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Understanding the dynamics of dormant cells in microbial biofilms, in which the bacteria

are embedded in extracellular matrix, is important for developing successful antibiotic

therapies against pathogenic bacteria. Although some of the molecular mechanisms

leading to bacterial persistence have been speculated in planktonic bacterial cell, how

dormant cells emerge in the biofilms of pathogenic bacteria such as Pseudomonas

aeruginosa remains unclear. The present study proposes four hypotheses of dormant

cell formation; stochastic process, nutrient-dependent, oxygen-dependent, and time-

dependent processes. These hypotheses were implemented into a three-dimensional

individual-based model of biofilm formation. Numerical simulations of the different

mechanisms yielded qualitatively different spatiotemporal distributions of dormant cells

in the growing biofilm. Based on these simulation results, we discuss what kinds of

experimental studies are effective for discriminating dormant cell formation mechanisms

in biofilms.
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Introduction

In natural environments or within the tissues of living organisms, some bacterial species
form biofilms to ensure their long-term survival (Costerton et al., 1999; Hall-Stoodley et al.,
2004). Bacteria attached to solid surfaces form mature biofilms by proliferating and producing
extracellular polymeric substance (EPS), which captures planktonic bacteria (Stewart and Franklin,
2008). The EPS is composed of DNA molecules, proteins and polysaccharide. The thick biofilm
structure impedes antibiotic diffusion and reduces themobility of immune cells. Therefore, biofilms
are responsible for the chronic and intractable characteristics of bacterial infectious disease (Stewart
and Costerton, 2001; Stewart, 2002), which increase the morbidity and mortality of infections in
immunocompromised patients. For example, intractable Pseudomonas aeruginosa infections have
been reported in cystic fibrosis patients (Harrison, 2007).

One aspect of chronic characteristics of bacterial infectious disease is persister cells, which can
tolerate sublethal concentrations of antibiotics. Unlike antibiotic resistant cells that carry genetic
mutations, persister cells are nonheritable phenotypic variants. Some persister cells suppress their
metabolism, including cell membrane formation, protein synthesis, and DNA replications (Lewis,
2007; Lewis et al., 2010). Such dormant bacteria can survive antibiotic exposure because their
antibiotic target sites are deactivated. Actually, Balaban et al. (2004) investigated the single cell
dynamics of the high persistence (hip) mutants (Moyed and Bertrand, 1983) of Escherichia coli by
using microfluidic devices and found that preexisting subpopulations having reduced growth rates
showed persistence under ampicillin exposure.
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Several mechanisms of dormant cell formation have been
proposed (Maisonneuve and Gerdes, 2014). Elowitz et al. (2002)
posited that bacterial gene expressions related to physiological
states are stochastically activated or inactivated. Expansion of
this stochastic gene noise induces the formation of the stable
subpopulation of some different bacterial phenotypes, such as
dormant cell and active cell (Balaban et al., 2004). However,
whether dormant cell is formed stochastically in a biofilm is
unclear because previous studies were conducted by use of
planktonic bacterial cell. Other researchers indicated that low
nutrient concentration and diauxic shift of carbon initiate the
ppGpp-controlled stress response, which activates the signal
pathways for cell dormancy in planktonic bacterial cell (Nguyen
et al., 2011; Amato et al., 2013). In a more recent study,
Wakamoto et al. (2013) investigated persister cell dynamics of
Mycobacterium smegmatis at a single cell level by microfluidic
device in the presence of the drug isoniazid (INH) and time-lapse
microscopymeasurement. They showed that all persister cells did
not necessarily repress their division, and persister cell did not
always include dormant cell in the INH disposal ofM. smegmatis,
whereas dormant cell always included persister cell. Moreover,
they showed that persister cells appeared due to the genetic
stochastic expression encoded catalase-peroxidase (KatG), which
activates INH.

During the biofilm formation, bacteria consume nutrients and
oxygen, creating oxygen and nutrient concentration gradients
within the developing biofilm (Stewart and Franklin, 2008).
Therefore, dormant cells will emerge from the bottom of the
biofilms, where the nutrient and oxygen are depleted to induce
the dormant state due to the direct effect of nutrient or oxygen
limitation, or the indirect effect of time-dependent growth arrest.
To prevent the emergence of dormant cells, we need to elucidate
the dynamics of dormant cell formation in growing biofilms.
However, the spatiotemporal dynamics by which dormant
cells emerge in growing biofilms are difficult to investigate,
because experimental methods for specifically detecting dormant
cells are not sufficiently developed. Consequently, which
mechanisms of dormancy; stochastic, nutrient limitation, oxygen
limitation, and time-dependent growth arrest, has a major
impact against the bacterial dormancy within growing biofilm is
unknown.

Experiments can be complemented by mathematical
modeling, which has become one of the most promising
tools for studying the emergence of dormant cells in growing
biofilms. Many mathematical models of biofilm formation
in specific environments have been developed. Multi-species
biofilm formation has been modeled by one-dimensional partial
differential equations describing a reaction–diffusion system
(Rittmann et al., 2002). Other researchers have adopted two- and
three-dimensional cellular automaton algorithms that replicate
the complex structures of porous biofilms, such as mushroom-
like structures with many voids and channels (Picioreanu
et al., 1998a,b). An individual-based modeling (IbM) approach
originally proposed for bacterial colony growth (Kreft et al.,
1998), in which bacterial cells were represented as hard spheres,
has been adapted to biofilms and microbial granule modeling by
allowing continuous displacements and directions of the biomass

particles (Picioreanu et al., 2004; Matsumoto et al., 2010; Kagawa
et al., 2015). The IbM algorithm is considered as a suitable basis
for describing the dynamics of rare species such as dormant cells
in growing biofilms.

Therefore, in the present study, we develop three-dimensional
biofilm models based on the IbM algorithm to understand
and predict the formation of dormant cells within growing
biofilms. We propose four hypothetical mechanisms of dormant
cell formation. Using the proposed model, we then simulate
the spatiotemporal dynamics of dormant cell emergence under
each hypothesis. Finally, we discuss what kinds of potential
experimental design are effective for verifying the given
hypotheses.

Methods

We first constructed a three-dimensional biofilm model based
on the IbM algorithm. Next, we implemented four hypothetical
mechanisms of dormant cell formation in the model. Here we
proposed that dormant cells were formed by stochastic, nutrient-
dependent, oxygen-dependent, or time-dependent processes.
Using the developed model, we numerically simulated the
spatiotemporal formation of dormant cells in a growing
biofilm. Particularly, we perturbed the bulk nutrient or oxygen
concentration, and observed the changes in the dormant cell
distribution throughout the biofilm. Finally, based on these
simulation results, we discussed what kinds of experimental
approaches are effective for discriminating the above-mentioned
hypotheses. The discussed experiments should provide new
insights into the mechanisms of dormant cell formation.

Construction of a Three-dimensional Biofilm
Model
Our three-dimensional (3D) mathematical model of biofilm
formation is based on the IbM algorithm (Picioreanu et al.,
2007). Parameter values used in this model are summarized in
Table 1. Each bacterial cell is represented as a sphere of radius R
positioned at (x, y, z) in 3D space. The radius is given by:

R = (3m/4πc)1/3, (1)

where m and c are the mass and density of the cells, respectively.
Each particle undergoes the following three behaviors of real
bacteria (Supplementary Figure 1A):

(i) Growth: Each bacterial cell consumes nutrient at a rate
given by:

q = qmax
· [SS/(SS + KS)] · [SO/(SO + KO)], (2)

where qmax is the maximum consumption rate, SS and SO are the
local concentrations of the nutrient and oxygen, respectively, and
KS and KO are the half-saturation constants of the nutrient and
oxygen, respectively. Cells consume oxygen along with nutrient,
and increase their masses according to the stoichiometric ratios
defined in Tables 2, 3.

(ii)Division: When a cell reaches its maximummass, it divides
into two uniform daughter cells. The daughter cells do not
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TABLE 1 | Parameter values used in 3D biofilm model.

Parameter Symbol Value Unit References

Time step 1 t 0.2 h

System size Lx , Ly , Lz 2.0× 10−4 m Picioreanu et al., 2007

Grid number N, M, L 33

Thickness of boundary layer Nbl 3 1x (= Lx/N) This study

Maximum consumption rate of active cell qmax
A

75 (gCOD/gCOD)/day Picioreanu et al., 2007

Maximum consumption rate of dormant cell qmax
D

15 (gCOD/gCOD)/day This study

Maximum cell density C 1.5× 105 gCOD/m3 Picioreanu et al., 2007

Maximum cell mass mmax 9.60× 10−12 gCOD This study

Initial cell mass mmin 4.80× 10−12 gCOD This study

Bulk concentration of oxygen CO
bulk 4.0 g/m3 Xavier et al., 2005

Bulk concentration of nutrient CS
bulk 100 gCOD/m3 Xavier et al., 2005

Diffusion coefficient of oxygen DO 2.0× 10−4 m2/day Xavier et al., 2005

Diffusion coefficient of nutrient DS 4.5× 10−6 m2/day Picioreanu et al., 2007

Half saturation constant of oxygen KO 0.35 g/m3 Xavier et al., 2005

Half saturation constant of nutrient KS 20 gCOD/m3 Picioreanu et al., 2007

TABLE 2 | Stoichiometric matrix and kinetic rate expressions.

Process Solute species Particle species Rate

SS SO XA XD

Growth of active cell −1 −(1-YA ) YA qmax
A ·[SS/(SS+KS)]·[SO/(SO+KO)]·XA

Growth of dormant cell −1 − (1-YD) YD qmax
D ·[SS/(SS+KS)]·[SO/(SO+KO)]·XD

overlap but remain attached, as described previously (Picioreanu
et al., 2004).

(iii) Shoving: The growth and division processes cause
overlapping of the spherical particles. To minimize these
overlaps, each particle pushes its neighboring particles multiple
times in the shoving algorithm (Picioreanu et al., 2004). Kagawa
et al. (2014) related the number of shoves to the area of the
overlap region in two-dimensional (2D) space. In the present
study, the number of shoves was fixed at 200. Previous models
considered bacterial decay, death and detachment processes
(Xavier et al., 2005); these factors were excluded in the present
model.

Movement of the particles obeys the following two boundary
conditions: (a) particles cannot penetrate into the bottom surface
of the system, and (b) periodic boundary conditions are imposed
at the lateral boundaries.

The spatial distributions of the nutrient and oxygen
concentrations were calculated by the following reaction–
diffusion equations:

∂tSS = DS(∂
2
xSS + ∂2y SS + ∂2z SS)+ rS, (3)

∂tSO = DO(∂
2
xSO + ∂2y SO + ∂2z SO)+ rO, (4)

where DS and DO are the diffusion coefficients of the nutrient
and oxygen, respectively. rS and rO are the net reaction rates of
the nutrient and oxygen respectively, obtained by summing the

TABLE 3 | Stoichiometric parameters for microbial reactions.

Parameters Symbol Value Unit Reference

Yield on nutrient at active cell YA 0.5 gCOD/gCOD Xavier et al., 2005

Yield on nutrient at dormant cell YD 0 gCOD/gCOD This study

rates of all processes involving these respective growth factors.
Explicitly, rS and rO are expressed by the following equations:

rS = −qA · XA − qD · XD, (5)

rO = −(1− YA)qA · XA − (1− YD)qD · XD, (6)

where XA and XD are the local biomass densities of active and
dormant cells, respectively.

The 3D reaction–diffusion Equations (3–6) are numerically
solved under the following three boundary conditions (the
coordinate system of the cubic computational space is defined in
Supplementary Figure 1B): (a) A Dirichlet boundary condition is
imposed along the top boundary, i.e., the concentration remains
constant at the interface between boundary layer and bulk liquid.
The boundary is defined as the plane x = (Nbf + Nbl) 1x,
where Nbf and Nbl are the maximum biofilm thickness and the
boundary layer thickness, respectively, expressed in units of grid
size (integer), defined as 1x = Lx/N. Note that this boundary
moves upwards as the biofilm grows over time. This boundary
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TABLE 4 | Parameter values of simulated dormant cells.

Mechanism of dormancy Parameter Symbol Values used in simulation Unit

(i) Stochastic process Frequency of dormancy Ra→d 0.01, 0.02, 0.04 day−1

(ii.a) Nutrient-dependent process* Half saturation constant of nutrient KS 2, 20, 200 gCOD/m3

(ii.b) Oxygen-dependent process* Half saturation constant of oxygen KO 0.035, 0.35, 3.5 g/m3

(iii) Time-dependent process Threshold time to become dormancy Ta→d 10, 12, 14 h

* In these mechanisms, the maximum frequency of dormancy Rmaxa→d was set to 0.12 day
−1.

condition is expressed as:

SS(x, y, z) = SbulkS and SO(x, y, z) = SbulkO ,

for x ≥ (Nbf + Nbl)1x. (7)

(b) Neumann boundary conditions are imposed at the bottom of
the system, where the nutrient and oxygen fluxes are zero:

∂xSS(x = 0, y, z) = 0 and ∂xSO(x = 0, y, z) = 0, (8)

and (c) periodic boundary conditions are imposed at the lateral
boundaries:

SS(x, y = 0, z) = SS(x, y = Ly, z),

SO(x, y = 0, z) = SO(x, y = Ly, z),

SS(x, y, z = 0) = SS(x, y, z = Lz),

and SO(x, y, z = 0) = SO(x, y, z = Lz). (9)

Implementation of Dormant Cell Formation
Mechanisms
Four possible mechanisms of dormant cell formation were
implemented in the 3D biofilm model. These mechanisms are
briefly described below.

(i) Dormant cell formation by stochastic process: Bacterial cells
stochastically enter the dormant state anywhere in the biofilm
at constant frequency Ra→d (unit= day−1) (Chambless et al.,
2006).

(ii) Dormant cell formation by a nutrient-dependent process or
an oxygen-dependent process: Bacterial cells rarely become
dormant cells at high nutrient or oxygen concentration,
but readily become dormant at low nutrient or oxygen
concentration. The frequency of dormant cell formation by
a nutrient-dependent or an oxygen-dependent process is
respectively given by:

Ra→d = Rmax
a→dexp(−S/K). (10)

where S (g/m3) is the concentration of nutrient (SS) or oxygen
(SO), K (g/m3) is the half saturation constant of nutrient (KS)
or oxygen (KO), and R

max
a→d

(day−1) is the maximum frequency
of dormancy.

(iii) Dormant cell formation by a time-dependent process:
Bacterial cells become dormant when the duration from the
last division exceeds some threshold time Ta→d (h).

Each mechanism was simulated using the parameter values
specified inTable 4. In the simulation, dormant cells are shown in
red to visualize their distribution through the biofilm. Dormant
cells consume a small amount of nutrient and oxygen for
their maintenance without growing. We did not implement
the resuscitation of dormant cells in this model because the
molecular mechanisms behind the switching back to growth after
dormancy are largely unknown.

Numerical Simulations
The simulation flow is detailed elsewhere (Picioreanu et al.,
2004). Briefly, the initial condition of each simulation (t =

0) is ten particles with mass mmin randomly inoculated along
the bottom surface (x = 0). In each time step, the spatial
distributions of the nutrient and oxygen in the system were
obtained by solving Equations (3–9) in steady state. The particles
grew, divided, or entered the dormant state as described above.
Biofilm formation was simulated for 1 day, or 2 days in cases
of slow-growing biofilms. Three simulations with different seeds
were conducted for each hypothesis.

Quantitative Analysis of the Distribution of
Dormant Cells in Biofilm
The composition ratio of the dormant cells along the x direction
of the biofilm, i.e., the height from the bottom surface, was
derived from the simulation results. First, the particles residing
at x = 0.8H, where H is the maximum biofilm thickness (in
µm), were collected, and the positions (x) and states (dormant
or active) of all particles below the collected particle were
investigated. Precisely, if the collected particle was located at (xP,
yP, zP), all particles with centers positioned at (xI, yI, zI) satisfying
the following criteria were investigated;

(yI − yP)
2
+ (zI − zP)

2 < R2I , (11)

where RI is the radius of the particle. Note that xI can be less
than 0.8H. For each run of the simulation, fifty to two-hundred
particles were collected (i.e., these particles resided at x = 0.8H).
Position data of dormant cells below the collected particles were
accumulated in three runs of simulations and calculated the
abundance of dormant cells for each height level.

Results and Discussion

Representative examples of the simulated growing biofilms,
assuming each hypothesis of dormant cell formation, are shown

Frontiers in Microbiology | www.frontiersin.org 4 May 2015 | Volume 6 | Article 534

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Chihara et al. Modeling dormant cell in biofilm

in Movies 1–4 (Supplementary Material). Figure 1 shows cross-
sections of the biofilms 24 h after inoculation. As shown in
this figure, the morphologies of the formed biofilms are very
similar under the different hypotheses. Moreover, spatiotemporal
dynamics of nutrient and oxygen concentrations within growing
biofilms are shown in Movies 5–12 (Supplementary Material).
As shown in these Movies, the spatial distributions of nutrient
and oxygen are also very similar under the different hypotheses.
However, nutrient was completely depleted at the bottom of the
biofilm whereas oxygen remained even at the bottom of the
biofilm (the value of the oxygen concentration at the bottom
of the biofilm was about 2.9 g/m3). Therefore, concentration
gradients of nutrient and oxygen were different within growing
biofilms.

On the other hand, Figure 1 reveals prominent differences
in the spatial distributions of dormant cells among the four
models. For example, when the cells become dormant by a time-
dependent process (Figure 1D), they are restricted to the bottom
of the biofilm, whereas they are widely distributed throughout
the biofilms in the other three models. This reflects the low
growth rate of bacterial cells residing near the bottom of the
biofilm, where the nutrient and/or oxygen concentrations are
substantially reduced. In fact, when the threshold value Ta→d

was decreased in the simulations, the region of dormant cells
expanded toward the upper region of the biofilm (data not
shown). Thus, the size of the dormant region strongly depends on
the model parameter values. Moreover, when the half saturation
constant of the nutrient KS was decreased and the maximum
frequency of dormant cell formation Rmax

a→d
was increased in

the nutrient-dependent hypothesis, the dormant cell distribution
was similar to that of Figure 1D, i.e., dormant cells distributed
exclusively near the bottom of the biofilm (Supplementary

FIGURE 1 | Cross sections of biofilms 24h post-inoculation, developed

under four dormancy mechanisms. Dormancy was induced by (A)

stochastic process (Ra→d= 0.04 day−1), (B) nutrient-dependent process

(KS= 20gCOD/m3), (C) oxygen-dependent process (KO= 3.5 g/m3), and (D)

a time-dependent process (Ta→d= 14 h). In the stochastic,

nutrient-dependent and oxygen-dependent processes, the dormant cells are

widely distributed through the biofilm. In the time-dependent process, dormant

cells reside near the bottom of the biofilm. These spatial distributions of

dormant cells largely depend on the parameter values related to the dormant

cell formation mechanism (see Supplementary Figure 2).

Figure 2). Thus, the shape of the dormant region is sensitive to
the model parameter values.

Because the parameter values related to dormant cell
formation alter the spatial distributions of dormant cells both
qualitatively (the shape of the dormant region) and quantitatively
(the size of the dormant region), the four hypotheses cannot be
discriminated merely from the spatial distributions of dormant
cells at a given time. Therefore, we simulated time evolution
of the spatial distribution of dormant cells in each of the
four proposed models (Figure 2). In this investigation, when
dormancy was driven by a time-dependent process (Figure 2D),
dormant cells emerged 20 h after inoculation. This process of
dormant cell formation was very different from those of the other
three models.

All three of the remainingmodels underwent similar processes
of dormant cell formation. Dormant cells were widely distributed
throughout the biofilms, and their abundances decreased with
increasing height from the bottom of the biofilm (Figures 2A–C).

FIGURE 2 | Time evolution of the spatial distribution of dormant cells.

The abundances of dormant cells are calculated as described in the text and

plotted against x, the height from the bottom of the biofilm. Dormancy was

induced by (A) stochastic process, (B) nutrient-dependent process, (C)

oxygen-dependent process, and (D) time-dependent process. Each plot was

smoothed by moving-average with a 10µm window (3 points). Distributions

obtained at 2-h intervals from 12 to 24 h post-inoculation are plotted in

different colors.
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Counter-intuitively, the abundance of dormant cells established
a gradient along the x direction in the stochastically driven
dormancy model, although the probability of dormant cell
formation is position-independent in this model (Figure 2A).
This gradient probably resulted from the cell velocity gradient
along x, which was driven by the cell division process. Namely,
the velocity in deeper biofilm regions was lower than in higher
regions because of the low nutrient and oxygen concentrations.
To test this, we conducted the additional simulation under the
condition that dormant cells are formed by stochastic process
as described below. In the simulation, to cancel the variation
in cell velocities along the x direction, we reset KS and KO to
be very small values. The results showed that the abundance of
dormant cells did not establish a gradient along the x direction
(Supplementary Figure 3). Therefore, the variation in the cell
velocities along the x direction is responsible for the gradient
of the abundance of dormant cells in the stochastically driven
dormancy model.

To confirm the difference between these three models, we
can investigate how the dormant cell distribution responds to an
increase or decrease in the nutrient and oxygen concentrations
in the bulk liquid. Such an investigation should be simple
and straightforward. Thus, biofilm formation was simulated
under three conditions of nutrient and oxygen concentrations
in the bulk liquid (expressed in units of gCOD/m3 and
g/m3, respectively): (condition I) 10 gCOD/m3 and 0.4 g/m3,
(condition II) 10 gCOD/m3 and 8 g/m3, and (condition III)
200 gCOD/m3 and 0.4 g/m3. When dormant cell formation was
induced by stochastic or time-dependent processes, the dormant
cell distribution was not qualitatively affected by altering the
bulk concentrations of nutrient and oxygen, i.e., there was a
height gradient in the abundance of dormant cells under all
three conditions (Figures 3A,D). Conversely, if dormancy was
induced by a nutrient-dependent process, dormant cells rarely
emerged in the biofilm at very high nutrient concentration
(200 gCOD/m3; condition III) (Figure 3B). Similarly, in the
oxygen-dependent model, dormant cells rarely emerged when
the oxygen concentration was high (8 g/m3; condition II)
(Figure 3C). Therefore, these three models can be discriminated
by investigating their qualitative responses to altered bulk
concentrations of nutrient and oxygen.

As shown in Figures 1, 2, the dormant cells resided in
the deeper region of biofilms in the present four simulation
models. There were several previous studies investigating the
actual spatial distributions of dormant cells within biofilms. In
one study, colony biofilms of P. aeruginosa PAO1 containing a
plasmid with an isopropylthio-β-D-galactoside (IPTG) inducible
GFP gene were cultured on polycarbonate membranes placed
on LB agar plates. After 48 h cultivation, the membranes were
transferred to an LB plate containing IPTG for an additional 4 h.
The IPTG induced GFP expression in the active cells. The GFP-
expressing cells were observed only in the upper region of the
colony biofilm, although the nutrient was supplied through the
membrane at the bottom of the colony biofilm (Kim et al., 2009).
Williamson et al. (2012) also performed similar experiments
using a continuous-drip flow biofilm systemwhich nutrient enter
from above and obtained similar results. This result implies that

FIGURE 3 | Spatial distributions of dormant cells obtained for different

nutrient and oxygen concentrations in the bulk. The abundances of

dormant cells are plotted against the biofilm height under conditions I (red), II

(green), and III (black) (the conditions are defined in the text). Dormancy was

induced by (A) stochastic process, (B) nutrient-dependent process, (C)

oxygen-dependent process, and (D) time-dependent process. Each plot was

smoothed by moving-average with a 10µm window (3 points).

dormant cells reside in the deeper regions of biofilms, which is
consistent with our simulation results. The spatial distribution
of dormant cells in biofilms obtained in the above reports can
reject none of the four hypotheses on themechanisms of dormant
cell formation implemented into the computational models
developed in the present study. As stated above, time evolution
of the distribution and/or the responses to the increase/decrease
of the substrate/oxygen may provide novel insights about the
mechanism of dormancy.

Conclusions

To predict the formation of dormant cells in growing biofilms,
we proposed four hypotheses of dormant cell formation and
implemented them in a 3D biofilm model based on the IbM
algorithm. In numerical simulations of the model, we found
that (i) in the stochastic hypothesis of dormant cell formation,
an unexpected gradient appeared in the abundance of dormant
cells along the depth direction; thus (ii) investigating the
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spatial distributions of dormant cells at a specific time cannot
discriminate among the four suggested dormancy mechanisms;
however, (iii) all four hypotheses were discriminated in
spatiotemporal studies of the dormant cell distributions while
varying the bulk concentrations of nutrient and/or oxygen. The
proposed simulation methodology could guide experiments for
efficiently elucidating the mechanisms of dormant cell formation
in growing biofilms.

The following steps are the method to determine what kinds
of experimental studies are effective for discriminating dormant
cell formation mechanisms in biofilms. First, we will establish
the biofilm into which nutrients enter from above in liquid
medium, for example, a continuous-drip flow biofilm system,
and should investigate the spatial distribution of the dormant
cell within growing biofilm. At that time, we should use the
detecting system of dormant cell, such as degradable GFP
(half-life < 1 h) under the control of the ribosomal rrnBP1
promoter, which normally controls expression of the rrnB gene
which codes for 16S rRNA (Shah et al., 2006; Maisonneuve
et al., 2013), or TIMERbac fluorescence system in which both
rapidly maturing green and slowly maturing orange TIMER
molecules can accumulate, whereas in dividing cells, rapidly
maturing green molecules dominate over orange molecules
that are diluted by cell division (Claudi et al., 2014). Second,
we will observe time evolution of the spatial distribution of
dormant cells in growing biofilm by measurement with the use
of microscopy. In this observation, if dormant cell arise near
the bottom of the biofilm good long time after inoculation,
a time-dependent process will be a plausible mechanism of
dormancy (Figure 2D). Third, if dormant cells are widely
distributed throughout the biofilm, we should investigate the
responses to the increase/decrease of the nutrient/oxygen. If

the mechanism of dormant cell formation was caused by
stochastic process, the distribution of dormant cells in biofilms
was not affected qualitatively by the change in the bulk
concentrations of the nutrient and oxygen (Figure 3A). On
the other hand, if the mechanism was caused by the nutrient-
dependent process, dormant cells rarely emerged in the biofilm
when the concentration of the nutrient was very high (condition
III) (Figure 3B). Similarly, if the mechanism was caused by
oxygen-dependent process, dormant cells rarely emerged when
the concentration of oxygen is high (condition II) (Figure 3C).
As stated above, we could find a clue of the dynamics of
dormant cell formation within growing biofilm by comparing the
simulation results provided in present study with experimental
results.

In summary, the simulation results of this study suggest
that, by experimentally investigating the spatiotemporal dormant
cell distributions while varying the nutrient and oxygen
concentrations in the bulk, we could gain new insights into how
dormant cell populations establish in biofilms.
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