of 13,246
bacterial SILVA reference sequences have at least one unique
mapped read in one dataset. UPMA clustering analysis of
bacteria diversity in all datasets with the Bray-Curtis matrix
was performed with all bacterial taxa by using MEGAN
software (v 5.8.6). Bacterial phylotypes with corresponding
read counts were imported into METAGENassist (Arndt et al.,
2012, www.metagenassist.ca) for mapping bacterial phenotypic
information. Several phenotype categories including oxygen
requirement, energy source, metabolism and habitat may have
multiple phenotypic traits associated with a given taxon. A paired
t-test was used to examine differences in species richness and
intra-group similarity between different attributes such as organs,
species and seasons.

De Novo Assembly and Analysis of Trap-specific
Community Transcriptomes
Trimmed and high quality reads from each G. nigrocaulis
library were separately de novo assembled by the CLC Genomics
Workbench 5.5.1 with automatic bubble and word sizes and
minimal 200 bp contig length. Contigs longer than 500 bp
were sequentially filtered out of G. nigrocaulis high and
low confidence transcripts (Vu et al., unpublished), SILVA
LSURef_115 and SSURef_NR99_115 sequences by using ublast
(1E-09) of theUsearch software (v 7.0.1090_win32, (Edgar, 2010).
The remaining contigs from trap samples were clustered at 80%
identity by Usearch and subsequently filtered out from (ublast,
1E-09) de novo assembled contigs of leaf samples, resulting in
31,710 non-redundant microbe transcript contigs longer than
1000 bp.

The 31,710 microbe transcript contigs (in total 51.2 Mbp)
served as a reference for read mapping using the RNA-
seq module of the CLC Genomics Workbench v5.5.1 with
standard mapping parameters (minimum length 0.9 and
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minimum similarity 0.8) for all 8 Genlisea mRNA-seq datasets
(Table 1). Relative abundance (read count per total million
reads) and fold change of abundance between trap and leaf
were calculated for every contig. A similar analysis was
performed using the annotated G. nigrocaulis genome (Vu
et al., unpublished) as reference. Transcript amounts (in reads
per kilobase of exon per million reads) were calculated for
every gene and quantile-normalized. Log2 ratios were used
to measure relative changes in expression level between each
pair of trap and its corresponding leaf sample. Genes were
considered expressed if they have (1) more than one unique
mapped read and (2) have more than five total mapped reads.
Absolute values of the corresponding log2 ratios higher than
2 and the p-value of a paired t-test (trap vs. leaf) lower
than 0.05 are conditions for selecting differentially expressed
genes.

Functional Annotation of Differentially
Transcribed Genes and Enrichment Analysis
By using Blast2GO (Conesa and Gotz, 2008), 12,564 microbe
transcripts of 1500–8000 bp length (comprising 27.9 Mbp and
corresponding 54.5% of the transcribed microbial sequences)
were blasted against the NCBI protein reference sequence (E-
value cut off 10−3) and further annotated with default filtering
parameters (E-value cutoff 10−6, Annotation cutoff 55, GO
Weight 5). Generic GO-slim categories were used to provide
a summary of GO annotation results. Enzyme code class
assignment was exploited to define the list of hydrolases. Species
information and bit score of blastx from the best blast hit
result of every transcript were exported and taxonomically
summarized by LCA algorithm from MEGAN software with
a minimum score 50. Phyla which have been detected by
ribosomal RNA assignment were used as main categories. Best
hits fromChordata species were referred to as theMetazoa group.
Enrichment analysis using the Fishers’s Exact Test with Multiple
Testing Correction of standard false discovery rate (FDR) was
carried out in Blast2Go for enriched GO categories with a p-value
cutoff of 0.05.

Results and Discussion

The Genlisea traps primarily serve as the root-substitutes,
anchoring the plant in the soil and absorbing soil-borne
nutrients. Importantly, these chlorophyll-free, subterranean
rhizophylls are tubular, modified leaves which resemble
a lobster pot, retaining numerous and highly diverse
microbes and small animals as prey in order to provide
complement nutrients via carnivorous diet. To identify
active players in this semi-closed food web, we examined
total RNA from leaves and traps of perennial G. nigrocaulis
and G. hispidula and characterized the trap microbiome by
metaRNA sequencing. Extensive washing of the samples
prior to RNA extraction was applied in order to remove
loosely associated microbes on surfaces of plant tissues. Two
winter and summer season replicates of each sample were
analyzed.

Trap-Specific Enrichment among the Highly
Diverse and Dynamic Phylotypes of Genlisea
Traps
Deep sequencing has been shown to be a suitable approach for
large-scale comparisons of microbial communities (Caporaso
et al., 2011; Yarza et al., 2014). With whole-community
RNA sequencing, amplification bias and primer design
limitations in rRNA amplicon sequencing approaches can
be compensated. Moreover, because of the short mRNA half-
life, metatranscriptomics presents abundance information on
active populations in the community. By using a stringent
mapping approach, we assigned on average 135,148 ribosomal
RNA reads of each RNA-seq library to ribosomal RNA SILVA
reference sequences with 39–188 phylotypes at genus level
(Table 1, Figure 1). On average, microbial communities in G.
nigrocaulis traps (144–188 genera) were more diverse than
in G. hispidula (39–73 genera) traps, regardless of seasonal
sampling. Overall we found in Genlisea trap samples 184 out of
total 220 uniquely detected genera having at least 0.1% relative
abundance of either bacteria, SAR protists (Stramenopiles,
Alveolata and Rhizaria), green algae (Chlorophyta), metazoa,
or other eukaryotic microbes (Figure 1B). The majority of
genera (103 out of 184 = 55.9%) in Genlisea traps were rare
(0.1–1% abundance), suggesting high sensitivity of the RNA-seq
sequencing approach. The dominant genera with >10% of
each phylogenetic group include the widespread aerobic soil
bacterium Pedosphaera, the freshwater ciliate Tetrahymena,
two freshwater planktonic green algae Chlamydomonas and
Carteria, the minute worm Aeolosoma, the predatory flatworm
Stenostomum, the cosmopolitan oribatid mite Trhypochthonius,
the aquatic fungus Entophlyctis, and two amoebae (the flagellate
Phalansterium and the lancet-shaped Paradermamoeba). Of 220
detected genera, 33.2% were found only in a single trap sample
and only 6.8% were in all trap samples regardless of season and
Genlisea species tested. The green algae Carteria and the fungus
Entophlyctis were prevalent in only one sample, while eight other
dominant genera appeared in more than one trap sample.

Among the 133 genera having 0.1% or higher relative
abundance and being found in at least two trap samples, 92
genera belonging to 19 phyla were enriched (two-fold or higher
relative abundance) in traps in comparison with corresponding
leaves (Figure 2). These preferentially entrapped or trap-
enriched organisms, here defined as the active-(micro)biome
of Genlisea traps, consist of 34 bacteria, 12 SAR protists,
7 green algae, 32 metazoa, and 7 other eukaryotic genera.
Proteobacteria, Chlorophyta (green algae) and Arthropoda
represent the most diverse phyla in this community, largely
extending the view of Barthlott et al. (1998). These authors
proposed that Genlisea species are specialized in capturing
protozoans, based on their laboratory experiments and field
observations. Microscopic studies on trap content of different
cultivated and field collected Genlisea species showed that mites
(Acari), roundworms (Nematoda), flatworms (Platyhelminthes),
annelids (Annelida) and rotifers (Rotifera) are common prey
(Płachno et al., 2005; Fleischmann, 2012). In addition, unicellular
algae were also frequently encountered inside of the Genlisea
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FIGURE 2 | The active-(micro)biome of Genlisea traps contains
92 preferentially entrapped genera. Relative abundance, frequency
of appearance in samples and relative fold change of abundance in

trap vs. leaf are shown. Definition of preferentially trapped genera
can be found in the legend of Figure 1. ∞ indicates trap exclusive
presence.

rhizophylls as prey and/or as commensals (Płachno et al., 2005;
Plachno and Wolowski, 2008). Our data suggest an even richer
bacteria community than the 10 bacterial genera including
Phenylobacterium and Magnetospirillum that were found in 16S
rDNA amplification libraries of Genlisea filiformis traps collected
from natural habitats (Caravieri et al., 2014). Limitation in primer
design and amplification bias could result in an underestimation
of sequence diversity of 16S rDNA amplification libraries.

Our comparative data indicate that the prey spectrum of
the uniform G. hispidula traps is less diverse than that of the
dimorphic G. nigrocaulis traps, although under our cultivation
conditions the microfauna composition was likely homogeneous

(Figures 1C,D). In G. nigrocaulis traps, we detected 31 out of the
32 preferentially entrapped metazoans, except for the polychaete
worm Capitella. Interestingly, this worm was repeatedly
abundant in the filiform traps of G. hispidula, although only 17
out of the 32 metazoan genera occurred there. This corroborates
the hypothesis that different Genlisea species may prefer different
prey (Studnicka, 1996) or are of different attractivity for
potential prey species. Nevertheless, both types of Genlisea
traps captured prey of different phyla which are abundant in
soil.

To test the effectiveness of our stringent mapping approach,
the bacterial composition of Genlisea samples was further
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analyzed in comparison with published metatranscriptome
datasets for various environments including soil, creek,
lake, feces, marine water body and marine sediments (Table
S1, Figure S1A). As expected, clustering analysis based on
abundance of all bacterial taxa indicates that Genlisea samples
are more similar to creek, soil, and lake samples than marine
sediment, marine water or feces samples (Figure S1B). The
relationship between environmental samples using our
taxonomy assignment comes in line with the output from
the QIIME pipeline (Caporaso et al., 2011). Notably, variation
in taxonomic structures between Genlisea samples is higher
than other environmental sample groups, except for marine
water samples (Figure S1B). In spite of this remarkably dynamic
composition, Genlisea traps from same species are more
similar to each other and differentiation between Genlisea
samples across sampling season is not evident from the cluster
dendrogram.

Given that plant root microbiomes vary by soil type
and plant species (Haichar et al., 2008; Bulgarelli et al.,
2012; Turner et al., 2013; Ofek-Lalzar et al., 2014; Cardinale
et al., 2015), a direct comparison with root microbiota
and/or rhizosphere of other terrestrial plants might not be
meaningful. Nevertheless, following interesting findings are
noteworthy in Genlisea-associated bacteria. (i) Similar to
microbiota in Arabidopsis’ root (Bulgarelli et al., 2012), other
plant rhizospheres or bulk soil (Turner et al., 2013), we
identified Proteobacteria as the dominant bacterial phylum (from
54.9 to 64.2% bacterial reads) in Genlisea samples (Figure
S2). However, Rhodospirillaceae represent the majority (35.9%
bacterial reads, 55.9% Proteobacteria reads) in G. nigrocaulis
traps, whereas these bacteria are largely underrepresented in
G. hispidula traps and Genlisea leave samples (from 0.8 to
6.9% bacterial reads). Within this purple non-sulfur bacterial
family, the chemoheterotrophs include the facultative anaerobic
genera Skermanella, Telmatospirillum and the strictly aerobic
and microoxic genera Magnetospirillum are mainly found in
Genlisea samples. (ii) In Proteobacteria phylum, the acetic
acid bacterium Asaia and several genera in plant growth-
promoting Rhizobiales are highly enriched in G. hispidula
traps and Genlisea leave samples. The abundant Asaia genus
(from 6.4 to 17.8% bacterial reads) has recently recognized
as bacterial symbionts of various insects (Crotti et al., 2009).
(iii) Surprisingly, Planctomycetes and Verrucomicrobia, which
contain few cultured representatives and are poorly understood,
are highly abundant in Genlisea traps but are mostly depleted
(compared to bulk soil and rhizosphere) in root-associated
bacteria of Arabidopsis and rice (Lundberg et al., 2012;
Edwards et al., 2015). Verrumimicrobia are more abundant
than Planctomycetes in G. nigrocaulis traps (24.9 and 4.2%
bacterial reads, respectively). The opposite is found in G.
hispidula traps with 7.2 and 18.7% bacterial reads, respectively
(Figure S2). (iv) A depletion in abundance of Acidobacteria
and Firmicutes in Genlisea traps, as compared to Genlisea
leaves, suggests preferences of protozoa predators in the trap.
However, belonging to Acidobacteria phyla, Acidobacterium
and Candidatus Solibacter in Genlisea trap’s active-microbiome
apparently use complex carbon sources and are well equipped

to tolerate low-nutrient conditions and fluctuations in soil
hydration (Ward et al., 2009).

To provide an additional level of functional understanding
of the bacterial active-microbiome of Genlisea traps (trap-
enriched set), available phenotype information of identified
genera from the METAGENassist database (Arndt et al., 2012)
was employed. This data suggest that free-living bacteria from
terrestrial (10.2%) and soil (7.4%) habitats are dominant in
Genlisea traps, while so-called host associated bacteria comprised
only 1.2% of trap residents (Figure 3A). Interestingly, among the
bacterial active-microbiome of Genlisea traps, the proportions
of host-associated and habitat-specific bacteria were increased
to 3 and 1.3%, respectively. Of the entrapped bacteria 46.3%
weremotile and 20.4%were non-motile; among the preferentially
trap-enriched bacteria 31.2% were not motile (Figure 3B).
So far, several contradictory hypotheses have been published
regarding active (Meyers-Rice, 1994; Studnicka, 2003a,c) or
passive trapping (Barthlott et al., 1998; Adamec, 2003; Płachno
et al., 2005; Plachno and Wolowski, 2008) in Genlisea. The
presence of immobile and free-living microbes in Genlisea traps
was previously considered as evidence for the hypothesis of
an actively drawing bacteria into Genlisea rhizophylls systems
(Studnicka, 2003a). Virtually no measurable water flow and
lacking bifid glands for water pumping, as occur in Utricularia
(Adamec, 2003), rather suggest a passive invasion via a liquid
turn-over to explain trapping of immobile bacteria in Genlisea.

Studnicka (2013b) postulated that Genlisea plants attract
soil microfauna by transiently creating an oxygen-rich area in
their rhizophylls. The presence of bacteria with different oxygen
requirements in Genlisea traps (Figure 3C) is in accordance
with this hypothesis. Although aerobic bacteria are predominant,
facultative and obligate anaerobic bacteria were enriched among
the preferentially trapped microbes from 0.9 and 9.97 to 4.97%
and 15.39%, respectively. Therefore, bacterial commensals might
be adapted to anoxia interrupted by periods of high O2. The
oxygen concentration was found very small or zero in mature
traps of Genlisea by a still unclear mechanism (Adamec, 2007).

Phenotype mapping of energy resources (Figure 3D) revealed
that most of trapped bacteria are heterotrophic (19.7%), and
that methylotrophic (2.45%) or lithotrophic (1.2%) bacteria
were also enriched (Figure 3E). In terms of metabolic activity,
Genlisea traps contain small fractions of bacteria with ability
for nitrogen (3.87%) or carbon fixation (0.24%). Plant-associated
N2 fixation has been considered as a potential source of N for
carnivorous plants with pitcher or snapping traps (Prankevicius
and Cameron, 1991; Albino et al., 2006). Although N2 fixing
bacteria represent up to 16% of the bacterial community in
Utricularia traps, N2 fixation contributed less than 1% of daily
N gain of Utricularia (Sirova et al., 2014). This limited N2
fixation is likely due to the high concentration of NH4−N
in the Utricularia trap fluid, resulting from fast turnover of
organic matter. In Genlisea traps, bacterial ammonia oxidizing
or nitrite reducing bacteria are abundant with 10.6 and 8.9%,
respectively. This suggests a close interaction of nitrifying
and denitrifying bacteria in the nitrogen cycling within this
microbial community. In rice paddy soils, nitrite oxidizers
were abundant in rice roots and its rhizospheric soil, however

Frontiers in Microbiology | www.frontiersin.org 7 July 2015 | Volume 6 | Article 526

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Cao et al. Metatranscriptome of carnivorous Genlisea traps

FIGURE 3 | Phenotype profiling of bacterial communities between Genlisea trap samples vs. Genlisea leaves or soil samples. Phenotype information of
habitat (A), mobility (B), oxygen requirement (C), energy resources (D), and metabolisms (E,F) was extracted from the METAGENassist database.

ammonia oxidizers were dominant in surface soil (Ke et al.,
2013). Furthermore, in Genlisea rhizophylls, there are several
bacteria groups with various degrading capacity (Figure 3F),
including dehalogenation (10.7%), chitin degradation (3.49%),
and xylan degradation (6.9%).

Contribution of Microbial mRNA to the Genlisea
Trap Meta-Transcriptome
With a glimpse of mechanistic understanding of the trap
microbiomes from the METAGENassist database, we further
explored the contribution of microbes to Genlisea carnivory by
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studying mRNA transcripts of traps. The metatranscriptome of
eachG. nigrocaulismRNA-seq dataset was de novo assembled and
the contigs containing ribosomal RNA and Genlisea transcripts
were filtered out, resulting in a set of 31,710 non-plant transcripts
(51.2 Mbp). The main fraction of non-plant transcripts ranging
from 1500 to 8000 bp (12,564 contigs, 27.9 Mbp) was analyzed.
A total of 10,518 transcripts had significant BLAST hits (E ≤
1.0E-3) in the NCBI protein reference database (Tables S2, S3). Of
these, 10,501 transcripts could be taxonomically assigned by the
LCA algorithm in MEGAN (minimal blast bit score of 50). The
highest percentage of top blast hits came from metazoan species
(73.6%) including Arthropoda (20.2%), Mollusca (12.8%),
Nematoda (2.6%), probably indicating that Genlisea plants lack
of voracious mechanisms to kill trapped large-sized preys.
Interestingly, green algae, bacteria, Amoebozoa and Alveolata
species contribute to 5.7, 4.3, 3.8, and 2.5% respectively, of
transcripts of the Genlisea trap microbe transcriptome. In total,
16 out of 19 phyla, which, according to their rRNA, were
preferentially enriched in the traps, apparently contribute to the
active mRNA meta-transcriptome.

Of the 10,518 microbe transcripts, 6140 transcripts could
be annotated (E-value hit filter of 1.0E-6, annotation cutoff of
55), and 1298 transcripts could be further assigned with an
enzyme code. The top five KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathways of this microbial metatranscriptome
include purine metabolism (181 transcripts, 29 enzymes),
prokaryotic carbon fixation pathways (57 transcripts, 15
enzymes), pyruvate metabolism (54 transcripts, 17 enzymes),
thiamine metabolism (52 transcripts, 1 enzyme as nucleoside-
triphosphate phosphatase EC 3.6.1.15) and the tricarboxylic acid
(TCA) cycle (48 transcripts, 15 enzymes). In total, only 15
transcripts (1.1% of all EC assigned transcripts) with assigned
enzyme codes had a significant best hit from bacterial species,
although the proportion of bacterial transcripts is in the same
range as those from algae, amoebes, or ciliates. In total, 408
bacterial transcripts having E-value less than 1E-3 and a bit score
higher than 50, originated from 300 bacterial species of 214
genera, belonging mainly to the most abundant bacteria phyla
Proteobacteria (151 transcripts), Cyanobacteria (76 transcripts)
and Firmicutes (75 transcripts).

The enzyme code distribution of the microbial transcriptome
showed 33.7% transcripts encoding hydrolases (Tables 2, S2).
Main contributors of hydrolases were metazoans (80.1%),
Alveolata (8%), green algae (5.7%), and Amoebozoa (1.14%).
Especially, phosphatases (EC 3.1.3) are hydrolases of interest
because prey likely provides supplemental phosphate to
carnivorous plants in poor habitats (Adamec, 1997). High
extracellular phosphatase activity was detected in glandular
structures of Genlisea traps as well as in Chlamydomonas sp.
living inside Genlisea traps (Plachno et al., 2006; Plachno and
Wolowski, 2008). We found in the microbial metatranscriptome
86 phosphatases mainly from Metazoa (73 contigs), Alveolata (5
contigs), Chlorophyta (3 contigs), and Amoebozoa (2 contigs).
These groups also contribute to the pool of peptidases-encoding
transcripts (EC 3.4), with 77.8, 12.3, 6.2, and 1.2%, respectively.
Dominant or co-dominant species for the three protist groups
in terms of mRNA transcript abundance are Tetrahymena

thermophila (204 transcripts, 76.7% transcripts of Alveolata),
Volvox carteri f. nagariensis (247 transcripts, 41.2% transcripts
of Chlorophyta), Chlamydomonas reinhardtii (196 transcripts,
32.7% transcripts of Chlorophyta), Acanthamoeba castellanii
str. Neff (164 transcripts, 41.6% transcripts of Amoebozoa) and
Dictyostelium purpureum (110 transcripts, 27.9% transcripts
of Amoebozoa). Given the limited availability of genomic data
for unicellular Eukarya, it is more likely that transcripts could
have been from soil-borne related species. Among the whole
microbiome, T. thermophila which is a voracious predator of
bacteria (Eisen et al., 2006), showed 16 enriched GO terms,
including hydrolase activity (FDR 1.0E-12), peptidase activity
(FDR 4.7E-4), and pyrophosphatase activity (FDR 1.2E-3)
confirmed by the Fisher’s Exact Test (Table S4). From two
green algae, transcripts required for photosynthesis (FDR
3.2E-6 and 3.8E-3 for V. carteri and C. reinhardtii, respectively)
were accumulated. Enrichment of transcripts involved in
transmembrane transport (FDR 2.7E-3) and other substance
transport mechanisms (“single-organism transport,” FDR 3.8E-
3) were observed in C. reinhardtii, while V. carteri produced
transcripts enriched for generation of precursor metabolites
and energy (FDR 2.5E-3) and for stress response (FDR 0.042).
No statistically significant enrichment was found comparing
transcripts of Acanthamoeba castellanii str. Neff, Dictyostelium
purpureum, or of all bacteria species with the whole microbial
transcriptome.

The Rhizophyll Transcriptome of G. nigrocaulis
Using the annotated G. nigrocaulis genome as reference, the
Genlisea rhizophyll trancriptomes were characterized by RNA
sequencing analysis in comparison to the corresponding leaf
transcriptome. Samples of G. nigrocaulis and G. hispidula from
two different seasons were included (Table 1). Relative to leaf
samples, 1098 transcripts were differentially transcribed (p <

0.05) in G. nigrocaulis. Hence, 6.4% of all 17,113 G. nigrocaulis
genes, corresponding to 8.5% of genes transcribed either in
leaves or traps, were differentially expressed. Of the 1098
differentially expressed genes (DEGs), 69 showed an at least two-
fold accumulation or reduction of transcripts (Table 3). When
comparing trap and leaf samples of G. hispidula by mapping
RNA-seq reads of G. hispidula to the genome of G. nigrocaulis,
in total 306 differentially expressed genes were found, and 33
of these revealed an at least two-fold different abundance. The
difference, compared to the situation found in G. nigrocaulis,
could be explained by divergence of transcript sequences between
two species, resulting in a less efficient read mapping (Table 1).
TheG. hispidula genome is allotetraploid and 18 times larger than
that of G. nigrocaulis (Vu et al., unpublished).

Among the 69 most differentially expressed genes, GO
term annotations in either “biological process”, “molecular
function” or “cellular component” could be assigned to 63
genes. Comparison of the biological processes represented by
the genes with up- or down regulated expression between
G. nigrocaulis traps and leaves indicates a switch from
photosynthesis and chloroplast activities in leaves toward
respiratory and mitochondrial activities in traps (Table 3). In
chlorophyll-free rhizophylls, we observed a down-regulation
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TABLE 3 | List of the top differentially expressed genes in Genlisea traps.

Feature ID Trap EV Fold change P-value Description EC

TRANSCRIPTION FACTORS AND CELL DIFFERENTIATION

Gnig_g5834 3.24 71.93 0.01 Bel1-like homeodomain protein 2 –

Gnig_g2911 3.99 54.57 0.02 Homeobox-leucine zipper protein hat14-like –

Gnig_g10300 2.83 3.12 0.03 Low quality protein: uncharacterized loc101213316 –

Gnig_g6470 5.81 2.66 0.05 Ethylene-responsive transcription factor erf113

Gnig_g13661 4.93 3.05 5.51E-4 Wrky transcription factor 22 –

Gnig_g7714 3.78 2.51 0.03 Fasciclin-like arabinogalactan protein 11-like –

Gnig_g3900 3.59 2.13 3.72E-3 Homeobox-leucine zipper protein anthocyaninless 2-like –

Gnig_g11132 1.32 −2.88 0.04 Mitochondrial import inner membrane translocase subunit tim-10 isoform 2 –

Gnig_g3165 0.63 −3.84 0.02 Wuschel-related homeobox 1-like –

Gnig_g6054 1.29 −4.03 0.04 Transcription factor tcp15-like –

Gnig_g8736 2.16 −2.11 0.05 Zf-hd homeobox protein at4g24660-like

DNA REPLICATION, DNA REPAIR MECHANISM, RESPONSE TO OXIDATIVE STRESS

Gnig_g10176 1.44 6.7 1.07E-3 Dna topoisomerase 2-like EC:5.99.1.3

Gnig_g6886 0.34 4.2 0.03 Probable atp-dependent rna helicase ddx11-like –

Gnig_g465 7.5 2.42 0.01 Peroxidase 4 EC:1.11.1.7

Gnig_g6251 2.81 26.98 0.02 Gag-pol polyprotein –

Gnig_g7174 4.18 6.26 0.01 Hypothetical retrotransposon –

Gnig_g9007 −1.24 5.84 0.04 Retrotransposon ty3-gypsy subclass

Gnig_g12518 2.29 2.09 0.02 Dna primase small subunit-like –

Gnig_g5726 0.92 −2.12 0.05 Cyclin-sds-like –

HORMONE METABOLISM

Gnig_g1638 4.5 7.84 0.05 Gibberellin 20-oxidase EC:1.14.11.0

TRANSPORT ACTIVITIES

Gnig_g2161 4.42 7.36 0.04 Ammonium transporter 3 member 1-like –

Gnig_g1022 5.46 4.17 0.04 White-brown-complex abc transporter family EC:3.6.3.28

Gnig_g12092 2.61 3.57 9.65E-4 Protein sensitive to proton rhizotoxicity 1-like –

Gnig_g2102 3.04 2.39 0.01 Probable metal-nicotianamine transporter ysl7-like –

Gnig_g2809 4.19 2.19 0.04 Mate efflux family protein dtx1-like

Gnig_g2832 1.18 −2.25 0.01 Vacuolar amino acid transporter 1-like –

Gnig_g14845 0.99 −2.3 9.78E-3 Cation h(+) antiporter 15-like –

Gnig_g3612 0.85 −4.34 0.02 Peptide transporter ptr1 –

HYDROLASE ACTITIVITIES

Gnig_g53 4.38 7.07 0.01 Pollen allergen

Gnig_g2873 2.46 2.34 0.03 Polyphenol oxidase –

Gnig_g11834 1.22 −4.41 0.03 Subtilisin-like protease EC:3.4.21.0

ENERGY METATBOLISM, MITOCHONDRIA ACTITIVITIES

Gnig_g71 4.02 2.59 0.02 Nadph oxidase EC:1.6.3.0

Gnig_g2907 5.85 2.28 0.04 Duf246 domain-containing protein at1g04910-like –

Gnig_g9092 6.2 2.02 1.00E-3 Cytochrome p450 86b1 –

Gnig_g3919 1.99 2.22 0.02 Cytochrome p450

Gnig_g69 5.11 2.01 0.02 Nadph oxidase EC:1.6.3.1;
EC:1.11.1.7

Gnig_g13497 0.95 −4.2 0.02 Formyltetrahydrofolate deformylase EC:3.5.1.10;
EC:2.1.2.0

Gnig_g10196 0.19 −10.66 0.03 Cysteine desulfurase mitochondrial

PHOTOSYNTHESIS OR CHLOROPLAST ACTIVITIES

Gnig_g8373 −0.05 56.93 0.04 Ribulose- -bisphosphate carboxylase oxygenase large subunit EC:4.1.1.39

Gnig_g825 2.51 −2.04 0.04 Peptidyl-prolyl cis-trans isomerase chloroplastic-like –

Gnig_g12417 3.06 −2.4 0.01 Lipoxygenase 2 EC:1.13.11.12

Gnig_g5094 0.82 −2.4 0.02 Uracil phosphoribosyltransferase-like EC:2.4.2.9

(Continued)
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TABLE 3 | Continued

Feature ID Trap EV Fold change P-value Description EC

Gnig_g11978 0.86 −2.81 0.01 Uridine kinase -like EC:2.7.1.48

Gnig_g1617 1.33 −3.08 0.04 Heme-binding-like protein chloroplastic-like –

Gnig_g1973 3.07 −3.13 0.03 Carbonic chloroplastic-like isoform x1 –

Gnig_g15746 0.09 −52 0.03 Photosystem ii 47 kda protein –

OTHER OR UNKNOWN FUCTIONS

Gnig_g12094 2.42 5.65 0.05 Ring-h2 finger protein atl57-like –

Gnig_g9230 3.98 3.36 0.02 Hypothetical protein POPTR_0011s00710g

Gnig_g13075 −1.73 3.3 0.01 Low quality protein: udp-rhamnose:rhamnosyltransferase 1-like –

Gnig_g5322 5.2 2.52 0.02 e3 ubiquitin-protein ligase pub23-like

Gnig_g11156 1.27 2.33 0.05 Ubiquitin conjugating enzyme EC:6.3.2.19

Gnig_g9986 1.23 2.21 0.04 Afadin- and alpha-actinin-binding protein a isoform x2 –

Gnig_g7098 2.4 2.12 0.03 Hypothetical protein POPTR_0001s33000g

Gnig_g2799 2.08 −2 0.04 Conserved hypothetical protein

Gnig_g5356 2.1 −2.14 0.04 PREDICTED: uncharacterized protein LOC100254610

Gnig_g7417 2 −2.14 8.02E-4 Structural constituent of ribosome

Gnig_g12123 0.9 −2.14 0.02 Hydroxycinnamoyl-coenzyme a shikimate quinate
hydroxycinnamoyltransferase

–

Gnig_g5731 1.86 −2.26 0.04 Probable inactive receptor kinase at1g48480 –

Gnig_g15181 2.52 −2.34 0.03

Gnig_g15672 1.29 −2.37 2.35E-3 Low quality protein: promoter-binding protein spl10 –

Gnig_g7001 0.96 −2.42 0.04 Histone acetyl transferase gnat myst 101 –

Gnig_g10961 1.04 −3.16 0.01 Une1-like protein

Gnig_g5918 1.03 −3.24 0.05 Probable gpi-anchored adhesin-like protein pga55

Gnig_g8882 1.1 −3.42 9.24E-3 Probable serine threonine-protein kinase rlckvii-like –

Gnig_g7495 0.55 −4.1 0.04 e3 ubiquitin-protein ligase ring1-like isoform 1

Gnig_g10879 0.3 −12.68 1.66E-3 PREDICTED: uncharacterized protein YNL011C –

Gnig_g13974 3.32 −46.21 0.01 Tetratricopeptide repeat-like superfamily protein

Gnig_g9460 0.02 −69.06 0.03 Kinesin-1-like –

Gnig_g8274 0.33 −137.05 0.02 Desiccation-related protein pcc13-62-like –

of photosystem II protein (Gnig_g15746) and 6 other genes
working in chloroplast (Gnig_g825, Gnig_g12417, Gnig_g5094,
Gnig_g11978, Gnig_g1617, and Gnig_g1973). The only strongly
up-regulated chloroplast gene encodes the large subunit
of ribulose-biphosphate carboxylase oxygenase (Rubisco,
Gnig_g8373), which participates in CO2 fixation in the Calvin
cycle. On the other hand, two cytochrome P450 (Gnig_g9092,
Gnig_g3919) and two NADH oxidases (Gnig_g71, Gnig_g69),
which contribute to generate ATP via the respiratory pathway,
were up-regulated. Interestingly, NADH oxidases are probably
used to generate superoxide and further reactive oxygen species
for prey digestion in Genlisea traps (Albert et al., 2010). Similar
to other higher plants (Mittler et al., 2004), in response to
oxidative stress, Genlisea trap cells display a high expression
level of cytochrome P450 (Gnig_g9092, Gnig_g3919), peroxidase
(Gnig_g465). Oxidative stress, as shown in C. reinhardtii, confers
translational arrest of Rubisco (Cohen et al., 2005). This may
explain the high abundance of Rubisco (Gnig_g8373) transcipts
in Genlisea trap cells. Interestingly, in response to DNA damage,
DDX11-like RNA helicase (Gnig_g6886), DNA topoisomerase
(Gnig_g10176) and DNA primase (Gnig_g12518) together with

genes required for retrotransposition (Gnig_g6251, Gnig_g7174,
and Gnig_g9007) were elevated. A retrotransposition burst
can be induced by different endogenous and environmental
challenges including oxidative stress in plant (Mhiri et al., 1997)
and other systems such as human (Giorgi et al., 2011) and yeast
(Ikeda et al., 2001). Under oxidative stress, elevated DNA double
strand break (DSB) repair sites at retrotransposon positions and
signatures of non-homologous end joining repair (NHEJ) were
uncovered in mouse (Rockwood et al., 2004). Surprisingly, the
cyclin-SDS (SOLO DANCERS)-like gene (Gnig_g5726) which
is involved in DSB repair via homologous recombination (De
Muyt et al., 2009) was suppressed in Genlisea traps, suggesting
that NHEJ is the main repair mechanism for DSBs in Genlisea
trap cells.

It has been suggested that Utricularia traps serve to enhance
the acquisition of P rather than of N (Sirová et al., 2003, 2009;
Ibarra-Laclette et al., 2011). This was used to explain why
N concentrations (both NH4-N and organic dissolved N) in
Utricularia traps are consistently high, even in species growing
in highly oligotropic waters with low prey-capture rates (Sirova
et al., 2014). In G. nigrocaulis traps, however, we detected
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high up-regulation for ammonium transporter (Gnig_g2161),
nitrate transporter (Gnig_g12092), amino acid transporter
(Gnig_g1022), and oligopeptide transporter (Gnig_g2102)
transcripts. Moreover, three transcription factors (Gnig_g5834,
Gnig_g2911, and Gnig_g10300), likely involved in cellular
nitrogen metabolism were the most up-regulated genes in
Genlisea traps. Likely, Genlisea plants absorb N-nutrients via
carnivory. For P-nutrient demand of Genlisea plants, there are
four up-regulated genes, of which proteins are predicted to have
acid phosphatase activity (EC:3.1.3.2/0), including Gnig_g15303,
Gnig_g1090, Gnig_g9666 and Gnig_g2820. Although six
(inorganic) phosphate (co)transporters (Gnig_g10119,
Gnig_g1924, Gnig_g1927, Gnig_g1929, Gnig_g6455 and
Gnig_g6456) were expressed in Genlisea traps, these genes
do not show a significant differential expression (Table S5).
We speculate that inorganic phosphates were delivered to
and actively consumed in leaf cells similarly as in rhizophyll
cells. In addition to four acid phosphatases, Genlisea trap
cells up-regulate seven other hydrolases (EC:3.1), but only
pectinesterase (Gnig_g4571) was predicted to be secreted into
extracellular region. Furthermore, the gene Gnig_g53 with
similarity to extracellular pollen allergen, a member of the
glycoside hydrolase family, was found to be highly up-regulated.
The limited number of hydrolases found to be up-regulated,
suggests that in Genlisea carnivory requires additional digestive
enzymes from entrapped microbes.

Concluding Remarks

Metatranscriptomic data of Genlisea traps uncovered the diverse
entrapped and alive microbe community including Bacteria,
protists of the SAR group (heterokont Stramenopiles, Alveolata,
and Rhizaria), green algae, microbial fungi and a large range of
minute metazoans. Ribosomal RNA profiling indicates a highly
dynamic structure of the trap bacterial community, reflecting
their ecological importance mainly as prey of the one-way
food web inside Genlisea traps. The enrichment in facultatively
anaerobic bacteria suggests an occasionally interrupted anoxia
environment in Genlisea digestive chambers. A high amount of
superoxide and other reactive oxygen species is likely generated
in Genlisea traps for killing prey and stimulates different
oxidative stress responses in trap cells.

The opportunistic feeding behavior, to catch and utilize
various prey, provides Genlisea plants alternative N- and
P- macronutrient sources from microbes. The abundance of

bacteria involved in nitrogen cycling (ammonia oxidizing, nitrite
reducing and nitrogen fixation) indicates their importance for
the gain of N- nutrients. In addition, various transporters for
different N- forms such as ammonium, nitrate, amino acids
and oligopeptides together with transcription factors involved
in cellular nitrogen metabolism are highly up-regulated in
Genlisea rhizophylls. Except for acidic phosphatases, only a
limited range of Genlisea hydrolases were found up-regulated
in the traps, suggesting that Genlisea plants rely on digestive
enzymatic systems from microbes. Indeed, various hydrolases
were identified from entrapped metazoan microbes, Alveolata
protists, green algae and amoeboid protozoa. Among them, the
cilliate T. thermophila is a voracious bacterial predator, while
green algae, such as C. reinhardtii, seem to stay as commensals or
inquilines inside Genlisea traps. A variety of mites, nematodes,
rotifers and annelids are similarly entrapped and ingest in turn
protozoans until they perish and their corpses serve themselves as
nutrient. Further studies using microcosm experiments with less
complex microbial community may be interesting to understand
contributions of each microbe to the carnivory.
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