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Plesiomonas shigelloides is the unique member of the Enterobacteriaceae family able
to produce polar flagella when grow in liquid medium and lateral flagella when grown in
solid or semisolid media. In this study on R shigelloides 302-73 strain, we found two
different gene clusters, one exclusively for the lateral flagella biosynthesis and the other
one containing the biosynthetic polar flagella genes with additional putative glycosylation
genes. P shigelloides is the first Enterobacteriaceae were a complete lateral flagella
cluster leading to a lateral flagella production is described. We also show that both
flagella in P shigelloides 302-73 strain are glycosylated by a derivative of legionaminic
acid (Leg), which explains the presence of Leg pathway genes between the two polar
flagella regions in their biosynthetic gene cluster. It is the first bacterium reported with
O-glycosylated Leg in both polar and lateral flagella. The flagella O-glycosylation is
essential for bacterial flagella formation, either polar or lateral, because gene mutants
on the biosynthesis of Leg are non-flagellated. Furthermore, the presence of the lateral
flagella cluster and Leg O-flagella glycosylation genes are widely spread features among
the P, shigelloides strains tested.

Keywords: Plesiomonas shigelloides, polar flagella, lateral flagella, O-glycosylation, legionaminic acid

Introduction

Plesiomonas shigelloides is a Gram-negative bacilli flagellated bacterium. This facultative anaerobic
bacterium is ubiquitous, has been isolated from different water sources (freshwater or surface
water), and animals (wild and domestic; Farmer et al,, 1992). In humans, P. shigelloides is
associated with diarrheal disease in humans (Brenden et al., 1988). Sometimes could also be
the cause of gastroenteritis, including acute secretory gastroenteritis (Mandal et al., 1982), an
invasive shigellosis-like disease (McNeeley et al., 1984), and a cholera-like illness (Tsukamoto
et al.,, 1978). Extra intestinal infections, such as meningitis, bacteremia (Billiet et al., 1989), and
pseudoappendicitis (Fischer et al., 1988), are also associated with P. shigelloides infection. Of
particular concern are the severe cases of meningitis and bacteremia (Fujita et al., 1994) caused
by P. shigelloides.

Plesiomonas shigelloides was initially classified in the Vibrionaceae family; however, molecular
studies by Martinez-Murcia et al. (1992) indicated that is related to the enterobacterial genus
Proteus phylogenetically. Huys and Sings (1999) during studies of Aeromonas spp. genotyping
using by the amplified fragment length polymorphism found that P. shigelloides clearly falls out of
the major Aeromonas cluster. According to these features the genus Plesiomonas was reclassified to
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the family Enterobacteriaceae, being the only oxidase-positive
member of this family (Garrity et al, 2001). In order to
distinguishing different strains of P. shigelloides, two major
serotyping schemes, one based on O-antigen lipopolysaccharide
(O) and the other one on flagellar (H) antigens. With a total of
102 somatic antigens and 51 flagellar antigens recognized (Aldova
and Shimada, 2000).

The flagella biosynthesis, in terms of resources and energy,
is a costly commitment for the bacterium (Macnab, 1996). The
flagella number is variable, and the distribution most frequently
found on pathogenic bacteria are monotrichous (single flagellum)
or pertitrichous (multiple flagella around the cell; Macnab, 1996).
The flagella expression is dependable of the growth conditions.
When grown in plates, several bacterial species produced more
flagella than when they grow in liquid medium. Some species,
like Proteus mirabilis, have been observed to show an increase
in the numbers of flagella. Vibrio parahaemolyticus, have a single
polar flagellum in liquid medium, instead when grown on solid
medium, produces the polar flagellum (Fla) and peritrichous
(or lateral) flagella (Laf; Allison and Hughes, 1991; Allison
et al,, 1992; Merino et al., 2014). Lateral flagella, were shown
in about seven other Vibrio species (some of which evokes
a disease spectrum similar to V. parahaemolyticus; Shinoda
et al., 1992), while only a reduced number of bacterial species,
including Rhodospirillum centenum (a purple photosynthetic
bacterium; McClain et al., 2002), Azospirillum spp. (nitrogen-
fixing rhizobacteria that colonize plants; Moens et al., 1996),
Helicobacter mustelae (the causative agent of chronic gastritis
and ulcer disease in ferrets; O'Rourke et al., 1992), P. shigelloides
(Inoue et al, 1991), and Aeromonas spp. (opportunistic and
gastroenteric pathogens of man; Gavin et al., 2002). Other species
that show lateral flagella include Bradyrhizobium japonicum
(Kanbe et al., 2007), Photobacterium profundum (Eloe et al.,
2008), and Rhodobacter sphaeroides (Poggio et al., 2007).
Furthermore, Selenomonas ruminantium subsp. lactilytica is a
solely laterally flagellate bacterium (Haya et al., 2011).

Protein glycosylation is one of the most common protein
post-translational modifications and consists in the covalent
attachment of carbohydrates to amino acids. This mechanism
was thought to occur exclusively in eukaryotes. However, protein
glycosylation systems have been identified in all forms of life
including prokaryotes. N-glycosylation is the covalent linkage
to asparagine residues of carbohydrates, while O-glycosylation
to serine or threonine residues. O-glycosylation in bacteria
has been largely reviewed recently (Iwashkiw et al., 2013).
As more bacterial genomes are now available together with
bioinformatic analysis coupled with functional analysis, the
elucidation of glycosylation pathways achieved increasing,
including the identification of many genes that participate in
flagellin glycosylation (Iwashkiw et al,, 2013). The number of
O-glycosylation genes involved is diverse in each bacterial species
(Goon et al., 2003; Schirm et al., 2003; Faridmoayer et al., 2007;
Iwashkiw et al., 2012). In spite of these advances, the knowledge
of glycans structure and composition of which modify from
Gram-negative bacteria flagellins is restricted to certain species
and has been observed to be strain-dependent [as reviewed by
Merino and Tomads (2014)].

In this work we study the genetics of P. shigelloides
flagella (polar and lateral), and their flagella post-translational
modifications, the first report of flagellar glycosylation in enteric
bacteria.

Materials and Methods

Bacterial Strains, their Growth Conditions, and
Plasmids Used

The bacterial strains, as well as the plasmids used, are listed
on Table 1. Bacteria were grown in TSB broth and TSA
medium supplemented if necessary with kanamycin (25 pg/ml),
tetracycline (20 wg/ml), and rifampicin (100 pg/ml) when
needed.

MiniTn5Km-1 Mutagenesis

Conjugal transfer of miniTn5Km-1 transposition element from
Escherichia coli S17-1\pirKm-1 to P. shigelloides 302-73R (wild
type strain rifampicin-resistant) was carried out in a conjugal
drop as previously described (Aquilini et al., 2013).

Construction of a P. shigelloides Genomic

Library

Plesiomonas shigelloides strain 302-73 (serotype O1) genomic
DNA was isolated and partially digested with Sau3A as described
by Sambrook et al. (1989). The P. shigelloides strain 302-73
genomic library, using cosmid pLA2917 (Allen and Hanson,
1985), was performed as described (Guasch et al., 1996).

General DNA Methods
General DNA manipulations were done essentially as previously
described described (Sambrook et al., 1989; Aquilini et al., 2014).

Southern Blot Hybridizations

Southern blotting was performed by capillary transfer (Sambrook
et al., 1989) from the gel to a nylon membrane (Hybond NI,
Amersham). Probe labeling, hybridization, and detection were
carried out as previously described (Aquilini et al., 2014) using
the enhanced chemiluminescence labeling and detection system
(Amersham) according to the manufacturer’s instructions.

DNA Sequencing and In Silico Analysis of
Sequence Data

These studies were previously described (Wilhelms et al., 2013).
The dideoxy-chain termination method (Sanger et al., 1977),
BLAST (Altschul et al., 1997; Bateman et al., 2002), and Clustal
W were used.

Complementation Studies

Complementation of the different mutants carrying the miniTn5
was done as previously described (Aquilini et al, 2013) by
conjugal transfer of positive recombinant clones from the
genomic library.

Antisera
Anti-P. shigelloides polar flagellum and lateral flagella serum were
independently obtained using purified polar flagellum or lateral
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TABLE 1 | Bacterial strains and plasmids used.

Strain or plasmid Relevant characteristics?’

Source or reference

Escherichia coli

DH5a F- endA hsdR17 (k= mk*) supE44 thi-1 recA1 gyr-A96 80lacZ Hanahan (1983)
S17-1npirkKm1 thi thr1 leu tonA lacY supE recA::RP4-2 (Tc::Mu)Km" npir with miniTn5Km1 De Lorenzo et al. (1990)
MC1061 rpir thi thr1 leu6 proA2 his4 argE2 lacY1 galK2 aral4 xyl5 supE44 '\ pir Rubirés et al. (1997)
Plesiomonas Shigelloides

302-73 Wild type, serotype O12:K80 Pieretti et al. (2010)
302-73R 302-73, spontaneous Rif" Aquilini et al. (2013)
A 302-73fIgE :mini-Tn5Km1 Rif” Km" This study

B 302-73fIhA:mini-Tn5Km1 Rif" Km" This study

C 302-73flil:mini-TN5Km1 Rif" Km" This study

D 302-73figK :mini-Tn5KmM1 Rif" Km" This study

E 302-73/afA:mini-Tn5Km1 Rif" Km" This study

F 302-73fIhAL :mini-Tn5KmM1 Rif” Km" This study

G 302-73flgE L :mini-Tn5KmM1 Rif” Km" This study

H 302-73ptmA:mini-Tn5Km1 Rif” Km" This study

| 302-73legH:mini-Tn5Km1 Rif" Km" This study
Plasmids

pLA2917 Te', Km' Allen and Hanson (1985)
COS-FLAregl-1 pLA2917 with 20-kb chromosomal 302-73 Sau3A insert carrying part of the polar flagella biosynthesis region 1, Tc" This study
COS-LAFI pLA2917 with 20-kb chromosomal 302-73 Sau3A insert carrying part of the lateral flagella biosynthesis region, Tc" This study
COS-LEG pLA2917 with 20-kb chromosomal 302-73 Sau3A insert carrying complete Leg biosynthesis region, Tc" This study
pRK2073 Helper plasmid, Sp" Canals et al. (2006)
pGEM-T PCR cloning vector, Amp" Promega

pDM4 pir dependent with sacAB genes, oriR6K, CmR Milton et al. (1996)
pDM4 ApgmL pDM4 with truncated in frame pgmL This study

pDM4 AlegF pDM4 with truncated in frame legF This study

pBADS3 Arabinose inducible expression vector, CmR ATCC
pBAD33-pgmL pBADS3 with complete pgmL This study
pBAD33-legF pBADG3 with complete legF This study

a/ = resistant.

flagella obtained after cesium chloride, and assayed as previously
described for other surface molecules (Tomads et al., 1991; Merino
etal., 1992).

Motility Assays (Swarming and Swimming)

The studies were performed as previously described (Wilhelms
et al, 2012). Bacterial colonies were picked with a sterile
toothpick and deposited into the center of swarm agar or
swim agar plate. The plates were incubated up for 16-24 h at
25°C and motility was examined by the migration of bacteria
through the agar from the center toward the plate periphery.
Swimming motility in liquid medium was observed by phase-
contrast microscopy at a magnification of x 400 as previously
(Wilhelms et al., 2012).

Transmission Electron Microscopy (TEM)
Transmission electron microscopy (TEM) studies
performed as previously described (Wilhelms et al., 2012).

were

Flagella Purification

Plesiomonas shigelloides strain 302-73 was grown in TSB for the
polar flagellum purification. For the isolation of lateral flagella
the strains were grown on TSA and recovered with 100 mM Tris

(pH =7.8). Purified flagella were isolated as previously described
(Merino et al., 2014).

Cytoplasmic Fraction

Plesiomonas shigelloides cytoplasmic fraction from strain 302-73
cells grown in TSB at 37°C was obtained as previously described
(Wilhelms et al., 2012).

Immunological Methods

Western blot of cytoplasmic fractions or purified flagella was
performed as previously described (Wilhelms et al, 2012).
Immunoblotting was carried out as described (Towbin and
Gordon, 1984) using specific anti-polar or lateral flagellins
polyclonal serum (Canals et al., 2006; 1:2000).

Electrospray Liquid Chromatography Mass
Spectrometry

Mass spectrometry studies of intact flagellin proteins were carried
out using 1 pg or less of protein, as described in our previous
work (Wilhelms et al., 2012). Briefly, purified flagellin samples
were injected onto a protein microtrap (Michrom Bioresources
Inc., Auburn, CA, USA) connected to a gradient HPLC pump
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(Agilent 1100 HPLC). To resolve the proteins, a gradient of 5-
60% solvent B (1 mL/min) over 60 min was used, where Solvent
A was 0.1% formic acid in HPLC grade water and solvent B
was 0.1% formic acid in acetonitrile. A precolumn splitter was
used to direct ~35 pl/min of the HPLC mobile phase through
the trap or column and into the electrospray interface of the
QTOF2 (Waters, Milford, MA, USA) or Orbitrap XL Mass
Spectrometer (Thermal, CA, USA) to allow real-time monitoring
of ion elution profiles. Intact masses of proteins were calculated
using MaxEnt (Waters, Beverly, MA, USA) software by spectral
deconvolution.

To identify potential glycopeptides, flagellin (50-200 jg) was
digested and analyzed as previously described (Wilhelms et al.,
2012). Unmodified peptides were identified using MASCOT
(Matrix Science, London, UK) as described (Wilhelms et al.,
2012). Glycopeptide MS/MS spectra were de novo sequenced as
previously described (Wilhelms et al., 2012).

Construction of Defined in Frame

Legionaminic Acid Mutants and their
Complementation

The chromosomal in-frame pgmL and legF deletion mutants,
302ApgmL and 302AlegF, respectively, were constructed by
allelic exchange as described (Milton et al., 1996), and used

by us (Merino et al, 2014). The primers used to obtain the
mutants are listed in Table 2. Two DNA fragments (A-B
and C-D) were obtained after asymmetric polymerase chain
reactions (PCRs), then were annealed at their overlapping
region, and a single DNA fragment obtained after PCR using
primers A and D. pDM4ApgmL and pDM4 A legF plasmids were
obtained as previously described (Merino et al., 2014).These
plasmids were transferred by triparental matings using the E. coli
MC1061 (\pir), the mobilizing strain E. coli HB101/pRK2073 and
P. shigelloides mutant 302-73R as recipient strain. Colonies grown
on plates with chloramphenicol and rifampicin, were confirmed
for genome integration of vector by PCR analysis. Colonies
grown rifampicin resistant (Rif®) and chloramphenicol sensitive
(Cm®) after sucrose treatment, PCR confirmed for mutation were
chosen.

Plasmids pBAD33-pgmL and pBAD33-legF were constructed
carrying the wild type genes pgmL and legF by PCR amplification
of genomic DNA by using specific primer pairs and ligated
to the plasmid pBAD33 from ATCC (American Type Culture
Collection; see the list of primers in Table 2). Plasmids pPBAD33-
pgmL and pBAD33-legF were introduced in E. coli DH5a by
electroporation, and then by triparental matings were introduced
in the corresponding mutants. Induction or repression of genes
in pPBAD33 was achieved as described in ATCC.

TABLE 2 | (A) Primers used in the construction of chromosomal in-frame deletion mutants. (B) Primers used for mutant complementation using vector pBAD33.

A
Primers®P Amplified fragment
pgmL
A: 5'-CGCGGATCCGAACGCTTGAGTCGTGAGT-3' AB (687 bp)
B: &/-TGTTTAAGTTTAGTGGATGGGACCCAGCTTCAACACAAAG-3
C: 5'-CCCATCCACTAAACTTAAACAGAAGGCGAAGATCTGGAG-3' CD (695 bp)
D: 5'-CGCGGATCCTACCAATTCCACCACCAC-3’
AD (1403 bp)
legF
A: 5'-GAAGATCTTGCCGTTGGCTACTGTC-3 AB (684 bp)
B: &/-TGTTTAAGTTTAGTGGATGGGACCCCGAGCAAATATAAACG-3
C: 5'-CCCATCCACTAAACTTAAACAAGTCCCAAAGTCACGTTCTG-3 CD (685 bp)
D: 5'-GAAGATCTATATGCCACCAGGGCTAAC-3
AD (1390 bp)
altalic letters show overlapping regions.
Underlined letters show BamH| or Bglll restriction site.
B
Plasmid Primer
pBAD33-pgmL2 PgmL-FOR: 5-TCCCCCGGGTACACGATGTGCAAG-3

pPBAD33-legFP

PgmL-REV: 5'-GCTCTAGACCACAACCTGCTGTGAC-3'
LegF-FOR: 5’-TCCCCCGGGCCTGAGTGGGACAAAAAT-3
LegF-REV: 5'-GCTCTAGATCAATGTCAGCAGCAACG-3'

aPrimers contain Smal(bold) and Xbal(underlined), the PCR amplified product (1496 bp) was ligated to Smal- Xbal digested pBAD33.
PPrimers contain Smal(bold) and Xbal(underiined), the PCR amplified product (982 bp) was ligated to Smal- Xbal digested pBAD33.
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Results

Plesiomonas shigelloides 302-73 [serogroup O1 (Pieretti et al,
2010)] grown in liquid medium or semisolid medium (swimming
agar plates) showed the typical three-four flagella located in single
point of one cell pole (lophotricus; Figure 1). However, when
the agar concentration was increased, the flagellar distribution
shifted from single pole to more disperse. The agar concentration
seems to be involved in this change in flagella distribution.
When the bacteria were grown in solid or semisolid media
(swarming agar plates), a complete different flagella distribution
was observed. As can be seen in Figure 1 the flagella showed a
typical peritrichous distribution over the entire cell surface.

A similar pattern of flagellar distribution with changes in
growth medium was observed with 12 P. shigelloides strains.
Among these strains eight represented five different serotypes
(01, 02, 03, 017, and O54) while four were non-serotyped
strains. The source of the strains was from clinical stools (7) and
fish (5), from Japan four of them, four from Spain, three from
Brazil, and one from Poland.

MiniTn5Km-1 Mutagenesis
A spontaneous rifampicin-resistant P. shigelloides mutant
(named 302-73R) derived from the wild type strain 302-73 was
isolated by our group. P. shigelloides 302-73R showed identical
pattern of flagella production as described previously for wild
type strain. We selected insertional mutants, as described in
Materials and Methods, and grouped by their inability to swim,
to swarm, or both negative characteristics.

Among an initial screening of 2500 colonies four mutants
were selected (initially named A, B, C, and D), based upon

FIGURE 1 | Plesiomonas shigelloides 302-73 wild type strain serotype
O1. TEM from cells grown in liquid medium (A) and swarming agar plates (B).
Motility in swimming (C) and swarming (D) agar plates.

inability to swim but retaining the ability to swarm. A further,
three mutants (initially named E, F and G) were selected
based upon inability to swarm but retaining ability to swim.
Lastly, two mutants (initially named H and I) were selected
that were unable to swim or swarm. Mutants A, B, C, and
D, when observed by EM in appropriate conditions showed
lateral flagella but not polar (Figure 2), while mutants E, E
and G (Figure 3), showed polar but not lateral flagella by
EM when grown in appropriate conditions. Mutants H and
I were unable to produce polar or lateral flagella observed
by EM in any growth conditions (Figure 4). The presence
of a single copy of the minitransposon in their genome was
determined by Southern blot analysis. We were unable to clone
the minitransposon-containing DNA fragment from the mutants
using methodologies that were successful in other bacteria
(Aquilini et al,, 2013).

Complementation of the mutants, using a cosmid based
genomic library of P. shigelloides 302-73 (see Materials and
Methods) reversed the phenotype observed, either to swim or
swarm in motility plates.

Polar Flagella Mutants

We found several recombinant positive clones able to
complement A, B, C, and D mutants. The complementation
was studied by the recovery of swimming behavior under
appropriate conditions. All complemented mutants were able
to produce polar flagella when observed by EM growing in
liquid conditions (Figure 2). Sequencing the recombinant
positive clones complete inserts revealed the complete region to
correspond to PLESHI 03205 to PLESHI_03505 in the complete
P. shigelloides 302-73 genome (Piqué et al., 2013).

Polar flagella gene cluster, as shown in Figure 5A, are based
in two gene regions (I and II) adjacent to a group of putative
biosynthetic Leg genes. In region I there are several genes
encoding chemotaxis proteins, including the o%® factor fliA,
cluster from fIhB to G, fliK to R, fliE to ], flrA and C, and
flaC to J (transcribed in the same direction). This region I,
similar to V. parahaemolyticus region two by gene distribution
and transcription sense, also lacks the motor genes (McCarter,
2001). Region II, downstream of the putative biosynthetic
Leg genes group, contains cluster flgP,0,T, or flgA,M,N with
the typical transcription sense in the different Gram-negative
bacteria described, two genes encoding chemotaxis proteins, and
cluster flgB to L. By gene distribution and transcription sense
this region II is similar to region 1 of V. parahaemolyticus
and Aeromonas hydrophila (McCarter, 2001; Canals et al,
2006).

Table 3 shows the ORFs with their predicted function based
on their homology to proteins of known function. Proteins of
unknown function were not included. The last gene in this
region encoded an ORF (named Gt), which showed homology to
domains of a glycosyltransferase. This was provisionally assigned
to the polar flagella cluster and not to the putative biosynthetic
Leg genes. Once the DNA fragment was completely sequenced,
several primers were used to derive the DNA sequence to locate
the miniTn5 [A = fIlgE, B = flhA, C = flil, and D = flgK
(Figure 5A)].
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FIGURE 2 | Plesiomonas shigelloides A mutant (as an example for the
insertional polar flagella mutants). TEM of the A mutant grown in liquid
medium (A) and swarming agar plates (B) and complemented mutant with
COS-FLAregl-1harboring the corresponding wild type gene grown in liquid

medium (C). Bar, correspond to 0.5 um. Motility of the A mutant in swimming
(D) and swarming (E) agar plates. The complemented mutant with
COS-FLAregl-1harbouring the corresponding wild type gene in swimming agar
plate (F).

A

’

N\
—
8

(il

FIGURE 3 | Plesiomonas shigelloides E mutant (as an example for
the insertional lateral flagella mutants). TEM of the E mutant
grown in liquid medium (A) and swarming agar plates (B) and
complemented mutant with COS-LAFI harboring the corresponding wild
type gene grown in semisolid medium (C). As could be observed in

B the polar flagella are constitutively expressed in semisolid medium.
Bar, correspond to 0.5 pum. Motility of the E mutant in swimming
(D) and swarming (E) agar plates. The complemented mutant with
COS-FLAregl-1harbouring the corresponding wild type gene in swarming
agar plate (F).

Lateral Flagella Mutants

Several recombinant positive clones complemented E, E, and G
mutants separately. Some clones were observed to complement
two mutants. The complementation was studied on the basis of

recovery of swarming behavior on appropriate growth plates. All
complemented mutants were able to produce lateral flagella when
observed by EM growing in semisolid conditions (Figure 3). We
used the same strategy previously indicated to sequence the entire
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FIGURE 4 | Plesiomonas shigelloides H mutant (as an example for the
insertional Leg biosynthetic cluster mutants). TEM of the H mutant
grown in liquid medium (A) and swarming agar plates (B) and complemented
mutant with COS-LAFI harboring the corresponding wild type gene grown in
liquid (E) and semisolid medium (F). Bar, correspond to 0.5 wm. Motility of the
H mutant in swimming (C) and swarming (D) agar plates. The complemented
mutant with COS-LEG harboring the corresponding wild type gene in
swimming (G) and swarming (H) agar plates.

DNA region contained in the recombinant positive clones. This
complete region correspond to PLESHI_07125 to PLESHI_07305
in the complete P. shigelloides 302-73 genome (Piqué et al,
2013).

Lateral flagella gene cluster shows 37 genes grouped in a single
region (Figure 5B). Five typical group of genes (lafA to U; flgB,
to Ly; flgAr,Mp,Np; fliEr, to Ji; and fliM[, to Ry, plus flhB-Ar) when
compared to the most similar A. hydrophila AH-3 lateral flagella

region were found. All the genes were found in a unique region
similar to A. hydrophila or enteric bacteria. In contrast, in the
equivalent region in V. parahaemolyticus is found in two separate
regions (Canals et al., 2006; Merino et al., 2006). The group of
genes fliEy, to J; and fliM}, to Ry, plus flhB-A| are adjacent in all the
lateral flagella clusters described. The groups of genes have been
shown to be transcribed in the same direction in A. hydrophila
and divergently in Vibrio, enteric bacteria and P. shigelloides
(Merino and Tomads, 2009). Table 4 shows the ORFs with their
predicted function based on their homology to proteins of known
function. All the protein analogies that were from unknown
or not well-established homology were discarded. Between the
group of genes flgB-L; and lafA-U, there is a gene encoding for
a hypothetical protein without the classical motility accessory
factors domains found in A. hydrophyla Maf-5. However, this
encoded protein showed a minimal similarity with this Maf-
5, and the gene was denoted maf-5 (Parker et al., 2014). Once
the DNA fragment was completely sequenced, we used several
primers derived from the DNA sequence to locate the miniTn5
in lafA (E), flhA (F), and fIgE;, (G; Figure 5B).

Mutants Unable to Produce Flagella

A single recombinant positive clone was observed to complement
both mutants H and I as they recover swimming and swarming
in plates. The complemented mutants were able to produce polar
and lateral flagella when observed by EM growing in appropriate
conditions (Figure 4). Sequencing the entire DNA region in the
recombinant positive clone showed this region to contain the
group of putative biosynthetic Leg genes (Figure 5A) between
region I and II codifying for the polar flagella. This complete
region corresponds to PLESHI 03365 to PLESHI 03405 in
the complete P. shigelloides 302-73 genome (Piqué et al,
2013).Table 5 shows the ORFs with their predicted function
based on their homology to proteins of known function.

The Campylobacter jejuni CMP-Leg biosynthetic pathway
described involves two segments: synthesis of a GDP-sugar
building block and synthesis of the final CMP-nonulosonate
which are linked by the N-acetyl transferase GImU (Schoenhofen
et al., 2009). We found all the genes encoding for the necessary
two segments of the CMP-Leg biosynthetic pathway in this region
besides the one encoding phosphoglucosamine mutase (PgmL)
included in the first segment of the biosynthesis. Once the DNA
fragment was completely sequenced, we used several primers
derived from the DNA sequence to establish that the miniTn5
was located in ptmA (H) and legH (I; Figure 5A).

Flagella Purification

Polar flagellins were purified from the wild type strain after grown
in liquid medium and a mixture of polar and lateral flagellins after
grown in swarm agar plates (Figure 6A). Lateral flagellin was also
isolated from insertion mutant A (unable to produce constitutive
polar flagella with unaltered lateral flagella).

Intact Mass Analysis of Purified Flagellins

Purified polar flagellin preparations showed a well-resolved ion
envelop of multiple charged protein ions, which deconvoluted
into three distinct masses at 40201, 40652, and 40931 Da. The
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FIGURE 5 | Plesiomonas shigelloides 302-73 wild type strain serotype O1 polar (A) and lateral (B) flagella clusters. The polar flagella cluster shows two
different regions adjacent to Leg biosynthetic genes. The inverted triangles (¥) indicate the position of the different insertional mutants obtained by miniTn5

mass of the translated gene sequence for polar flagellin was
38710 Da, giving mass excesses of 1491, 1942, and 2221 Da,
respectively (data not shown). During front end CID experiments
of the purified polar flagellin preparation, labile glycan related
ions were observed at m/z 359 and 317. Using increasing cone
voltages, fragmentation of this ion at m/z 359 was observed,
as shown in Figure 7. The fragment ions observed at m/z
317, 299, 281, 222, and 181 were characteristic fragment ions
of nonulosonic acids, such as pseudaminic or legionaminic
acid.

From the observed mass of 316.124, the top ranked plausible
elemental formula was C;3H;1N,Og, suggestive that this moiety
is a carbohydrate. The additional glycan ion observed at m/z
359, gave a top ranked plausible elemental formula C;5H,3N,Os,
suggesting this species to be a nonulosonic acid with an additional
of an acetyl group. An intense fragment ion was observed at m/z
341, most likely a loss of water from the glycan ion observed at
m/z 359.

The preparation containing purified polar and lateral flagellins
showed a more complex elution profile when HPLC separated,
with two sequentially eluting protein peaks. The area under
each peak was combined separately and each showed a complex
ion envelope. The ion envelope of the first eluted protein
deconvoluted into two distinct masses at 39325, 40678 Da. The
second eluting protein ion envelope deconvoluted to give a single
protein mass at 30940. It is possible that the larger MW proteins
correspond to the polar flagellin and the 30 kDa protein the lateral
flagellin. The A mutant that is unable to produce polar flagella

showed only this second eluting peak when grown in swarming
conditions (Figure 6A). In each case, the measured molecular
mass is greater than that of the translated gene sequence for
each protein. This suggests that both polar and lateral flagellins
are post-translational modified. Front end CID experiments
showed almost identical profiles when compared with the polar
flagellin preparation, with intense ions observed at m/z 359,
317. These data suggest that both polar and lateral flagellins are
modified with the same nonulosonic acid sugar, with or without
acetylation.

Bottom Up Mass Spectrometry Studies of
Flagellins

Tandem mass spectrometry studies of tryptic digests of purified
polar flagellins identified a number of unmodified peptides. De
novo sequencing of the MS/MS data showed a number of spectra
that were identified as flagellin peptides and harboring mass
excess of 316 Da. Also observed was an intense ion at m/z 317,
suggestive of a glycan oxonium ion. Figure 8A shows the MS/MS
spectrum of the polar flagellin glycopeptide AIASLSTATINK,
modified with a putative 316 Da glycan. Peptide type y and b
fragment ions are annotated and confirm the peptide sequence.
In addition, low m/z fragment ions that did not correspond to
peptide type y or b ions were also observed at m/z 317, 299, 281,
240, 221, 196, and 181. Combined with the mass excess, glycan
oxonium ion and putative glycan fragment ions, the data suggest
the flagellin peptides to be modified with a legionaminic acid like
glycan.

Frontiers in Microbiology | www.frontiersin.org 8

June 2015 | Volume 6 | Article 649


http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

Merino et al.

Plesiomonas shigelloides O-glycosylated flagella

TABLE 3 | Characteristics of the P. shigelloides 302-73 strain polar flagella gene regions | and Il

ORF Protein Protein Predicted function Homologous protein with known function Percentage
name Size identity/similarity
Polar flagella region |
1 CheW 162 Chemotaxis protein CheW (VP2225) of Vibrio parahaemolyticus 84/88
2 CheB 377 Chemotaxis protein CheB-2 (AHA_1386) of Aeromonas hydrophila ATCC7966 72/76
3 CheA 728 Chemotaxis protein CheA (VP2229) of Vibrio parahaemolyticus 66/69
4 Chez 241 Chemotaxis protein CheZ (ASA_1356) of Aeromonas salmonicida A449 51/59
CheZ (VP2230) of Vibrio parahaemolyticus 48/54
5 CheY 127 Chemotaxis protein CheY (AHA_1383) of Aeromonas hydrophila ATCC7966 91/93
6 FliA 240 028 FliA of Aeromonas hydrophila AH-3 67/71
7 FIhG 296 Flagella number regulator FIhG of Vibrio alginolyticus 72/78
8 FlhF 527 Polar flagella site determinant FIhF (VP2234) of Vibrio parahaemolyticus 66/73
9 FIhA 698 Export/assembly FIhA (VP2235) of Vibrio parahaemolyticus 78/81
10 FIhB 377 Export/assembly FIhB (VP2236) of Vibrio parahaemolyticus 60/66
11 FliR 264 Export/assembly FIiR (VP2237) of Vibrio parahaemolyticus 51/61
12 FliQ 89 Export/assembly FliQ (VP2238) of Vibrio parahaemolyticus 67/78
13 FliP 261 Export/assembly FliP (VP2239) of Vibrio parahaemolyticus 76/82
14 FliO 139 Export/assembly FliO of Vibrio cholerae 39/41
15 FIiN 128 Motor switch FIiN (AHA_1373) of Aeromonas hydrophila ATCC7966 72/78
16 Flim 347 Motor switch FliM of Aeromonas hydrophila AH-3 80/87
17 FliL 164 Flagella protein FliL (AHA_1371) of Aeromonas hydrophila ATCC7966 42/46
18 FliK 487 Hook length FliK of Vibrio cholerae 57/68
19 FliJ 146 Export/assembly Flid (VP2245) of Vibrio parahaemolyticus 43/51
20 Flil 439 Export ATP synthase Flil (VP2246) of Vibrio parahaemolyticus 78/82
21 FliH 322 Export/assembly FliH (VP2247) of Vibrio parahaemolyticus 37/46
22 FIiG 342 Motor switch FIiG (AHA_1366) of Aeromonas hydrophila ATCC7966 75/82
23 FliF 569 M-ring FliF (VP2249) of Vibrio parahaemolyticus 53/61
24 FliE 107 MS ring/rod adapter FIiE (VP2250) of Vibrio parahaemolyticus 58/62
25 FIrC 558 6%4-dependent two-components FlaM (VP2251) of Vibrio parahaemolyticus 61/65
response regulator
26 FIrA 509 6%4-dependent flagella regulator FIrA of Vibrio cholerae 58/65
27 FlaJ 134 Chaperone Flad (VP2254) of Vibrio parahaemolyticus 63/69
28 Flal 94 Flagella rod protein Flal (VP2255) of Vibrio parahaemolyticus 38/50
29 FlaH 446 Hook-associated protein-2 FlaH (VP2256) of Vibrio parahaemolyticus 36/45
30 FlaG 132 Filament length control FlaG of Vibrio alginolyticus 36/41
31 FlaC 377 Flagellin FlaC (VP0788) of Vibrio parahaemolyticus 51/55
Polar flagella region I
1 Gt 691 Glicosyltransferase BRAO375_790043 of Bradyrhizobium sp. 36/42
AZOBR_p1140113 of Azospirillum brasilense 32/40
2 FlgL 417 Hook-associated protein 3 FlgL of Vibrio cholerae 34/42
3 Flgk 639 Hook-associated protein 1 FlgK (VPQO785) of Vibrio parahaemolyticus 35/41
4 FigH 230 L-ring FlgH of Vibrio cholerae 56/63
5 Flgd 322 Peptidoglycan hydrolase Flgd (VPO784) of Vibrio parahaemolyticus 58/66
6 Flgl 355 P-ring Flgl (VPO783) of Vibrio parahaemolyticus 73/81
7 FlgG 262 Rod FlgG of Vibrio cholerae 69/76
8 FIgF 248 Rod FigF (AHA_2838) of Aeromonas hydrophila ATCC7966 56/74
9 FIgE 431 Hook FIgE (VPO778) of Vibrio parahaemolyticus 52/58
10 FigD 305 Rod FlgD of Vibrio cholerae 49/56
11 FIgC 137 Rod FIgC (VPO776) of Vibrio parahaemolyticus 74/80
12 FigB 136 Rod FlgB (VPO775) of Vibrio parahaemolyticus 59/62
13 CheR 278 Chemotaxis CheR (VP0774) of Vibrio parahaemolyticus 70/76
14 CheV 313 Chemotaxis CheV (AHA_2844) of Aeromonas hydrophila ATCC7966 73/81
15 FlgA 214 P-ring assembly FIgA of Vibrio cholerae 39/48
16 FigM 105 Anti-o28 FigM of Vibrio cholerae 44/51
17 FIgN 139 Chaperone FIgN of Vibrio alginolyticus 40/45
18 FigP 151 Flagella lipoprotein FlgP of Vibrio cholerae 51/55
19 FIgo 267 Flagella lipoprotein FIgO (VPQ768) of Vibrio parahaemolyticus 48/55
20 FigT 391 Flagella protein FIgT (VPO767) of Vibrio parahaemolyticus 39/45
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TABLE 4 | Characteristics of the P. shigelloides 302-73 strain lateral flagella cluster.

ORF  Protein name Protein size Predicted function Homologous protein with known function Percentage
identity/similarity
1 Lafu 455 Proton motor LafU of Aeromonas hydrophila AH-3 41/62
2 LafT 284 Proton motor LafT (VPA1556) of Vibrio parahaemolyticus 49/65
3 LafS 249 28 LafS (VPA1555) of Vibrio parahaemolyticus 45/64
4 LafF 158 Unknown LafF (VPA1554) of Vibrio parahaemolyticus 30/52
5 LafE 404 Hook length control LafE (VPA1553) of Vibrio parahaemolyticus 42/67
6 LafxX 96 Chaperone LafD (VPA1552) of Vibrio parahaemolyticus 21/37
7 LafC 131 Chaperone LafC of Aeromonas hydrophila AH-3 52/68
8 LafB 438 Hook-associated protein 2 LafB of Aeromonas hydrophila AH-3 31/49
9 LafA 275 Lateral Flagellin LafA (VPA1548) of Vibrio parahaemolyticus 49/65
10 Maf-5 349 Motility accessory factor Maf-5 of Campylobacter jejuni subsp. jejuni 00-2415 25/43
Maf-5 of Aeromonas hydrophila AH-3 15/30
11 FlgLp 300 Hook-associated protein 3 FglL, of Aeromonas hydrophila AH-3 38/43
12 FIgKL 467 Hook-associated protein 1 LfgK (VPA0273) of Vibrio parahaemolyticus 34/40
13 FlgdL 328 Peptidoglycan hydrolase Lfgd (VPAO272) of Vibrio parahaemolyticus 45/51
14 Flglp 364 P-ring Fgll. of Aeromonas hydrophila AH-3 66/72
15 FlgHL 219 L-ring FglHL of Aeromonas hydrophila AH-3 58/63
16 FIgGL 261 Rod LfgG (VPA0269) of Vibrio parahaemolyticus 68/74
17 FlgFL 241 Rod FglFL of Aeromonas hydrophila AH-3 54/61
18 FIgEL 391 Hook FglEL of Aeromonas hydrophila AH-3 44/50
19 FlgDL 243 Rod LfgD (VPAO266) of Vibrio parahaemolyticus 39/49
20 FlgCL 140 Rod FgICL of Aeromonas hydrophila AH-3 58/64
21 FlgBL 125 Rod LfgB (VPA0264) of Vibrio parahaemolyticus 55/59
22 FIgAL 231 P-ring assembly LfgA (VPAO263) of Vibrio parahaemolyticus 43/52
23 FlgML 91 Anti-o28 LfgM (VPA0262) of Vibrio parahaemolyticus 32/35
24 FIgNL 142 Chaperone FIgNL of Aeromonas hydrophila AH-3 46/53
25 Flid 147 Export/assembly Flid (VPA1532) of Vibrio parahaemolyticus 26/57
26 Flil, 443 Export ATP synthase Flil (VPA1533) of Vibrio parahaemolyticus 59/66
27 FliH. 253 Export/assembly FliH (VPA1534) of Vibrio parahaemolyticus 39/47
28 FliGL 337 Motor switch FIiG (VPA1535) of Vibrio parahaemolyticus 44/54
29 FliFL 569 M-ring FliF (VPA1536) of Vibrio parahaemolyticus 42/49
30 FIiEL 115 Basal body component FIiE (VPA1537) of Vibrio parahaemolyticus 49/56
31 FliML 300 Motor switch FIiM (VPA1540) of Vibrio parahaemolyticus 41/52
32 FIINL 121 Motor switch FIiN (VPA1541) of Vibrio parahaemolyticus 57/64
33 FliPL 245 Export/assembly FIiP (VPA1542) of Vibrio parahaemolyticus 73/79
34 FliQr 89 Export/assembly FliQ (VPA1543) of Vibrio parahaemolyticus 60/69
35 FIiRL 263 Export/assembly FIiR (VPA1544) of Vibrio parahaemolyticus 58/65
36 FIhBL 371 Export/assembly FIhB (VPA1545) of Vibrio parahaemolyticus 43/49
37 FIhAL 701 Export/assembly FIhA (VPA1546) of Vibrio parahaemolyticus 59/66

The purified polar and lateral flagellins were also digested with
trypsin and analyzed by tandem mass spectrometry, identifying
a number of unmodified flagellin peptides. Once again, de novo
sequencing showed several flagellin peptides from both polar and
lateral flagellins to be modified with putative glycan moieties.
The lateral flagellin (LafA) harbored peptides modified with
glycans of 316 and 358 Da (Figure 8B). In some cases peptides
were showed to harbor both glycans. It was not clear from the
data whether two monosaccharides were modifying two separate
amino acids, or whether a single disaccharide was modifying at
one site.

The polar flagellin was also observed to be modified with
316 and 358 Da glycan moieties. In some cases, glycan chains

comprised of multiple 358 Da glycans were observed; in other
cases a single modification of 316 or 358 Da was noted. Very
low levels of peptides harboring distinct glycan masses were
observed, such as the peptide AIASLSTATINK, was observed to
be modified with either 316 Da glycan, or a 523 or 481 Da glycan.
Glycan related ions were observed in each case, with intense
ions observed at m/z 524 and 184 or m/z 424 and 184. The
ion at m/z 184 was also observed in front end CID experiments
with the intact polar and lateral flagellin preparations, and
gave a top ranked plausible elemental formula of CoH;,04,
suggesting that it is a related nonulosonic acid type sugar. The
low abundance of these glycopeptides made any further analyses
challenging.
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TABLE 5 | Characteristics of the P. shigelloides 302-73 strain gene region for legionaminic acid biosynthesis between polar flagella regions | and II.

ORF  Proteinname Proteinsize Predicted function Homologous protein with known function Percentage
identity/similarity
1 GlmU 189 Acetyltransferase Weid of Escherichia coli 59/65
2 PtmA 254 Flagella modification protein PtmA of Vibrio fischeri 71/79
PtmA of Campylobacter coli 36/41
3 LegF 229 CMP-NeuAc synthase NeuA of Vibrio fischeri 74/80
Elg7 of Escherichia coli 70/73
LegF of Campylobacter coli 31/37
4 PtmF 326 Oxidoreductase (VF_0146) of Vibrio fischeri 55/62
WeiH of Escherichia coli 52/58
PtmF of Campylobacter coli 46/49
5 PtmE 352 Nucleotydil transferase (VF_0145) of Vibrio fischeri 63/71
Elg6 of Escherichia coli 61/70
6 LegH 217 O-acetyltransferase NeuD (VF_0144) of Vibrio fischeri 49/55
Elg5 of Escherichia coli 45/52
7 Legl 359 N-acetylneuraminate synthase NeuB (VF_0143) of Vibrio fischeri 74/79
Elg4 of Escherichia coli 70/74
8 LegG 382 UDP-N-acetylglucosamine 2-epimerase NeuC of Vibrio parahaemolyticus 68/72
Elg3 of Escherichia coli 65/78
LegG of Campylobacter jejuni 42/47
9 LegC 382 Aminotransferase WhvaN of Vibrio parahaemolyticus 69/75
PgIE of Vibrio parahaemolyticus 69/75
10 LegB 395 Dehydratase WvaM of Vibrio parahaemolyticus 75/80
Elg1 of Escherichia coli 75/78

Legionaminic Acid Biosynthetic Mutants

The insertional mutants in ptmA (H) and legH (I) were unable
to produce polar or lateral flagella under induced conditions, as
shown by TEM or by immunodetection (Figure 6B) or lateral
flagellins (Figure 6C) in purified flagella. The introduction of
the P. shigelloides wild type genes was observed to recover the
production of polar and lateral flagella in the mutants. This was
demonstrated using immunodections, as shown in Figures 6B,C.
These data prompted us to examine the production of the
polar flagellin in the mutants by immunodetection. Western
blot analysis shows presence of polar flagellin the cytoplasmic
subcellular fraction. Interestingly, only a single protein band
was observed, with a lower than expected molecular weight
(Figure 6D). Wild type flagellin typically migrates as two distainct
bands, both detectable by Western blot. We speculate that the
single, lower molecular weight species is a non-glycosylated
form of flagellin. The complemented mutants showed the same
cytoplasmic polar flagellin molecular weight bands as observed
with wild type strain. Similarly, where lateral flagellin was
detected in the cytoplasmic fraction, it was observed at a lower
molecular weight, likely the non-modified form of the protein.
Then, the lack of polar and lateral flagella formation observed in
the mutants is not by the lack of flagellin protein or the master
regulator transcription.

In order to prove at the genomic level that mutations in
the CMP-Leg biosynthetic pathway were responsible for the
phenotypic traits shown by insertional mutants H and I, two
in-frame pgmL and legF deletion mutants were generated,
302ApgmL and 302AlegF, respectively. Our genomic studies
indicates that all the genes of the Leg pathway are included in
the cluster between polar region I and II, with the exception

of the PgmL ortholog which is found in another region of
the chromosome [703.5 peg 1785 (Piqué et al.,, 2013)]. PgmL
or GImM, phosphoglucosamine mutase, is involved in the first
step to produce GDP-GIcNAc. LegF, CMP-legionaminic acid
synthase is the final enzyme of the second step to produce
CMP-Leg. Using TEM, neither mutant was observed to produce
polar or lateral flagella under induced conditions. Both show
the same phenotypic traits as insertional mutants H and I
When mutants 302ApgmL and 302AlegF were complemented
with their single corresponding wild type gene (pBAD33-pgmlL
and pBAD33-legF, respectively) under inducing conditions (plus
arabinose) all the wild type phenotypic traits (production of polar
and lateral flagella or swimming and swarming motilities) were
fully recovered. Control plasmid pBAD33 alone under inducing
conditions (plus arabinose) was unable to do it.

Lateral Flagella and Leg O-Flagella

Glycosylation Gene Distribution on

P. shigelloides

In order to test if the presence of lateral flagella and Leg O-flagella
glycosylation genes is a specific feature for the strain studied,
the 12 previously mentioned P. shigelloides strains used for PCR
studies were eight strains representing five different serotypes
(01, 02, 03, 017, and O54) plus 4 non-serotyped strains
described in Material and Methods. Initially, genomic DNA from
302-73 strain was used as template for PCR amplification with
two sets of oligonucleotides: 5'-ATCGCGTCTGAAAGGCTAC-
3’ and 5-CTGCGCCATAGAACTACCC-3' which amplified
a 2160 bp DNA fragment from lateral flagella cluster (partial
lafA and complete maf-5); and another oligonucleotide set (5'-
CGGGTTAAAGCTATCCCATC-3' and 5-CCAATGACAGC
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FIGURE 6 | (A) Plesiomonas shigelloides 302-73 wild type strain serotype O1
purified flagella according to Section “Materials and Methods” when grown in
liquid medium (1) and swarming agar plates (2). As could be observed in 2,
and previously indicated in Figure 3, polar flagella are constitutively expressed
in semisolid medium. Purified flagella from P, shigelloides insertional polar A
mutant grown in swarming agar plates (3). (B). Western blot with specific
polar flagella antiserum of purified flagella from wild type (1), P, shigelloides
insertional polar H mutant (2), and complemented mutant with COS-LEG
harboring the corresponding wild type gene (3) obtained in liquid medium
growth. (C) Western blot with specific lateral flagella antiserum of purified
flagella from wild type (1), P, shigelloides insertional polar H mutant (2), and
complemented mutant with COS-LEG harboring the corresponding wild type
gene (3) obtained in swarming agar plates. (D) Western blot with specific polar
flagella antiserum of cytoplasmic fractions obtained as described in Section
“Materials and Methods” of wild type (1), P, shigelloides insertional polar H
mutant (2), and complemented mutant with COS-LEG harboring the
corresponding wild type gene (3) obtained in liquid medium growth. The low
molecular weight band could correspond to the non-glycosylated form, and
the upper band (not present in the mutant) to the glycosylated form.

TGAATCTCC-3) amplified a 1985 bp DNA fragment from
Leg biosynthesis genes (partial legH and complete legl). DNA
fragments of the same size (2160 and 1985 bp, respectively) were
PCR amplified for all the genomic DNAs from the strains studied,
as shown by the results shown in Figure 9. DNA sequence of
the amplified fragments confirmed the presence of the lateral
and Leg biosynthetic genes. In addition, in all the amplified
maf-5 and legl fragments the presence of a sequence coding
for the N-terminal amino acid residues of lafA and legH genes,
respectively, were found adjacent to maf-5 or legl, suggesting that
in the analyzed strains the genomic location is the same as that
found in P. shigelloides wild type strain 302-73 (Figure 5).

Discussion

Motility is an essential mechanism in adaptation to different
environments for free living bacteria. Bacteria showed three

flagella types classified according to their location on a cell:
peritrichous, polar, and lateral. It has been reported dual flagella
systems in some polar flagellated bacteria when grow in viscous
environments or surfaces. This fact allows bacteria to swarm
on solid or semisolid media by a mixed flagellation (polar and
lateral flagella). P. shigelloides has been observed to express mixed
flagellation (Inoue et al., 1991).

Two P. shigelloides 302-73 different gene clusters were
described, one exclusively involved in lateral flagella biosynthesis,
and a second containing the polar flagella genes distributed
in two regions spaced by putative glycosylation genes. It is
characteristic of the bacteria with dual flagella systems to separate
both in different gene clusters (McCarter, 2001; Canals et al.,
2006; Merino et al., 2006; Merino and Tomads, 2009). Of note,
P. shigelloides is the first Enterobacteriaceae with lateral flagella
production as shown herein.

Plesiomonas shigelloides lateral gene cluster is nearly identical
to the lateral gene cluster of A. hydrophila according to the gene
grouping and transcription direction, with the exception of the
group of genes fliM; to Ry plus flhB-Aj, which are transcribed
in opposite direction (Canals et al., 2006). However, no lafK
ortholog could be detected in P. shigelloides lateral gene cluster.
This gene has been reported in all the lateral gene clusters,
including the non-functional in the Enterobacteriaceae (Canals
et al,, 2006; Merino and Tomads, 2009). A non-functional Flag-2
flagella cluster with large similarity to V. parahaemolyticus lateral
flagella system, was found in different E. coli enteroaggregative
or Yersinia pestis or pseudotuberculosis strains (Ren et al., 2004).
However, as we proved, P. shigelloides lateral gene cluster is fully
functional.

The transcriptional hierarchy of V. parahaemolyticus lateral
flagella is one of the Gammaproteobacteria model. LafK
(0°*-associated transcriptional activator) is the master regulon
in this model, controlling Class II lateral flagella genes
transcription. Class I genes contains the o8 factor (fliAL)
which is involved in transcription of Class III lateral flagella
genes (Stewart and McCarter, 2003). In V. parahaemolyticus
the absence of polar flagellum induces the expression of lateral
flagella in liquid medium, and LafK is able to compensate
the lack of FlaK (¢°*-associated polar transcriptional activator)
and activate polar flagellum class promoters. A. hydrophila
lateral flagella transcriptional hierarchy represents the second
Gammaproteobacteria model. Class 1 gene transcription in
A. hydrophila lateral flagella is 67°-dependent as LafK in contrast
to describe in V. parahaemolyticus (Stewart and McCarter, 2003).
It is important to point out that A. hydrophila lateral flagella
genes are transcribed in liquid and solid or semisolid media,
and unlike V. parahaemolitycus the genes are not induced by
mutation of polar flagellum genes. The transcription hierarchy
of A. hydrophila lateral flagella is complex because LafK is not
strictly their master lateral flagella regulator, and many clusters of
genes are LafK independently transcribed (Wilhelms et al., 2013).
A. hydrophila LafK protein is unable to not compensate the lack
of FIrA, which is the polar-flagellum regulator (c>*-associated
transcriptional activator for polar flagellum), a situation that
happens in V. parahaemolyticus (Wilhelms et al., 2013). This
point is in agreement with A. hydrophila FlIrA mutation not affect
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FIGURE 7 | Glycan fragmentation pattern. Front end collision induced dissociation of polar flagellin protein, showing low m/z region. Fragment ions characteristic
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polar flagellin, peptide AIASLSTAINK, modified with a 316 Da ELALQSANGTNTTADK. In this case the peptide is modified with a
glycan. Peptide type y and b ions are indicated, confirming the peptide 358 Da glycan, as observed with a neutral loss of 358 from the
sequence. In addition, glycan related fragment ions are indicated with an glycopeptide precursor and the glycan oxonium ion at m/z 359. A loss of
asterisk (*), and include a glycan oxonium ion at m/z 317, and related water is observed from this oxonium ion, in addition glycan related
ions at m/z 299, 281, 240, 221, and 181. (B) From lateral flagellin, the fragment ions are indicated with an asterisk (*).
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FIGURE 9 | Polymerase chain reaction (PCR) amplified bands from
genomic P. shigelloides DNAs of strains: 302-73, serotype O1 (1);
306-73, serotype 02 (2); 307-73, serotype O3 (3); 343-73, serotype 017
(4), PCM2647, serotype 054 (5), C1, non-serotyped from Spain (6); P12,
non-serotyped from Spain (7); and 1t645, non-serotyped from Brazil (8);
using the set of oligonucleotides for lateral flagella cluster (A, 2160 bp
DNA fragment) and Leg biosynthesis genes (B, 1985 bp DNA
fragment).

lateral flagella besides that abolishes polar flagellum formation in
liquid and on solid surfaces (Wilhelms et al., 2013).

The P. shigelloides polar flagella gene regions show greater
similarity to those reported in Vibrio or Aeromonas than the
regions in Enterobacteriaceae [e.g., E. coli or S. typhimurium
(Chilcott and Hughes, 2000)]. Bacteria with peritrichous flagella,
such as E. coli and Salmonella, showed three hierarchy levels.
The 67 is required for transcription of class I and II genes,
and class I promoter responds to different regulatory factors and
transcribes the FIhDC master activator, which allowed the class
II 67%-dependent promoter expression. At the top of the Vibrio
sp. or A. hydrophyla polar flagella hierarchy is o>*-associated
transcriptional activator (FIrA, named FleQ in Pseudomonas
aeruginosa) which activates class II genes o°*-dependent
promoters. Class II promoters encode a two component signal-
transducing system (Vibrio sp. or A. hydrophyla FlrBC and FleSR
in P. aeruginosa) whose regulator (FlrC/FleR) activates class III
genes 6°4-dependent promoters.

In the P. shigelloides polar flagella region I only flrA and
C orthologs were observed. P. shigelloides FIrA shows the
characteristic three domains (FleO, 6°* -interaction domain and
family regulatory protein Fis) like in Vibrio sp. or A. hydrophila
(Kim and McCarter, 2004; Wilhelms et al., 2011). Class II
promoters encode a two component signal-transducing system
(FIrBC of Vibrio sp. or A. hydrophila and FleSR in P. aeruginosa)
whose regulator (FIrC/FleR) activates class III 0°4-dependent
promoters. However, when analysis of P. shigelloides FlrC
encoded protein, revealed the corresponding domains for FlrB
and C. Thus, P. shigelloides FIrC contains two domains of
Vibrio sp. or A. hydrophila FlrB (PAS domain and His Kinase
A) as well as two domains of Vibrio sp. or A. hydrophila
FrlC (c°*-interaction domain and family regulatory protein Fis).

We suggest that P. shigelloides FlrC could be able to activate
class IIT genes o>*-dependent promoters as observed in Vibrio
sp. or A. hydrophila. No FlrB ortholog was observed in the
P. shigelloides 302-73 genome (Piqué et al, 2013). It could
be suggested that in P. shigelloides, FIrB and C functions are
developed by a single bifunctional protein encoded by the single
fIrC as it happens for some LPS-core biosynthetic genes (Jiménez
et al., 2009). Taken together, the data presented hererin, no
lafK or separate fIrB in P. shigelloides, indicate that their lateral
and polar flagella transcriptional hierarchy represents a different
Gammaproteobacteria model that requires further study.

Among this large P. shigelloides polar flagella gene cluster,
genes were identified between the two polar flagella regions,
the presence of genes putatively linked to glycosylation. These
genes were not found in other Enterobacteriaceae studied.
O-glycosylation could be performed by a mechanism dependent
or not of an oligosaccharyltransferase (OTase; Kim and McCarter,
2004; Iwashkiw et al, 2013). The O-glycosylation frequently
affects protein stability, flagella filament assembly, bacterial
adhesion, biofilm formation, and virulence in general as has
been described in several bacteria (Lindenthal and Elsinghorst,
1999; Logan, 2006; Faridmoayer et al., 2008; Egge-Jacobsen
et al, 2011; Iwashkiw et al., 2013; Lithgow et al, 2014).
The predominant O-glycans linked to flagellins are mainly
derivatives of pseudaminic acid (PseAc, where Ac represents an
acetamido group) and in a minor extent an acetamidino form
of legionaminic acid (LegAm, where Am represents acetamidino;
Merino et al., 2014). Both are nine-carbon sugars related to sialic
acid. The flagellin glycosylation pathways in both cases have been
elucidated, including the Pse pathway of Helicobacter pylori and
C. jejuni (Fox, 2002), the Leg pathway of C. jejuni (Schoenhofen
et al, 2009). Until today the Leg flagella glycosylation has
been restricted to C. jejuni or coli. The CMP-legionaminic acid
biosynthetic pathway in C. jejuni involves two steps: synthesis of
a GDP-GIcNAc and synthesis of the final CMP-Leg (Schoenhofen
et al., 2009). The insertional mutants obtained ptmA (H) and
legH (I), represent key eznymes in the first and second steps
of the CMP-Leg biosynthesis, confirming the observation data
that both mutants are unable to produce polar or lateral flagella.
Furthermore, the in frame mutants obtained in pgmL and legF,
one enzyme of the first step and the last enzyme of the second step
of the CMP-Leg biosynthesis, respectively, clearly confirmed the
legionaminic acid polar and lateral glycosylation as both mutants
are unable to produce polar or lateral flagella as it happens with
the insertional mutants.

Mass spectrometry studies show that both flagella in
P. shigelloides strain 302-73 are glycosylated by a derivative of
Leg, and is also indicated by the presence of Leg biosynthetic
pathway genes nearby the polar flagella gene regions. It is
the first Enterobacteriaceae reported to harbor O-glycosylation
modification on both polar and lateral flagella. Moreover, it is also
the first bacteria reported to express a lateral flagella glysosylated
by Leg. We also demonstrated that flagella O-glycosylation
is essential for bacterial flagella formation, either polar or
lateral. However, the flagella O-glycosylation is not determinant
for cytoplasmic flagellin production as can be observed by
immunodetection studies.
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The P. shigelloides homologous recombination rates are
extremely high (Salerno et al, 2007), like naturally
transformable species as Streptococcus pneumoniae. In the
rest of Enterobacteriaceae the recombination rate is much
lower. The high recombination observed in this bacterium
could offer a reason for P. shigelloides variety of LPS-
core structures (Salerno et al, 2007). The PCR experiments
using several P. shigelloides strains and lateral flagella or
Leg pathway genes, with the motility and EM studies,
demonstrated that presence of lateral flagella and Leg O-flagella
glycosylation is a widely spread feature, not a strain specific
observation. Furthermore, the maintenance of these genes
among the different strains besides the recombination rate
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