
ORIGINAL RESEARCH
published: 23 June 2015

doi: 10.3389/fmicb.2015.00598

Edited by:
Essaid Ait Barka,

Reims University, France

Reviewed by:
Richard S. Winder,

Natural Resources Canada, Canada
Prasun Ray,

The Samuel Roberts Noble
Foundation, USA

*Correspondence:
María J. Pozo,

Department of Soil Microbiology
and Symbiotic Systems, Estación
Experimental del Zaidín – Consejo

Superior de Investigaciones
Científicas, Prof Albareda 1,

18008 Granada, Spain
mjpozo@eez.csic.es;

Víctor Flors,
Metabolic Integration and Cell

Signaling Laboratory, Associated Unit
UJI-CSIC, Plant Physiology Section,

Department of Ciencias Agrarias y del
Medio Natural, Universitat Jaume I,

Avenida Vicente Sos Baynat, 12071
Castellón, Spain

flors@uji.es

Specialty section:
This article was submitted to

Plant-Microbe Interaction,
a section of the journal

Frontiers in Microbiology

Received: 02 April 2015
Accepted: 01 June 2015
Published: 23 June 2015

Citation:
Rivero J, Gamir J, Aroca R, Pozo MJ

and Flors V (2015) Metabolic
transition in mycorrhizal tomato roots.

Front. Microbiol. 6:598.
doi: 10.3389/fmicb.2015.00598

Metabolic transition in mycorrhizal
tomato roots
Javier Rivero1, Jordi Gamir2,3, Ricardo Aroca1, María J. Pozo1* and Víctor Flors2*

1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín – Consejo Superior de
Investigaciones Científicas, Granada, Spain, 2 Metabolic Integration and Cell Signaling Laboratory, Associated Unit UJI-CSIC,
Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain, 3 Unit
of Plant Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland

Beneficial plant–microorganism interactions are widespread in nature. Among them,
the symbiosis between plant roots and arbuscular mycorrhizal fungi (AMF) is of major
importance, commonly improving host nutrition and tolerance against environmental
and biotic challenges. Metabolic changes were observed in a well-established symbiosis
between tomato and two common AMF: Rhizophagus irregularis and Funneliformis
mosseae. Principal component analysis of metabolites, determined by non-targeted
liquid chromatography–mass spectrometry, showed a strong metabolic rearrangement
in mycorrhizal roots. There was generally a negative impact of mycorrhizal symbiosis on
amino acid content, mainly on those involved in the biosynthesis of phenylpropanoids.
On the other hand, many intermediaries in amino acid and sugar metabolism and
the oxylipin pathway were among the compounds accumulating more in mycorrhizal
roots. The metabolic reprogramming also affected other pathways in the secondary
metabolism, mainly phenyl alcohols (lignins and lignans) and vitamins. The results
showed that source metabolites of these pathways decreased in mycorrhizal roots,
whilst the products derived from α-linolenic and amino acids presented higher
concentrations in AMF-colonized roots. Mycorrhization therefore increased the flux
into those pathways. Venn-diagram analysis showed that there are many induced
signals shared by both mycorrhizal interactions, pointing to general mycorrhiza-
associated changes in the tomato metabolome. Moreover, fungus-specific fingerprints
were also found, suggesting that specific molecular alterations may underlie the reported
functional diversity of the symbiosis. Since most positively regulated pathways were
related to stress response mechanisms, their potential contribution to improved host
stress tolerance is discussed.

Keywords: arbuscular mycorrhiza, metabolomics, Funneliformis mosseae, Rhizophagus irregularis, oxylipins

Introduction

Beneficial organisms are common in the rhizosphere and they provide important ecosystem
services (Philippot et al., 2013). They can greatly contribute to plant performance by
improving nutrition, stress tolerance and plant phenotypic plasticity, an important advantage in
heterogeneous environments where precise allocation of limited resources between growth and
stress resistance is critical for survival (Pozo et al., 2015). Among these beneficial organisms,

Frontiers in Microbiology | www.frontiersin.org 1 June 2015 | Volume 6 | Article 598

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2015.00598
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fmicb.2015.00598
http://journal.frontiersin.org/article/10.3389/fmicb.2015.00598/abstract
http://loop.frontiersin.org/people/206595
http://loop.frontiersin.org/people/26531
http://loop.frontiersin.org/people/80034
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Rivero et al. Metabolomics in mycorrhizal tomato roots

soil-borne fungi from the phylum Glomeromycota, known as
arbuscular mycorrhizal fungi (AMF) deserve special attention.
They are able to establish the most ancient and widespread
plant–fungal symbiosis, known as arbuscular mycorrhizas (AM),
with more than 80% of all terrestrial plant species (Smith and
Read, 2008). AMF are obligate biotrophs, and it is assumed that
the host plant allocates photosynthates to the fungus for the
formation, maintenance, and function of mycorrhizal structures
(Bago et al., 2000). In return, the AMF improve plant acquisition
of water and mineral nutrients. This symbiosis is extremely
important for the uptake of inorganic phosphate, but also
contributes to the uptake of nitrogen (N) and various trace
elements (Smith and Smith, 2011; Hodge and Storer, 2015).
Besides plant nutrition, the symbiosis impacts the plant’s ability to
overcome biotic and abiotic stresses, commonly improving host
tolerance to unfavorable environmental conditions and resistance
to pathogens (Gianinazzi et al., 2010; Jung et al., 2012; Ruíz-
Lozano et al., 2012; Selosse et al., 2014). The establishment
and maintenance of the association requires a high degree of
coordination between both partners, and bidirectional (plant and
fungal) control assures a fair trade of resources between the
symbionts (Kiers et al., 2011). Indeed, a precise regulation of host
hormone levels has been proposed as a central mechanism in the
regulation of the interaction (Pozo et al., 2015).

Although there is no strict partner specificity in AM, the
outcome of AM interactions depends on the interacting partners
and the environmental conditions (Walder et al., 2012; Smith and
Smith, 2015). Actually, there is evidence for “functional diversity”
occurring as plant and fungal genotypes determine the benefits
of the interaction; some combinations being more efficient than
others in terms of nutrition and/or stress resistance (Feddermann
et al., 2010; Jung et al., 2012; Mensah et al., 2015; Smith and
Smith, 2015). For example, colonization of roots by Funneliformis
mosseae or Rhizophagus irregularis, the two widespread AMF
used in this study, resulted in different levels of bioprotection
against Phytophthora root rot in tomato or Fusarium wilt in
melon, and to drought stress in lettuce (Pozo et al., 2002;
Marulanda et al., 2003; Porcel et al., 2006; Martínez-Medina et al.,
2009).

Different studies have tried to unravel the molecular
mechanisms regulating AM and their impact on plant fitness,
most of them focused on differential gene expression and protein
profiles (Liu et al., 2007; Guether et al., 2009; López-Ráez et al.,
2010; Abdallah et al., 2014). A consistent output of “omic” studies
on AM has been the observation that mycorrhizal colonization
significantly impacts host gene expression and metabolomic
profiles (Salvioli and Bonfante, 2013). Metabolomics is a
valuable technology which provides comprehensive quantitative
profiling of metabolites in biological systems; and liquid or gas
chromatography coupled with mass spectrometry (LC–MS or
GC–MS) are widely used analytical tools for such untargeted
metabolomic studies (De Vos et al., 2007). The first metabolomic
studies in AM interactions were targeted analyses focusing on
a few well-characterized metabolites to monitor plant responses
(Stumpe et al., 2005; Sawada et al., 2009; López-Ráez et al.,
2010), however, a whole picture of the impact of AM on the
general metabolic profile was missing. Nowadays, metabolomic

untargeted approaches allow the separation and detection of
a wide range of metabolites, such as amino acids, fatty acids,
organic acids, sugar phosphates, nucleotides, and glycoside
derivatives, providing a global fingerprint about the quantitative
and qualitative changes in the secondary metabolism of the host
plant (De Vos et al., 2007). The LC–MS technique is highly
sensitive for the detection of key molecules in the phenotypic
mechanisms underlying organism responses to abiotic or biotic
interactions (Sardans et al., 2011; Gamir et al., 2012). Indeed,
untargeted metabolomic studies have revealed the importance
of metabolic reprogramming as a determinant in other plant–
microbe symbioses, e.g., legume–rhizobia associations (Zhang
et al., 2012) and ectomycorrhizas in poplar (Tschaplinski et al.,
2014).

Few studies have addressed the metabolome reprogramming
associated with AM and knowledge concerning metabolomic
transitions in mycorrhizal plants remains restricted to a few
recent studies. Concerning changes in mycorrhizal roots,
research has been limited to legumes, in particular to the
model plant Medicago truncatula and to one AMF strain,
R. irregularis (Schliemann et al., 2008; Laparre et al., 2014). The
studies have revealed an impact of R. irregularis colonization
on primary and secondary metabolism, mainly on amino
acids (glutamic acid, aspartic acid, and asparagine), fatty acids
(palmitic and oleic acids), apocarotenoids (cyclohexenone and
mycorradicin derivatives), and isoflavonoids (daidzein, ononin,
and malonylononin). Remarkably, the impact of the symbiosis
on the host metabolism extends to aboveground tissues and
can vary with environmental conditions (Fester et al., 2011).
Moreover, recent multispecies metabolomic analysis of leaves
from R. irregularis-colonized plants showed a common core of
mycorrhiza-related and highly accumulated metabolites shared
by dicotyledonous and monocotyledonous plants, although they
also evidenced many species-specific responses (Schweiger et al.,
2014).

This study aims to decipher the impact of a well-
established mycorrhizal association with two widespread and
well characterized AMF (F. mosseae and R. irregularis) in
the root metabolic profile of a non-legume, tomato (Solanum
lycopersicum), where the benefits of AM have been shown to
be agronomically relevant in terms of stress resistance and fruit
quality (Pozo et al., 2002; Fritz et al., 2006; Aroca et al., 2008;
Gianinazzi et al., 2010; Barzana et al., 2012; Giovannetti et al.,
2012; Zouari et al., 2014). LC–MS revealed important changes in
the metabolome of mycorrhizal tomato roots and we discuss the
potential relevance of these changes in host fitness.

Materials and Methods

Plant Material and AMF Inoculation
Arbuscular mycorrhizal fungi isolates of R. irregularis (BEG
121; formerly Glomus intraradices) and F. mosseae (BEG12;
formerly Glomus mosseae) from the International Bank of
Glomeromycota1 are continuously maintained in an open-pot

1http://www.i-beg.eu
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culture of Trifolium repens L. mixed with Sorghum vulgare
Pers. (Steud.) Millsp. & Chase plants in a greenhouse. The
inocula consist of substrate (vermiculite/sepiolite, 1:1), spores,
mycelia, and infected root fragments from those cultures. Tomato
seeds (Solanum lycopersicum L. cv. Moneymaker) were surface
disinfected by immersion in 4% NaHClO (10 min) containing
0.02% (v/v) Tween 20 R©, rinsed thoroughly with sterile water and
incubated for 3 days in an open container with sterile vermiculite
at 25◦C in darkness. Plantlets were transferred to 1 L pots
containing a sterile sand:soil (1:1) mixture. Pots for mycorrhizal
treatments were inoculated by adding 10% (v/v) F. mosseae or
R. intraradices inoculum. Uninoculated control plants received
the same amount of autoclaved mycorrhizal inoculum together
with a 3 ml aliquot of a filtrate (<20 μm) of both AM inocula,
in order to provide the general microbial population but free of
AMF propagules.

A total of ten plants were used for each treatment. Plants were
randomly distributed and grown in a greenhouse at 24/16◦Cwith
a 16/8 h diurnal photoperiod and 70% humidity. Plants were
watered three times a week with Long Ashton nutrient solution
(Hewitt, 1966) containing 25% of the standard phosphorus (P)
concentration, and water was supplied daily to maintain the
substrate at 100% field capacity, as reported in El-Mesbahi
et al. (2012). Plants were harvested after 8 weeks, the fresh
weight of shoots and roots was determined, and the material
immediately frozen in liquid N and stored at −80◦C. An aliquot
of each individual root system was reserved for mycorrhizal
quantification.

Determination of Mycorrhizal Colonization
Mycorrhizal colonization was estimated after clearing washed
roots in 10% KOH and subsequent staining of fungal structures
with 5% ink in 2% acetic acid (Vierheilig et al., 2005). The extent
of mycorrhizal colonization (expressed as percentage of total
root length colonized by the AMF) was calculated according
to the gridline intersection method (Giovannetti and Mosse,
1980) using a Nikon Eclipse 50i microscope and bright field
conditions.

Phosphorus, Carbon, and Nitrogen Content
Total P, carbon (C), and N content in the roots was measured
at the Ionomic Laboratory of Technical Services of the Centro
de Edafología y Biología Agraria del Segura (CSIC), Murcia,
Spain. Three biological replicates, each consisting of a pool of
roots from three independent plants (nine plants in total), were
analyzed for each treatment. Frozen roots were ground to a
fine powder and lyophilized. P concentrations were analyzed
after an acid digestion of the samples, by inductively coupled
plasma optical emission spectrometry (ICP-OES; ICAP 6500
DUO THERMO). Total C and N contents were determined
using an Elemental Analyzer (LECO TRUSPEC CN) according
to standard procedures.

Analysis of Gene Expression by RT-qPCR
Total RNA from tomato roots was extracted and treated with
DNase using the Direct-zol RNA MiniPrep kit (Zymo Research).
Subsequently, the RNA was purified through a column using the

RNA Clean & Concentrator-5 kit (Zymo Research), and stored
at −80◦C until use. The first-strand cDNA was synthesized with
1 μg of purified total RNA using the iScript cDNA Synthesis kit
(Bio-Rad). Four independent biological replicates were analyzed
per treatment. All kits were used according to the manufacturer’s
suggested protocols.

Relative quantification of specific mRNA levels was
performed using the comparative 2−�(�Ct) method (Livak
and Schmittgen, 2001). Expression values were normalized using
the housekeeping gene SlEF-1α (López-Ráez et al., 2010), which
encodes for the tomato elongation factor-1α. The functionality
of AM symbiosis was quantified using the marker gene LePT4,
which encodes a mycorrhiza-inducible phosphate transporter
expressed in arbusculated cells (Balestrini et al., 2007). Nucleotide
sequences of the primers used were: SlEF-1α-F 5′-GATTGGTG
GTATTGGAACTGTC-3′, SlEF-1α-R 5′-AGCTTCGTGGTGC
ATCTC-3′; LePT4-F 5′-GAAGGGGAGCCATTTAATGTGG-3′,
LePT4-R 5′-ATCGCGGCTTGTTTAGCATTTC-3′.

Reagents and Standards
All standards, including amino acids, salicylic acid, phenols, IAA,
5-Hydroxyindole-3-acetic acid, Indole-3-acetamide, N-(3-indoley
lacetyl)-L-alanine, Indole-3-carboxaldehyde, Methyl indole-
acetate, jasmonic acid (JA), abscisic acid, salicylic acid glucoside
ester, OPDA, carboxylic acids, and sugars were purchased
from SIGMA (Barcelona, Spain). Methanol (HPLC grade) was
obtained in SIGMA (Barcelona, Spain), formic acid and NaOH
were obtained from J.T Baker (Deventer, Holland). Indole-3-
carboxylic acid and 1,4-diaminobutane were obtained from
VWR (Barcelona, Spain).

Liquid Chromatography and ESI Mass
Spectrometry
LC–ESI Full Scan Mass Spectrometry (Q-TOF
Instrument)
Freeze-dried roots (50 mg) were homogenized on ice in 1 ml
of MeOH:H2O (10:90) containing 0.01% of HCOOH. The
homogenate was centrifuged at 15000 rpm for 15 min at 4◦C. The
supernatant was recovered and filtered through 0.2 μm cellulose
filters (Regenerated Cellulose Filter, 0.20 μm, 13 mm D. pk/100;
Teknokroma). A 20 μl aliquot of was injected in the HPLC.
The full metabolomic profiling was performed using an Acquity
UPLC system (Waters, Mildford, MA, USA) interfaced to hybrid
quadrupole time-of-flight (QTOF MS Premier). Analytes were
eluted with an aqueous methanol gradient containing 0.01%
HCOOH. Three biological replicates, each consisting of a pool
of three independent plants (nine plants in total), were randomly
injected in duplicate for every treatment. The LC separation was
performed with an HPLC SunFire C18 analytical column, 5 μm
particle size, 2.1 mm × 100 mm (Waters). Solvent gradients
and further chromatographic conditions were performed as
previously described (Gamir et al., 2012; Agut et al., 2014). The
LC–ESI Q-TOF MS library of plant compounds was used for a
straight identification in full-scan analysis. Standards for phenols,
indolic compounds, amino acids, hormones and their derivatives
(up to 93 compounds) were prepared (100 ppb) in a composite
solution (Supplementary Table S2). The standard solution was
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injected through the HPLC in both positive and negative
electro-spray ionization (ESI+; ESI−) to identify compounds by
matching exact mass and retention time between standard and
experimental samples.

Full Scan Data Analysis
Data were acquired in centroid mode and subsequently
transformed into cdf files using the Databridge from MassLynx
4.1 software (MassLynx 4.1, Waters). Chromatographic signals
were processed using the software R for statistical purposes2.
Signals from ESI+ and ESI− were processed separately. Peak
peaking, grouping and signal corrections were performed using
the XCMS algorithm (Smith et al., 2006). Metabolite amounts
were analyzed on the basis of normalized peak area units
relative to the dry weight. The Kruskal–Wallis test (p < 0.05)
was applied to analyze the metabolomic differences between
treatments. To determine a global behavior of the signals,
principal component analyses (PCA) plots were generated using
the Multibase 2015 algorithm3. Statistical and heat map analysis
were performed using the MarVis Suit 2.0 software tool for
clustering and visualization of metabolic biomarkers (Kaever
et al., 2014). Adduct, isotope correction, clustering, and color
heat map visualization were also performed by using associated
software packages MarVis Filter and MarVis Cluster.

Statistical Analyses
All statistical analyses (ANOVA, post hoc, and t-test) were
conducted using Statgraphics Plus 3.1 (Rockville, MD, USA), “R”
software version 2.9.2 (R Development Core Team)2 and the
XCMS package.

Results

Root Colonization by F. mosseae and
R. irregularis and Physiological Status of the
Plant
Plants were harvested 8 weeks after inoculation with the
mycorrhizal fungi. Root and shoot fresh weights were determined
and mycorrhizal colonization, P, C, and N content in the roots
were analyzed (Figure 1 and Supplementary Table S1). Staining
of fungal structures within the roots showed that the mycorrhizal
symbiosis was well established in both inoculation treatments,
with abundant fungal colonization of the root cortex and well-
formed arbuscules. Vesicles, the fungal storage structures, were
more abundant in the roots with the most effective colonizer
(R. irregularis), as has been described in previous studies (López-
Ráez et al., 2010; Figures 1A,B). Absence of fungal structures
was confirmed in roots of the non-mycorrhizal controls, and the
extent of root length colonized by F. mosseae or R. irregularis
differed significantly (Figure 1C, p < 0.01). The functionality
of the symbiosis was assessed by analyzing the expression of
the tomato gene LePT4, which encodes a phosphate transporter
induced in arbuscule containing cells, where most of the nutrients

2http://www.r-project.org/
3http://www.numericaldynamics.com/

exchange takes place; it is therefore used as marker of a functional
symbiosis. A very strong induction of LePT4 expression was
detected in mycorrhizal roots, reaching similar levels in the
interaction with both fungi (Figure 1D).

The symbiosis did not have a significant effect on shoot or
root biomass under our experimental conditions (Supplementary
Table S1). However, both AM treatments enhanced the P content
in roots compared to those from non-mycorrhizal controls
(Figure 1E). Similarly, N content was higher in mycorrhizal
roots (Supplementary Table S1), while total carbon content in the
roots remained unaltered. Accordingly the C/N ratio showed a
significant reduction in mycorrhizal roots (Figure 1F).

AMF Colonization has a Strong Impact on the
Metabolic Profile of the Host Roots
We analyzed the reprogramming of the tomato root metabolism
associated with well-established symbiosis with each AMF.
Following the chromatographic analysis, a bioinformatic
processing of the detected signals was performed, and cluster
and functional pathway analyses were performed in order
to obtain plausible biological information of such metabolic
reprogramming.

Untargeted metabolomic analysis of root extracts via HPLC
coupled with a quadrupole time-of-flight mass spectrometer
revealed a total of 1407 signals in ESI− mode and 1860 signals in
ESI+ mode. A supervised principal component analysis of these
signals (p < 0.1, 847 and 1029 signals in ESI− and ESI+ mode,
respectively) showed a clearly separated behavior between roots
colonized by F. mosseae (Fm) or by R. irregularis (Ri) and non-
mycorrhizal roots (Nm), (Figure 2A). According to the two main
components, no overlap was observed between the mycorrhizal
and Nm groups in any of the ESI modes. It is noteworthy that
ESI− showed a similar behavior between signals detected for
Ri and Fm. Hierarchical cluster analysis of the different groups
confirmed previous observations: signals from roots colonized by
both AMF clustered closely compared to those from Nm roots
(Supplementary Figure S1A).

The clusters corresponding to compounds with the most
contrasting accumulation patterns across different treatments
were selected from the heat map analysis (Figure 2B) for
detailed analysis. The clusters of selected signals were analyzed
separately (Supplementary Table S2). Firstly, the number of
over-accumulated compounds specific to Nm, Fm, and Ri was
subtracted from the heat map. Secondly, those signals that were
highly accumulated in two of the experimental conditions (such
as Nm + Fm, Nm + Ri, or Fm + Ri) were also isolated for
subsequent Venn-diagram and pathway analysis (Supplementary
Figure S1B and Table S2). The selection, including 1876 signals,
contained 300 differentially accumulated in mycorrhizal roots,
as illustrated in the Venn diagram (Supplementary Figure
S1B). These signals are of interest as they may correspond to
compounds relevant for the known benefits of the mycorrhizal
interaction, including improved host stress resistance. These
metabolites can be generated as a plant response to the AMF
colonization or by the AMFs themselves. Despite the core of
compounds highly accumulated in both AM roots, there are
many specific signals only triggered either by Fm (85 signals)
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FIGURE 1 | Fungal colonization and nutrient content in non-mycorrhizal
(Nm) and mycorrhizal tomato roots colonized by either Funneliformis
mosseae (Fm) or Rhizophagus irregularis (Ri), 8 weeks after inoculation.
(A) Ink-staining of fungal structures in Fm and (B) Ri colonized roots.
(C) Percentage of root length colonized by the mycorrhizal fungi. Data represent
the means of 10 independent biological replicates ± SE. (D) Expression levels of

the tomato gene LePT4 normalized to the housekeeping tomato gene SlEF-1α.
Data represent the means of four independent biological replicates ± SE.
(E) Root P content and (F) C/N root content ratio. Data represent the means of
three independent replicates each consisting of a pool of roots from three
independent biological replicates ± SE. Data not sharing a common letter differ
significantly (p < 0.05) according to the Newman–Keuls test.

or Ri (35 signals), (Supplementary Figure S1B). Interestingly, the
metabolic impact of Fm is stronger than that of Ri. These results
suggest that tomato plants retain common responses to different
AMF, as they are conserved in both interactions, but there is,
in addition, a set of responses that may be specific to particular
interactions.

In order to understand the biological meaning of this
metabolic transition, we classified the signals contained in
the selected clusters from the heat map analysis and Venn
diagram (Supplementary Figure S1B) into a pathway ontology
using the MarVis Pathway 2.0 (Kaever et al., 2014) linked

to the KEGG Solanum lycopersicum database (Supplementary
Table S2). We particularly focused on those signals that were
strongly reduced in both mycorrhizal treatments (Cluster 1),
signals highly accumulated in both mycorrhizal interactions
(Cluster 2), signals exclusively accumulated in Fm colonized roots
(Cluster 3), and finally, signals exclusively accumulated in Ri
colonized roots (Cluster 4). Clearly, the major impact of AM
on plant metabolism takes place in the primary metabolism,
mainly in the amino acid and sugar metabolism (including
many hits among the tricarboxylic and other carboxylic acids)
but also in some specific secondary metabolites, such as
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FIGURE 2 | Overview of metabolite behavior in non-mycorrhizal (Nm)
and mycorrhizal roots interpreted using principal component and heat
map analysis. (A) Analysis of major sources of variability of ESI− and ESI+
signals obtained from a non-targeted analysis by HPLC–QTOF MS
monitoring metabolomic changes in roots colonized by F. mosseae (Fm) or
R. Irregularis (Ri). Data points represent six replicates per treatment injected
randomly into the HPLC–QTOF MS. The identified signals corresponding to
different treatments were compared using the non-parametric Kruskal–Wallis
test, and only data with a p < 0.1 between groups were used for a

supervised analysis. (B) Heat map of the metabolite profiling, generated with
MarVis Filter and Cluster packages, following a Kruskal–Wallys test
(p < 0.05) by combining positive and negative electrospray ionization
analysis. Each color band represents a single compound detected in Nm,
Fm, and Ri, whose accumulation is indicated for each treatment by the
indicated color scale ranging from high (red) to low (blue) accumulation. The
concentration of the metabolites was determined in all samples by
normalizing the chromatographic pick area for each compound with the dry
weight of the corresponding sample.

phenolic alcohol derivatives, vitamins, and plant hormones,
particularly oxylipins and cytokinins (Supplementary Table
S2). Both fungi impacted the 13-LOX oxylipin pathway, with
multiple hits in the linoleic and α-linolenic acid metabolism.
Remarkably, a clearly overrepresented category in mycorrhiza-
enriched compounds is that of metabolites related to ATP-
binding cassette (ABC) transporters. ABC transporters are largely
expressed in roots and mediate the transport of many secondary
metabolites with signaling and defensive functions (Yazaki,
2006).

A closer look at the pathways containing signals with
lower levels in mycorrhizal roots (Cluster 1) revealed that
other compounds from the same pathways are strongly over-
represented in AM. This suggests that the reduction of these
compounds in mycorrhizal roots is a consequence of the
metabolic flux along the pathways that reduces substrates of a
given reaction accumulating the product compounds. Regarding
the specific signals, Fm had a stronger impact on amino acids,
sugars, and phenolics compared with Ri.

Impact of the Arbuscular Mycorrhizal
Symbiosis on Amino Acid Metabolism
One of the major pathways altered in mycorrhizal roots was the
metabolism of the amino acids (Figure 3 and Supplementary
Table S2). Phe, Tyr, Tryp, and Leu/Ile were consistently less
concentrated in mycorrhizal roots colonized by both AMF.
Contrastingly, many metabolites derived from Cys, Lys, Ala,
Gln, Phe, Tyr, and Trp were highly accumulated in mycorrhizal
roots (Supplementary Table S2). The higher concentration of
amino acid derived metabolites in AM would explain the
lower concentration of free amino acids as metabolic sources
(Figure 3). It is noteworthy that Phe and Tyr are the main amino
acids that generate phenolic acids and their derivatives, highly
accumulated in AM roots. This observation suggests a very likely
circulation of the basic amino acids into more complex secondary
metabolites, which are indeed found in higher concentrations
in the symbiotic roots. On the other hand, glutamate (Glu) and
aspartate (Asp) were found in higher levels in both mycorrhizal
roots. As their active role in the incorporation of N in AM plants
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FIGURE 3 | Heat map analysis of amino acid content in non-
mycorrhizal (Nm), F. mosseae-colonized (Fm) and R. irregularis-
colonized roots (Ri). Samples for analysis were collected 8 weeks after
fungal inoculation. Data points represent six biological replicates injected
randomly into the HPLC–QTOF MS. Color scale represents the variation in the
accumulation of the amino acids, from high (red) to low (blue) contents.
Signals corresponding to different treatments were compared using the
non-parametric Kruskal–Wallis test, only data with a p < 0.1 (between groups)
were used for a supervised analysis. Values are relative to the sample dry
weight and normalized to the lowest amount.

is well reported (Govindarajulu et al., 2005; Schliemann et al.,
2008), their higher levels are consistent with the increase in N
observed in both mycorrhizal treatments (Figure 1B). Finally,
some AMF-dependent regulation of the amino acids was also
observed. For example, His and Met accumulated at higher levels
in Fm, whilst they were hardly present in Nm and Ri.

Impact of the Arbuscular Mycorrhizal
Symbiosis on Amino Acid Derived
Compounds: Phenolic Alcohol Derivatives,
Benzylisoquinolines, and Conjugated
Polyamines
The phenyl-alcohol metabolism was also strongly affected in
AM. This metabolism includes deamination of Phe and Tyr
by the Phenylalanine ammonia lyase enzyme (Cochrane et al.,
2004), after which a set of phenolic acids are converted into
aldehydes and alcohols by successive reductions. The phenolic
alcohols are precursors of important cell wall components
such as monolignans and lignins. In addition, coumaryl
and coniferyl alcohols can be converted into more complex
flavonoids with cell protective functions (Wang et al., 2013).
As described above, the identified upstream compounds of
this pathway, Phe and Tyr, were found in lower levels in
mycorrhizal roots (Figures 3 and 4), while the content of
other intermediary compounds, such as ferulic acid, cumaryl

alcohol, and coniferyl alcohol, was higher in the colonized roots
(Figure 4). Additionally, other tentatively identifiedmonolignans
(400.152, 362.173, 354.110, and 398.137 m/z) were also more
concentrated in mycorrhizal roots (Figure 4). These observations
suggest that AMF stimulates a reorganization of specific cell wall
components.

Other amino acid derived compounds related to defense
were also found in higher levels in mycorrhizal roots. Plants
often produce alkaloids to defend themselves against pests,
diseases, and other external biological stimuli. Several mass
signals identified as benzylisoquinoline alkaloids (BIAs), such
as 271.107; 369.126; 332.112; and 273.124 m/z, were found
in high quantities in AMF colonized roots (Supplementary
Figure S2). Higher accumulation of several polyamines and
their conjugates were also found, some putatively identified as
spermidine (145.112 m/z), tricaffeoyl spermidine (631.274 m/z),
and triferuloyl spermidine (673.242 m/z), (Supplementary
Figure S2).

Impact of Arbuscular Mycorrhizal Symbiosis
on the Oxylipin Pathway
The untargeted metabolomic analysis revealed α-linolenic acid
derivatives as major metabolic targets for mycorrhizal symbiosis.
Among the 45 signals related to the oxylipin pathways altered in
mycorrhizal roots (Supplementary Table S2), 11 compounds were
fully identified by either exact mass or fragmentation spectrum
(Figure 5), and they corresponded to the 13-LOX branch of
the oxylipin pathway. This branch leads to the biosynthesis of
the phytohormone JA and derivatives, known to be altered in
AM in different plant species (Wasternack and Hause, 2013;
Fernández et al., 2014). With the exception of α-linolenic acid,
the source metabolite, the compounds identified in this pathway
showed higher levels in mycorrhizal roots (Figure 5). Most of
them showed higher concentrations in roots colonized by both
AMF, although to different levels depending on the particular
compound and the colonizing fungi. Remarkably, the levels of the
bioactive forms of JA methyl-JA (Me-JA) and JA-Ile conjugates
were accumulated in significantly higher levels only in the Fm
roots.

Discussion

Several studies have detailed the transcriptional reprogramming
in the host plant during interaction with AMF, not only
transiently during the establishment of the symbiosis, but
also in the maintenance of the symbiosis (Hohnjec et al.,
2005; Liu et al., 2007; Guether et al., 2009). While there is
evidence for these mycorrhiza associated transcriptional changes
in multiple plant families, the metabolic impact on host roots
have been only monitored in a few plant species, mainly
legumes (Schliemann et al., 2008; Laparre et al., 2014). Our
research presents a complete metabolomic analysis in roots
of a relevant crop, tomato, in symbiotic interaction with two
different AMF: F. mosseae and R. irregularis, both known to
increase tomato resistance against biotic and abiotic stresses and
yield (Pozo et al., 2002; Fritz et al., 2006; Aroca et al., 2008;
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FIGURE 4 | Profile of selected metabolites from the phenylpropanoid,
lignin, and lignan biosynthetic pathways. Non-mycorrhizal roots (Nm), and
roots colonized by F. mosseae (Fm) and R. irregularis (Ri) were processed for
relative quantification analysis by HPLC–QTOF MS. The metabolite
concentration in each sample was determined by normalizing the
chromatographic area for each compound with the dry weight of the

corresponding sample. For those compounds matching two or more
identification criteria (exact mass, positive fragmentation spectrum, or chemical
standards) names are assigned. Those compounds only tentatively identified are
assigned only by an m/z ratio. Dotted arrows mean multiple metabolic steps,
straight arrows mean single steps. Data in the same plot not sharing a common
letter differ significantly (p < 0.05) according to the Newman–Keuls test.

Gianinazzi et al., 2010; Barzana et al., 2012; Vos et al., 2012).
These fungi are among the most studied and widely distributed
AMF in agricultural and ecological settings. R. irregularis is
the most commonly used AMF in commercial inoculants, and
is widely used as a model organism in AM research, because
it is readily grown using in vitro cultivation in monoxenic
conditions, and its genome is now available (Declerck et al.,
2005; Tisserant et al., 2013). In contrast, F. mosseae cannot be
cultivated in monoxenic cultures but is usually very efficient in
increasing host resistance to pests and pathogens (Jung et al.,
2012).

Increases in P levels in the host following root colonization
by AMF is one of the major and most reported benefits of
mycorrhizal interactions, although the increase depends on
the partners involved and the experimental conditions (Smith
and Smith, 2015). However, AM are not always associated
to increased vegetative biomass (Smith and Smith, 2011),
and improved stress tolerance has been proposed as another
major benefit of the symbiosis (Gianinazzi et al., 2010; Selosse
et al., 2014). In our experimental system, both F. mosseae
and R. irregularis colonization increased the total P levels
in tomato roots (cv. Moneymaker), whilst shoot and root
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FIGURE 5 | Accumulation profile of compounds related to the 13-LOX
oxylipin pathway. Non-mycorrhizal (Nm), F. mosseae (Fm) and R. irregularis
(Ri) colonized roots were processed for relative quantification analysis by
HPLC–QTOF MS. Concentration of metabolites was determined in all the
samples by normalizing the chromatographic area for each compound with the
dry weight of the corresponding sample. For those compounds matching two or

more identification criteria (exact mass, positive fragmentation spectrum, or
chemical standards) names are assigned. Those compounds tentatively
identified are assigned by an m/z ratio together with their putative names.
Dotted arrows mean multiple metabolic steps, straight arrows mean single
steps. Data in the same plot not sharing a common letter differ significantly
(p < 0.05) according to the Newman–Keuls test.
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biomass, root/shoot ratio and total carbon content were not
significantly altered. Interestingly, total Nwas significantly higher
in mycorrhizal tomato roots, and consequently the C/N ratio was
reduced.

Our untargeted metabolome analysis confirmed, following
restrictive statistical analyses, that the metabolome of
mycorrhizal tomato roots is significantly different from that
of non-mycorrhizal tomatoes. Pioneering work by Schliemann
et al. (2008), and later Laparre et al. (2014) showed that there are
clear differences in the development and symbiosis-dependent
primary and secondary metabolism of M. truncatula roots
colonized by the AMF R. irregularis.

A large number of signals related to sugar and carboxylic acid
metabolism showed elevated levels in mycorrhizal roots. This
suggests that primary sugar metabolism was activated by the
symbiosis as has been shown in multiple mycorrhizal systems
(Bago et al., 2000; Zouari et al., 2014) probably related to
an increase in the host photosynthesis to increase C-fixation
(Kaschuk et al., 2009). Total C content, however, remained
unaltered in mycorrhizal roots, probably due to the fact that
part of the host-derived C is taken by the fungal partner to
maintain the mycelial network (Bago et al., 2000). Indeed,
transcriptional regulation of carbohydrate related genes and
activation of sugar transporters are reported in AM (Bago
et al., 2000; Doidy et al., 2012). Another notable target of
mycorrhizal metabolic reprogramming corresponds to amino
acid metabolism, which is one of the pathways with more
hits amongst the AM-related differential signals (Supplementary
Table S2). A strong reduction in the accumulation of several
amino acids (Trp, Tyr, Phe, Ala, Leu) was observed, probably
because of their function as source compounds of amino
acid-derived secondary metabolites (Figure 3). For example,
Phe and Tyr are precursors of the phenylpropanoid pathway,
and several intermediaries of this pathway were found to
be highly accumulated in the mycorrhizal roots. Both amino
acids were found in low levels in mycorrhizal tomato roots,
and the data suggest that most phenolic derivatives may have
been redirected to the formation of lignans and lignins. An
increase in lignans has been previously reported in other root-
beneficial fungus interaction involving Piriformospora indica
(Baldi et al., 2010). Regarding the lignins, it has been shown that
mycorrhizal colonization can increase the lignin content of the
root cell walls (Ziedan et al., 2011), and cell-wall lignification
is one of the proposed mechanisms restricting penetration by
phytopathogenic fungi in mycorrhizal roots (Jung et al., 2012).
Remarkably, a similar reduction of amino acid content was
observed in aboveground tissues of mycorrhizal L. japonica
(Fester et al., 2011), and Arabidopsis plants treated with the
defense-priming agent β-amino butyric acid showed a lower
content of all amino acids except Glu (Pastor et al., 2014). Thus, it
is tempting to speculate that the reduction of basic and aromatic
amino acids is a common response to defense-priming stimuli.
However, this putative relationship requires further experimental
confirmation.

Despite an overall reduction in most amino acids, our study
revealed a higher accumulation in the mycorrhizal roots of
Glu and Asp (Figure 3), important amino acids in uptake

of N by AMF extra-radical mycelium (Govindarajulu et al.,
2005). The elevated N levels observed in AM, together with
the elevated levels of these amino acids, also reported in
other mycorrhizal systems (Schliemann et al., 2008) suggest
that N uptake and assimilation is stimulated in mycorrhizal
tomato roots. An impact of AMF colonization on enzymes
catalyzing the biosynthesis of N rich compounds such as
alkaloids has been also described (Zeng et al., 2013). Our
metabolomic analysis showed that both BIAs and conjugated
polyamines, all with defense-related functions in plants, are also
over accumulated in mycorrhizal compared to non-mycorrhizal
roots.

One of the clear targets of root reprogramming in mycorrhizal
roots was the oxylipin pathway. All the metabolites of the
13-LOX branch identified either through the fragmentation
spectrum, exact mass or using standards, weremore concentrated
in mycorrhizal roots, including several bioactive forms of the
phytohormone JA. This may explain the reduced levels of the
source metabolite α-linolenic acid in AM. The induction of most
of the intermediates of the pathway is consistently reproduced
in both mycorrhizal root systems, although the relative levels
of the different compounds differ according to the AMF. The
alteration of multiple metabolites in the pathway, known to be
precisely regulated by inter conversion among them (Wasternack
and Hause, 2013) and differential accumulation in response
to the particular AMF, support their involvement in fine-
tuning of metabolic reprogramming in response to particular
growth conditions, the partners involved and the symbiotic stage
reached (Wasternack and Hause, 2013; Fernández et al., 2014).
Elevated levels of the JA-related volatile compounds Me-JA and
CIS-jasmone, both with known roles in defense against biotic
stresses, are reported here for the first time in mycorrhizal
roots. Moreover, Me-JA is also known to be involved in the
plant response to abiotic stresses like drought or salinity (Fahad
et al., 2015). The exact role of JA and its derivatives in the
control of AM remains controversial, as exogenous application
of the hormone provides contrasting results, and JA deficient
mutants have relatively subtle mycorrhizal phenotypes that
seem to depend largely on the host plant species (Wasternack
and Hause, 2013). In some plant systems LOX-silencing does
not significantly affect AMF colonization, therefore it has
been proposed that activation of JA-signaling is a downstream
event triggered by this symbiosis (Wasternack and Hause,
2013). In fact, PvLOX2-silencing in common bean roots is
reported to have no effect on mycorrhiza establishment, whilst
it does impair mycorrhiza-induced resistance (Mora-Romero
et al., 2014). Thus, the results suggest that AM functioning
implies a precise regulation of the oxylipin pathway that
may contribute to improving stress resistance in mycorrhizal
plants. It is noteworthy that the genes coding for alkaloid
biosynthetic enzymes are JA-inducible (Mishra et al., 2013;
Wasternack and Hause, 2013). Additionally, phenylpropanoid-
polyamine conjugated (PPCs), other N rich compounds related
to defense responses, were found in elevated levels in the
mycorrhizal roots and are also described to be under JA
regulation in several plants, including tomato (Kaur et al.,
2010).
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Although the metabolic pathways altered by the mycorrhizal
symbiosis were common to both F. mosseae and R. irregularis
interactions, many compounds showed specific responses to
one of the interactions. These results suggest, therefore, a
fine-tuned developmental regulation of these pathways in an
AMF-dependent manner. In terms of fitness costs, we have
observed no reduction in plant biomass despite the extensive
metabolic changes encountered in AM roots. AMF-induced
resistance against soil pathogens in tomato roots seems to be
related to cost-efficient defense regulation mechanisms (Pozo
et al., 2002; Steinkellner et al., 2012; Vos et al., 2012; Selosse
et al., 2014). There is experimental evidence of the role of
the JA-signaling pathway in priming of plant defenses by
mycorrhizas (Song et al., 2013). The contribution of other
particular metabolic pathways altered in mycorrhizal roots to
the enhanced host stress resistance–tolerance remains to be
experimentally demonstrated.

To sum up, following a non-targeted full metabolomic
approach, the metabolic transition in roots colonized by two
widely distributed AMF, F. mosseae and R. irregularis, was
successfully characterized. An important reprogramming of
some major metabolic pathways in both mycorrhizal interactions
was observed, pointing to common responses associated to AM,
although there were also some AMF-specific responses. Many of
the changes are related to plant defense mechanisms, and may
underlay the well-known effects of the interaction on plant-stress

tolerance. The identification of differentially regulated pathways
in this study is instrumental to functional studies aiming
to reveal the mechanistic basis of AM benefits, such as the
improved resistance–tolerance to biotic and abiotic stresses.
Moreover, these studies can pave the way to improving the
biotechnological applications of AMF in agricultural settings and
in the production of plant secondary metabolites with medicinal
or nutritional properties (Gianinazzi et al., 2010; Pedone-Bonfim
et al., 2015).
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