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A Commentary on

A common origin for immunity and digestion

by Broderick, N. A. (2015). Front. Immunol. 6:72. doi: 10.3389/fimmu.2015.00072

We read with great interest the recent hypothesis forwarded by Broderick (2015). The underlying
question addressed in her thesis is central to the field of evolutionary immunology: What drives
immunological innovation? This question finds its most intriguing manifestation in what has been
called “arguably the most exciting finding of the past decade in immunology” (Flajnik, 2014): the
discovery of a second, convergent evolved, adaptive immune system (AIS) in jawless vertebrates
(hagfish and lampreys). This discovery raises the question, why did vertebrates, (representing about
1% of all animals that ever lived) evolve an AIS twice, whereas invertebrates failed to do so? Clearly,
understanding the forces that drive immunological innovation will undoubtedly have a formative
impact on our understanding of one of the most perplexing immunological dimorphisms in nature.

Broderick argues that both immune and digestive systems might have shared a common origin
and goal: “the quest for more efficient energy acquisition” (Broderick, 2015). The author draws
on two lines of arguments to support her claim. Firstly, she points out that various “enzymes
involved in immune responses also [perform] roles in digestion.” Secondly, she notes that the
gut represented an early innovation in metazoans, from which, as is hypothesized, immune
functionality developed. Indeed, the author notes that this connection between immunity and
digestion might be ancient since, “for single-celled organisms like amoebae, the process of infection
and food acquisition are indistinguishable in the initial stages, with the two being separable only by
outcome.” Though, this may be true for single cell organism (and very primitive animals such as sea
sponges), we are skeptical of the extent to which the sharing of similar components (i.e., digestive
enzymes) between systems justifies an interpretation of common ontology between digestion and
immune system in higher animals.

Both immune and digestive systems make use of proteolytic enzymes, but often for vastly
different reasons. Beyond playing a role in direct pathogen killing, proteolytic enzymes also perform
a range of other functions within an immunological context. As an example, neutrophils failing
to detect pathogens after being activated proceed to liquefy surrounding tissue by the release of
proteases in order to gain access to pathogens (Nathan, 2006). Furthermore, proteolytic enzymes
also activate pro-antimicrobial peptides [e.g., proteinase 3 processing pro-AMP into mature LL-37
(Sorensen et al., 2001)] and orchestrate signaling context by processing signaling molecules [e.g.,
IL-1β, IL-6, and IL-18 (Meyer-Hoffert and Wiedow, 2011)].

Considering these differential requirements between immune and digestive systems, we
suspect that digestive enzymes (and their predecessors) evolved in parallel (i.e., concurrent
in both the digestive and the immune system), probably “swapping” proteases a number
of times (Figure 1). Thus, instead of ascribing the recruitment of similar proteins in
different systems to shared ontology, we argue that both systems co-opted the application of
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FIGURE 1 | Parallel evolution mimicking common ontology. Alphabetic

letters represent stepwise modification to digestive enzyme (starting at A,

arbitrarily assigned to the digestive system and immune system lacking any

digestive enzyme initially, as indicated by Ø). White arrows indicate

“evolutionary innovation”: mutation (horizontal arrow) or novel application in

any other system (vertical arrow).

similar digestive enzymes as these two systems shared a common
need to break down (i.e., digest) various molecules. Sequential
innovation might give rise to an enzyme that can also realize
a function within another system. Consequently, once such an
innovation arises, the same protein can opportunistically be
incorporated into other systems.

Furthermore, we wish to comment on the role of pathogen
stress as the impetus for immunological innovation. We believe
that a large body of evidence indicates that pathogen stress
would suffice as an evolutionary drive toward immunological
innovation and that other explanations (such as a drive toward
more economical resource acquisition –as argued by Broderick)
are complementary at best, but not necessary. By all accounts,
pathogens have left their mark on host genomes [including
humans (Barreiro and Quintana-Murci, 2010)], with genomic
sequencing of various animals repeatedly demonstrating selective
pressure operating on immune genes. Furthermore, the AIS arose
in marine animals (before the transition to land): Sea water
contains a much larger concentration of pathogens [e.g., bacteria
at a concentration of 105–107/ml and sediments 108–1010/g
(Austin, 1988; Otero-Gonzalez et al., 2010)] than the terrestrial
environment. Taken together, we reason that all multicellular life
experiences a constant drive for immunological innovation by
virtue of continual pathogen stress.

Arguments for evolutionary novelty arising from
serendipitous events such as the two rounds of whole genome
duplication in vertebrates (Flajnik and Kasahara, 2009), and
the incorporation of either bacterial (Flajnik and Kasahara,
2009) or viral (Zhang et al., 2014) transposable elements, giving
rise to Rag genes, have been proposed as the drivers of AIS.
However, the discovery of Rag gene candidates in invertebrates
(Fugmann et al., 2006; Holland et al., 2008), as well as the fact
that the VLR-based AIS of jawless vertebrates function without
the Rag gene (Boehm et al., 2012) strongly suggest that Rag
genes are neither necessary nor sufficient for the development
of AIS. As for genome duplication, these events do not explain
the emergence of evolutionary novelty, but “merely enhances
the diversification potential of a lineage” (Van de Peer et al.,
2009) and thus do not present an explanation for why “the
diversification potential” should manifest in the emergence
of AIS. In addition, it has become apparent that evolutionary

novelty are more often than not generated by the “modification
of pre-existing genetic regulatory circuits” (Shubin et al., 2009)
which can provide for ample structural variety (Carroll, 2008).
We also believe that this process provides a more parsimonious
explanation for the shared commonality observed between the
digestive and immune systems: reinventing novel application of
pre-existing genes is more likely than evolving novel genes with
similar functionality.

Broderick also refers to McFall-Ngai’s (2007) theory which
points out that the need to cultivate symbiotic relationships
with intestinal biota provided the evolutionary drive toward
the development of an AIS. However, this raises the question:
if the AIS evolved to manage prokaryotic symbiotes, why
did invertebrates not similarly develop an AIS? After all,
invertebrates also interact with various symbiotes (Dillon and
Dillon, 2004; Ruby, 2008; Ratzka et al., 2012; Degnan, 2015).
Instead, we suspect that the AIS arose due to pathogen stress
and only after its establishment, opportunistically acquired the
function of managing intestinal biota later on. In other words,
managing intestinal biota with the aid of AIS is a result of rather
than a cause of AIS.

However, an insistence on pathogen stress as a driver of
immunological novelty invokes the same question: if pathogen
stress is what is driving immunological innovation, why have
invertebrates not similarly developed an AIS? We suspect that,
instead of focusing on the evolutionary pressure that “drives”
immunological innovations, it might be productive to explore
the evolutionary constraints that hamper the deployment of
immunological novelties. With regards to AIS, we argue that
the advent of adipocytes might have provided the evolutionary
release by expanding metabolic scope and thus allowed the
implementation of a metabolically costly AIS in vertebrates
(van Niekerk and Engelbrecht, 2015). Since “executing the
immunological mandate requires more than just an immune
system” (van Niekerk and Engelbrecht, 2015), it is likely that
other physiological parameters of invertebrates might prevent
certain immunological innovations. Furthermore, we believe that
understanding why certain immunological innovations remain
an “un-evolvable trait” may expand our understanding of how
immune and none-immune systems “functionally synapse” on
each other.
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