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Background: Rapid growth in the availability of genome-wide transcript abundance

levels through gene expression microarrays and RNAseq promises to provide

deep biological insights into the complex, genome-wide transcriptional behavior of

single-celled organisms. However, this promise has not yet been fully realized.

Results: We find that computation of pairwise gene associations (correlation; mutual

information) across a set of 2782 total genome-wide expression samples from six

diverse bacteria produces unexpectedly large variation in estimates of pairwise gene

association—regardless of the metric used, the organism under study, or the number

and source of the samples. We pinpoint the cause to sampling bias. In particular, in

repositories of expression data (e.g., Gene Expression Omnibus, GEO), many individual

genes show small differences in absolute gene expression levels across the set of

samples. We demonstrate that these small differences are due mainly to “noise”

instead of “signal” attributable to environmental or genetic perturbations. We show that

downstream analysis using gene expression levels of genes with small differences yields

biased estimates of pairwise association.

Conclusions: We propose flagging genes with small differences in absolute,

RMA-normalized, expression levels (e.g., standard deviation less than 0.5), as potentially

yielding biased pairwise association metrics. This strategy has the potential to

substantially improve the confidence in genome-wide conclusions about transcriptional

behavior in bacterial organisms. Further work is needed to further refine strategies to

identify genes with small difference in expression levels prior to computing gene-gene

association metrics.

Keywords: Pearson correlation, operon prediction, mutual information, regulatory network inference,

co-regulation

Abbreviations: BIC, Bayesian information criterion; GEO, Gene Expression Omnibus; GSE, Gene Expression Omnibus

Series; M3D, Many Microbe Microarrays Database; MATE, Multidrug and toxic compound extrusion; RMA, Robust

Multi-array Average.
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Introduction

The number of experimental conditions for which genome-
wide gene expression data is available is rapidly increasing
for all bacteria. This increase is due to maturing microarray
technology and the advent of RNAseq technology, which has
made measurement of gene expression possible for all bacteria,
instead of only those for which pre-existing technology (e.g.,
custom microarrays) has existed.

While downstream analysis of gene expression data can
take many forms, in numerous applications researchers wish to
investigate whether statistical association (e.g., correlation) exists
between two genes across the available set of gene expression
data. The presence of statistically significant, pairwise statistical
association suggests the potential for a biological relationship
between the pair of genes, such that changes in the expression
levels of one gene correspond to changes in the expression
level of another gene. For example, in operon prediction and
validation, computing pairwise correlations across all available
gene expression data is used to suggest or validate whether
contiguous pairs of same-strand genes are in the same operon
(Sabatti et al., 2002; Bockhorst et al., 2003; Yeung et al., 2004;
Price et al., 2005; Westover et al., 2005; Dam et al., 2007; Okuda
et al., 2007; Tran et al., 2007; Wang et al., 2007; Brinza et al.,
2010; Ten Broeke-Smits et al., 2010). Similarly, in regulatory
network inference algorithms, it is standard to first compute
pairwise gene association using a correlation measure (e.g.,
Pearson correlation, Spearman correlation, mutual information,
among others) on a large repository of gene expression data;
strong pairwise gene associationmeasures are suggestive that two
genes are either co-regulated or act as a transcription factor-
target pair in the regulatory network (Margolin et al., 2006;
Faith et al., 2007; Kaleta et al., 2010; Mahdi et al., 2012). Yet
another use of pairwise association measures in gene expression
data analysis is when k-means, principal components or other
clustering algorithms are used to suggest sets of genes that
show co-regulation (D’haeseleer, 2005; Ringnér, 2008). Recently,
pairwise gene correlations have been used to evaluate the quality
of external data sets providing biological conjectures (Tintle
et al., 2012). Lastly, pairwise correlation between genes is often
used in heatmaps of biologically related genes to explore and
suggest potential regulatory relationships (Ravcheev et al., 2011)
or in integrated metabolic-regulatory models (Chandrasekaran
and Price, 2010).

As repositories of gene expression data grow larger and
larger, there is a temptation to think that analyses using
these larger repositories will automatically generate improved
estimates of pairwise gene correlation, and thus downstream
analytic methods will yield improved inference about regulatory
relationships in bacterial genomes. This argument is based on
the idea that larger sample sizes reduce the margin of error of
resulting statistical estimates: a well-known statistical fact. For
example, a conservative estimate of the margin of error for the
pairwise gene-gene Pearson correlation reduces from 0.25 to 0.12
as the sample size increases from 50 samples to 300. However,
this margin of error improvement is only true if the underlying
parameter being estimated does not change as the sample size
increases. However, this is not necessarily the case; the addition of

gene expression samples may change the underlying correlation
parameter being estimated.

Previous research has emphasized the need to exclude genes
showing non-statistically significant changes in gene expression
levels between two experiments (differential expression)
(Townsend, 2003; Scholtens and Von Heydebreck, 2005) or
differential changes below a particular level (Townsend, 2004;
Clark and Townsend, 2007), since measurements based on these
genes may be mainly noise. Thus, in sets of gene expression
data where gene measurements are noisy, correlation estimates
will presumably be different than in sets of gene expression
measurements are not noisy. Given the well-known relationship
between genetic and environmental perturbations and estimates
of gene expression levels (True et al., 2014), this suggests that
the genetic and environmental perturbations present in a set of
expression data may be more important at providing accurate
estimates of gene-gene correlation, than simply the amount of
samples in the set.

In this paper, we investigate this hypothesis, starting by
documenting that there is substantial variability in estimates of
pairwise gene correlations for the same pairs of genes, across
different repositories of gene expression data and for a diverse
set of six bacteria—much more variability than can be explained
by chance alone. We then go on to articulate a likely cause
of this variability: sampling bias. In particular, the choice of
experimental conditions in a repository of gene expression data
has substantial impact on estimates of pairwise gene correlation.
Having isolated the cause of this variability, we propose a method
of mining gene expression data that limits the impact of sampling
bias on measures of statistical association, potentially improving
downstream analyses which rely on measures of pairwise gene
association.

Methods

Data
The sources and processing of gene expression data used in
the analyses reported here are detailed elsewhere (Tintle et al.,
2012). We provide a brief overview here. We focus on six
diverse bacteria with 2782 total microarray samples representing
mainly unique experimental conditions. In order to ensure
robust estimates of pairwise gene correlation, we consider only
the 6 bacteria from Tintle et al. (2012), for which at least 150
samples are available. Raw data from Affymetrix CEL files1 were
consistently normalized using RMA (Irizarry et al., 2003). The
number of samples for each organism varied from 176 to 907.
Column 2 of Table 1 indicates the total number of samples for
each of the six bacteria.

Creating Partial Compendia
We call the total set of samples for which expression data is
available the full compendium of gene expression data for an
organism. For our analyses, we also created partial compendia for
each organism which represent purposefully created partitions of
the full compendium. Each partial compendium is a moderately
sized (at least 50 samples) repository of gene expression data for

1http://www.affymetrix.com
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TABLE 1 | Full compendia size and number of partial compendia for each bacteria genome in the analysis.

Bacteria Total number of samples in the full

compendium for each organism

Number of partial compendia (subsets of samples) for each

organism (number of samples in each partial compendium)

Bradyrhizobium japonicum 195 3 (A = 83, B = 60, C = 52)

Escherichia coli 907 5 (A = 331, B = 212, C = 137, D = 133, E = 94)

Pseudomonas aeruginosa 176 3 (A = 70, B = 54, C = 52)

Shewanella oneidensis 245 4 (A = 72, B = 61, C = 59, D = 53)

Staphylococcus aureus 852 5 (A = 263, B = 228, C = 193, D = 90, E = 78)

Thermus thermophilus 407 3 (A = 222, B = 99, C = 86)

Total 2782 samples 23 partial compendia

a particular organism, representing a diverse set of experimental
conditions. Partial compendia were created to act as stand-ins for
independent repositories of gene expression data. As shown in
Table 1, Column 3, partial compendia are named with sequential
letters of the alphabet, with A indicating the largest partial
compendia for the organism, B the second largest, etc.

We now describe how partial compendia were created.
Because gene expression data is typically gathered in related
sets of samples, each partial compendium represents a random
synthesis of related sets of samples, combined until there are
50 or more samples in the set. For example, data from GEO
(B. japonicum, P. aeruginsosa, T. thermophilus) are stored in
Gene Expression Omnibus Series (GSEs), representing either
a related set of testable hypotheses, samples obtained by the
same experimenter or other related factors. To create partial
compendia for these three organisms, we randomly combined
GSEs until there were 50 or more samples in each partial
compendium. For example, for B. japonicum there are 71 samples
(denoted in GEO as GSMs) in GSE8478 (genomewide transcript
analysis of B. japonicum bacteroids in soybean root nodules)2

and 12 samples in GSE8580 (response of B. japonicum wild type
and mutant strains to genistein)3 . We combined these two GSEs
to create a partial compendium of 83 samples as indicated in
Table 1. We then combined other GSEs to create the rest of the
other partial compendia.

A similar approach was taken for E. coli, S. oneidensis and S.
aureus. For example, E. coli data was obtained fromM3D4 . M3D
has collected data from GEO, as well as data deposited directly
to M3D by other labs. To create partial compendia for E. coli we
created a single partial compendium for all GEO data that is in
M3D. We then followed a procedure similar to the one detailed
in the previous paragraph by randomly combining related sets of
samples (e.g., all of the data deposited by a single lab) until at least
50 samples were in the partial compendia. A similar approachwas
used for both S. oneidensis and S. aureus.

Operons and Metabolic Pathways
In part of our analysis we consider how correlation estimates
vary across different partial compendia for pairs of genes that are
predicted to be co-regulated by external databases. In particular,
we used operon predictions as made by Microbes Online (Price

2http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8478
3http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8580
4http://m3d.mssm.edu/

et al., 2005) and metabolic pathway definitions from the SEED
(DeJongh et al., 2007).

Statistical Analysis
For each pair of genes, based on the samples in each compendium
(full and partial), we computed three different measures of
pairwise gene association for all possible pairs of genes: Pearson
correlation, Spearman correlation and mutual information.
We used R/Bioconductor5 to compute all three measures of
association. In particular, we used the cor() function to compute
the Pearson and Spearman correlations and the mutualInfo()
function in the package bioDist to compute mutual information.

To provide an evaluation of the consistency of correlation
metrics obtained for the same pair of genes across partial
compendia, we used 95% bootstrap confidence intervals, which
we computed as described in the remainder of this paragraph.
Let rki,j represent the correlation between genes i and j in partial

compendia k. Let rki,j,z represent the correlation between genes

i and j in the zth bootstrap set of samples, z = 1, . . . , 1000,
from partial compendia k. We compute the endpoints of a
95% bootstrap confidence interval on the difference in pairwise
gene association measures between partial compendia k and l

by taking the 2.5 and 97.5 percentile of d = (dk,li,j,1. . . ,d
k,l
i,j,1000),

where dk,li,j,z = rkr,j,z − rli,j,z . We computed 95% bootstrap

confidence intervals using this approach for all pairs of partial
compendia for each organism, and separately for each of the three
correlation metrics (Pearson correlation, Spearman correlation
and mutual information). If the correlations obtained from the
different partial compendia are estimating the same, unknown,
parameter (the “true” measure of correlation), then, on average,
only 5% of the bootstrap confidence intervals obtained from this
approach will not contain zero. We note that the “true” measure
of correlation being estimatedmay be any value between -1 and 1,
including zero. Furthermore, this true measure correlation may
represent either direct, indirect or no co-regulation. Lastly, we
note that use of the bootstrap approach explicitly controls for
differences in the sizes of the partial compendia, allowing for
comparison of partial compendia of any size.

As part of our analysis, we classify gene expression levels
as coming from a gene in an “on” state or an “off” state
(two state model) using the following procedure. For each

5http://www.bioconductor.org
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gene, we modeled the observed expression distribution across
the full compendium as a mixture of an unknown number,
m, of unequal-variance Gaussian distributions using the R
package Mclust5. We then found the value of the Bayesian
information criterion for each value of m (BICm) to determine
the optimal number of clusters, mO. In particular, mo =
{

2, If BIC2 > (BIC2 − 10) ∀ i 6= 2
i, otherwise

. In other words, we assume

that genes fit the two statemodel unless strong statistical evidence
(change in BIC larger than 10) exists to the contrary.

Results

Motivating Example
We begin by motivating our analysis and approach via a specific
example. Consider the following pair of E. coli genes: lexA
(b4043) and dinF (b4044), which the literature has strongly
suggested are part of the same operon (Krueger et al., 1983;Wade
and Struhl, 2004). This operonal relationship is asserted not only
in E. coli but in a host of other bacterial clades as well (Mazón
et al., 2004). Functionally, lexA represses the transcription of
many genes involved in cellular responses to DNA damage or
inhibition of DNA replication, and dinF encodes a member of
the multidrug and toxic compound extrusion (MATE) family of
multidrug efflux transporters (Keseler et al., 2011). In addition
to physical mapping results and a functional link consistent with
dinF and lexA being in the same transcriptional unit (Krueger
et al., 1983), lexA is a gene located only 19 bp away on the same
strand. Major databases of operons agree that lexA and dinF are
in the same operon (Price et al., 2005; Keseler et al., 2011; Okuda
and Yoshizawa, 2011).

Using a large repository of 907 separate microarray samples
available for E. coli (Many Microbe Microarrays Database,
M3D4), and using a standard normalization strategy (Robust
Multi-array Average, RMA; details provided in the Methods),
we compute the Pearson correlation of the observed expression
levels of lexA and dinF as 0.86, a value indicating a strong
statistical association providing experimental confirmation
of operonal relationship. Figure 1 gives the corresponding
scatterplot for the two genes across the 907 samples.

Interestingly, however, if instead of using M3D, a researcher
gathered all 331 available E. colimicroarray samples from GEO6,
the observed correlation between lexA and dinF would appear
substantially weaker (Pearson correlation = 0.56; see Figure 2)
even when using the same normalization strategies. On the
other hand, in another smaller compendium with 212 samples,
the correlation is much stronger (Pearson correlation = 0.87;
Figure 3) and similar to the larger set of all 907 microarray
samples. As we will demonstrate, the differences in correlation
estimates (0.56 vs. 0.86 and 0.56 vs. 0.87) are well beyond any
difference expected due to random chance alone.

Furthermore, the fact that the entire M3D database has nearly
three times asmany samples as GEO is not the explanation for the
difference in correlation estimates. The smaller set of 212 samples
exhibits strong correlation. As we will show, the difference

6http://www.ncbi.nlm.nih.gov/geo/

FIGURE 1 | Expression values for lexA and dinF across 907 microarray

samples in a publicly available repository. The genes lexA and dinF show

a strong pattern of association in RMA-normalized gene expression across the

907 samples available in the M3D repository (full compendium). In particular,

as expression levels of lexA increase, expression levels of dinF also increase.

This strong association is captured by the high values of common statistical

measures of association (Pearson correlation = 0.86, Spearman correlation =

0.79, Mutual Information = 0.70).

FIGURE 2 | Expression values for lexA and dinF across 331 microarray

samples in a publicly available repository. The genes lexA and dinF show

a much weaker pattern of association in RMA-normalized gene expression

across the 331 samples available in a subset of the M3D repository consisting

of gene expression data collected from GEO (28) (partial compendium A). In

particular, as expression levels of lexA increase, expression levels of dinF only

modestly increase. This modest association is captured by the modest values

of common statistical measures of association (Pearson correlation = 0.56,

Spearman correlation = 0.60, Mutual Information = 0.37).

in correlation estimates is due primarily to the experimental
conditions of the samples in the set, as opposed to the number
of samples.

Large Differences in Observed Pairwise Gene
Association Measures between Partial
Compendia
If pairwise gene association metrics are estimating the same
underlying value (“true” correlation) across different partial
compendia, then we would expect that, on average, 5% of 95%
confidence intervals on the differences will not contain zero.
Table 2 provides the proportion of 95% confidence intervals
which do not contain zero for each pair of compendia. As can
be seen in the table, these proportions are frequently larger than
5% (ranging as high as 97%). The differences are well above
5% across all organisms, all partial compendia and all three
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FIGURE 3 | Expression values for lexA and dinF across 212 microarray

samples in a publicly available repository. The genes lexA and dinF show

a strong pattern of association in RMA-normalized gene expression across

these 212 microarray samples (partial compendium B), similar to the pattern

seen in the larger set of all 907 samples. In particular, as expression levels of

lexA increase, expression levels of dinF increase. This association is captured

by the modest values of common statistical measures of association (Pearson

correlation = 0.87, Spearman correlation = 0.81, Mutual Information = 0.71).

associationmetrics, with the exception of themutual information
metric for S. oneidensis which shows only modest inflation.
Importantly, the high proportion of confidence intervals which
do not include zero is not a result of small compendium sizes.
For example, the two largest partial compendia of expression
samples for E. coli (A and B) have one of the highest proportions
of differences. Furthermore, note that differences in compendia
sizes are implicitly accounted for in the computation of the
bootstrap confidence interval, which will yield wider confidence
intervals for small sample sizes.

To more fully understand the issue, we focus on E. coli partial
compendia A and B. Figures 4–6 plot the actual values of the
Pearson, Spearman and mutual information for 1000 randomly
chosen pairs of genes for E. coli for partial compendium A
and partial compendium B. If these two subsets of samples
were generally providing estimates of correlation that were
estimating the same underlying value we would expect the
majority of points to fall near the line y = x. In fact, for Pearson
correlation, statistical theory says, conservatively, that at least
95% of the values should fall within 0.14 of the line y = x
(Figure 4, blue dashed lines). However, the vast majority of
points are well outside of this range. A similar lack of consistency
between metrics across the two compendia is observed for both
the Spearman correlation (Supplemental Figure 1) and mutual
information (Supplemental Figure 2).

We consider two approaches to predict pairwise gene
correlation values. The naïve approach, as considered in the
previous paragraphs, says that the correlation value for a given
pair of genes, i and j, in partial compendium k, rki,j, should be

well predicted by the correlation value for the same gene pair in
partial compendia l, rli,j. An uninformative approach would be

to predict rki,j based on a randomly selected gene pair (y,z; y,z

not equal to i,j) in partial compendia l, rly,z . Table 3 illustrates
that the uninformative approach outperforms the naïve approach

(meaning that
∣

∣

∣
rki, j − rli,j

∣

∣

∣
>

∣

∣

∣
rki, j − rly,z

∣

∣

∣
∼30–70% of the time

across all organisms and all correlation metrics. Thus, in general,

there is little information in the correlation between genes i and
j in compendium l useful for prediction of correlation between
genes i and j in compendium k.

Understanding Why the Large Differences in
Correlation Estimates Exist
To begin to understand why the large differences in correlation
exist between different pairs of partial compendia, we return to
the example of the lexA/dinF operon for E. coli described earlier
(Results: Motivating Example). Figure 1 suggests that lexA and
dinF tend to be either “on” (gene expression levels above∼11 for
lexA and above ∼9.5 for dinF) or “off” (gene expression levels
less than∼11 for lexA and less than∼9.5 for dinF) concurrently.
Table 4 provides the values of the three association metrics for
each of the five partial compendia and the full compendium,
along with the percent of samples in the compendium for which
the expression values of either just lexA, or both lexA and dinF
illustrate an “on” state as defined earlier in this paragraph.
Furthermore, Table 4 provides the standard deviation of the
absolute expression values for each gene in each compendium.

This pair of genes, like most (see previous section for details),
shows substantial differences in the estimated correlation among
the five partial compendia. In particular, partial compendia B and
D show strong correlation (as is expected since this a known
operon) while partial compendia A, C, and E show weak to
moderate correlation. We gain insight into why the values of
the association metrics are different in compendia B and D as
compared to A, C, and E by examining the percent of samples
in each partial compendia for which the gene (or gene pair) are
“on.” In particular, we note that in both partial compendia B and
D there is at least a 10/90 split of “on” and “off” samples, whereas
in compendia A, C and E the genes are rarely on. Referring
back to Figure 1, compendia A, C, and E can be thought of as
possessing samples which only occur in the lower left “cluster,”
while compendia B and D have at least 10% of their samples
from each of the two clusters. We note that in the case of partial
compendium C, while there is a modest percentage (8%) of
samples for which the lexA gene is “on,” 8 of these samples have
low levels of the dinF gene (less than 9.5), which, ultimately,
yields a low correlation. This is further underscored by noting
that the lexA and dinF genes are both “on” in only 2% of samples
in compendium C. Thus, unless the percent of samples for which
both of the genes are on (and off) is above 10%, the estimate of the
pairwise association is questionable for the lexA and dinF operon.
If we view the variability within the off (or on) state as “noise” and
the change in states as “signal,” then it is clear that if samples come
from primarily within the off (or on) state, we have only “noise”
and the “true signal” (pairwise gene association) is not present.
Conversely, if we obtain an adequate number of samples within
both states, the samples will provide sufficient signal to rise above
the noise and, ultimately, we will observe a strong pairwise gene
association. Statistically, this issue is called sampling bias: some
compendia present a biased view of true correlation.

This on-off sampling argument is not limited to the lexA-dinF
operon in E. coli; in fact it is widespread across all organisms
and operons or metabolic pathways in our analysis. To conduct
a more comprehensive analysis, we consider three types of gene
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TABLE 2 | Proportion of 95% bootstrap confidence intervals that do not include zero, comparing partial compendia.

B. japonicum E. coli P. aeruginosa S. oneidensis S. aureus T. thermophiles

AB (46%, 35%, 32%)

AC (46%, 44%, 21%)

BC (51%, 48%, 13%)

AB (67%, 69%, 55%)

AC (37%, 38%, 64%)

AD (44%, 43%, 57%)

AE (39%, 37%, 94%)

BC (60%, 63%, 29%)

BD (56%, 59%, 23%)

BE (57%, 59%, 60%)

CD (37%, 42%, 11%)

CE (38%, 37%, 30%)

DE (45%, 43%, 40%)

AB (25%, 22%, 5%)

AC (32%, 30%, 8%)

BC (25%, 21%, 6%)

AB (38%, 37%, 8%)

AC (39%, 37%, 10%)

AD (42%, 40%, 6%)

BC (32%, 29%, 2%)

BD (37%, 37%, 8%)

CD (42%, 44%, 10%)

AB (40%, 44%, 13%)

AC (38%, 42%, 17%)

AD (64%, 62%, 90%)

AE (32%, 34%, 88%)

BC (29%, 27%, 10%)

BD (63%, 63%, 91%)

BE (29%, 29%, 89%)

CD (64%, 63%, 86%)

CE (32%, 33%, 79%)

DE (62%, 59%, 13%)

AB (40%, 39%, 67%)

AC (35%, 30%, 97%)

BC (48%, 43%, 20%)

For each organism, each pair of partial compendia are compared and the percent of Pearson correlation, Spearman correlation and mutual information confidence intervals that don’t

include zero are provided. If the partial compendia are estimating the same underlying parameter, as we would expect and desire, on average, only 5% of the confidence intervals will

not include 0. However, in almost all cases substantially more than 5% of the confidence intervals do not include zero suggesting that for many genes the different partial compendia

are estimating different parameters, regardless of the gene association metric being used.

FIGURE 4 | Pearson correlations according to partial compendia A and

B in 1000 random E. coli gene pairs. For large compendia (as we use here:

331 samples and 212 samples, respectively) we expect limited variability in

gene expression correlation measures between the compendia. In particular,

we expect most correlations to be close to the line y = x, if the same underlying

parameter is being estimated. We computed 95% confidence intervals on the

difference in correlation estimates for 1000 random E. coli gene pairs. Black

circles indicate pairs of genes for which the correlation estimates are similar

(95% confidence interval includes zero), while red x’s indicate gene pairs for

which the correlation estimates are not similar (95% confidence interval does

not include zero). As shown in the figure by the preponderance of red x’s, the

majority of pairwise correlation values are well outside the expected range,

representing substantially more variability than is expected due to chance

alone. The Pearson correlation computed on the scatterplot shown in this

figure, is only 0.33, representing very weak association between the Pearson

correlation of pairs of genes in partial compendia A and B for E. coli.

pairs across all six bacteria. First, we consider contiguous gene
pairs which have a posterior probability of at least 99% of being an
operon according to MicrobesOnline (Price et al., 2005), which
uses primarily genomic evidence (e.g., distance between genes,
conservation across organisms, related function) to make its
predictions. Thus, we take a posterior probability of at least 99%
as suggesting that the pair of genes is in fact an operon, thus,
we should observe large (strong) correlations between pairs of
genes in this group. Second, we consider contiguous gene pairs

with posterior probability of being in an operon of at most 1%
according to MicrobesOnline. Here, weaker correlation in the
expression data is expected. While we recognize that not being
in an operon does not necessarily mean that the genes will not be
correlated, we can reasonably anticipate that the gene pair will
show low or no correlation in many of these cases. Lastly, we
consider pairs of genes which are located in the same metabolic
pathway (Tintle et al., 2012). As with operons, we expect genes in
the same pathway to have a strong pairwise association in gene
expression data though we do not expect the true correlation to
be as strong as it is for operons.

Table 5 provides the average Pearson correlation of pairs
of genes classified by the biological source of the gene pair.
This analysis was conducted using the full compendium of
samples for each organism, using genes for which a two-state
clustering strategy to classify genes as “on” or “off” is valid (see
Methods for details). The percent of on (or off) categorization
is based on the minimum on or off percent across the gene
pair. So, a percent close to one half means that both genes are
sampled approximately equally from both the “on” and the “off”
state across the set of samples in the partial compendia being
compared, while a percent close to zero means that at least one
gene is almost always on or almost always off in the samples in
the full compendium.

The results inTable 5 demonstrate that the intuition described
above is correct. In particular, correlation estimates for pairs
of genes from sets of samples which do not substantially or
frequently perturb the genes’ expression levels (e.g., change on-off
states), show less consistency with a priori biological prediction
than correlation estimates obtained from sets of compendia
with a substantial number of samples from both on and off
states. In particular, for pairs of genes likely to be in the
same operon, as the variability in expression levels increases
the average Pearson correlation also increases. This pattern is
also observed for pairs of genes in the same metabolic pathway
though, expectedly, the absolute value of the correlations is
not as strong. Furthermore, for pairs of genes likely not in
the same operon, as the variability in expression increases, the
average Pearson correlation does not increase. The Spearman
correlation and mutual information show similar patterns
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FIGURE 5 | Pairwise Pearson correlation versus minimum standard

deviation of gene expression value: operons. As the minimum standard

deviation of the gene pair increases, the correlation between genes likely to be

in the same operon also increases. The Pearson correlation for the scatterplot

is 0.58.

FIGURE 6 | Pairwise Pearson correlation versus minimum standard

deviation of gene expression value: non-operons. As the minimum

standard deviation of the gene pair increases, the correlation between genes

likely to not be operons shows little discernible pattern also increases. The

Pearson correlation for the scatterplot is 0.10.

(details not shown). Thus, we see increasing correspondence
between a priori biological knowledge and empirical evidence
from transcriptional data as we increase the variability in
expression levels. Statistically speaking, sampling from both
states is a stratified sampling strategy which means less bias in
downstream estimates of pairwise gene association.

While on-off classification provides a convenient dichotomy
to simplify our description of the problem, we also consider
a more general approach which will work for all gene pairs
(Note: 17.45% of all gene pairs were eliminated from the analysis
shown in Table 5 because one or both genes did not fit the two-
state (on-off) model; see Methods for details). Referring back to
Table 4, we see that the lexA-dinF operon shows less variability
(smaller standard deviation) in partial compendia A, C, and E—
exactly those compendia discussed earlier as providing suspicious
estimates of the correlation.

Going further and generalizing the result from Table 5, we
predict that, in general, genes with more variability in gene
expression values (e.g., larger standard deviation in expression
levels) are more likely to be changing in a biologically meaningful

TABLE 3 | Predicting pairwise gene correlations using a plausibly

informative vs. uninformative approach.

Bacteria Percent of times that uninformative

approach outperformed naïve approach

Pearson

correlation

Spearman

correlation

Mutual

information

Bradyrhizobium japonicum 37.4% 37.1% 49.9%

Escherichia coli 40.7% 40.6% 60.7%

Pseudomonas aeruginosa 32.9% 34.3% 45.8%

Shewanella oneidensis 40.6% 42.5% 50.4%

Staphylococcus aureus 34.2% 36.2% 65.2%

Thermus thermophilus 27.8% 28.3% 67.5%

The naïve approach uses the pairwise gene correlation value in partial compendia l, to

predict the value for the same pair of genes in partial compendia k, the uninformative

approach uses a random value to make the prediction. If the naïve approach were no

better than the uninformative approach, we would expect the values in the table to be

∼50%. Since the values in the table are quite close to 50%, there is a high degree of

noise in the correlation estimates and limited signal. If the values were close to 0, the

naïve approach would, typically, be outperforming the uninformative approach.

way (not simply due to measurement error or other random
variation), whereas genes with less variability in gene expression
values are less likely to be changing values due to underlying
biological reasons—more likely due to chance variation. Thus,
we consider the standard deviation as an alternative approach
to accurately predict whether, for a given gene pair and set of
samples, the researcher can have confidence in the correlation
estimate obtained.

Figures 5–7 illustrate how the standard deviation associates
with the quality of the association metric. In particular, Figure 5
provides a scatterplot of all of the operon pairs from Table 5,
plotting the observed Pearson correlation against the minimum
standard deviation of the two genes in the pair. Figures 6, 7 are
similar, except for non-operon pairs and pathways respectively.
Notably, we see a strong association between the standard
deviation of the expression values and the value of the Pearson
correlation for operons, a weaker association for pathways, and
a much weaker, or non-existent, relationship for non-operons.
In particular, for low minimum standard deviation, estimated
correlations between genes in an operon may be good or bad, but
the higher the minimum standard deviation, the more accurate
the correlation estimate will be. Similar patterns are seen for both
the Spearman correlation and mutual information (details not
shown).

Controlling Sampling Bias at a Genome-Wide
Level When Mining Large Repositories of
Expression Data
Our analysis has shown that bias in correlation estimates based
on large gene expression repositories is both rampant and
substantial. Thus in order to control sample bias when mining
large repositories of expression data we propose that either
the percent on-off or the standard deviation be used to flag
potentially biased correlation estimates. In essence, through the
flagging approach, we can provide confidence that the correlation
estimate for a gene pair is not biased.
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TABLE 4 | Values of the association metrics for the lexA-dinF operon overall and in different partial compendia.

Full Partial Partial Partial Partial Partial

compendium compendium A compendium B compendium C compendium D compendium E

Pearson 0.86 0.56 0.87 0.40 0.92 0.34

Spearman 0.79 0.60 0.81 0.37 0.92 0.23

Mutual Information 0.70 0.37 0.71 0.43 0.99 0.35

Percent of samples in which

the expression level of lexA

is “on” (above 11)

24% (216/907) 1% (2/331) 88% (186/212) 8% (11/137) 13% (17/133) 0% (0/94)

Percent of samples in which

the expression level of lexA

is “on” (above 11) and the

expression level of dinF is

“on” (above 9.5)

20% (185/907) 0% (1/331) 80% (169/212) 2% (3/137) 9% (12/133) 0% (0/94)

Standard deviation of

absolute expression for lexA

1.13 0.62 0.64 0.99 0.92 0.55

Standard deviation of

absolute expression for dinF

0.71 0.36 0.53 0.47 0.55 0.26

TABLE 5 | Average Pearson correlation across all pairs of genes, cross-classified by biological grouping and percent on/off.

Minimum percent of samples in the compendia for

which the genes in the pair are on (or off)a
Variability in expression levels

Less —————————————————————————————————————– More

Less than 5% 5–10% 10–20% 20–30% 30–40% 40–50%

Likely operonsb 0.72 (294) 0.75 (320) 0.81 (610) 0.84 (493) 0.87 (310) 0.88 (123)

Likely non-operonsc 0.20 (254) 0.17 (238) 0.16 (186) 0.21 (186) 0.19 (86) 0.06 (28)

Gene pairs in same pathwayd 0.23 (1128) 0.20 (1280) 0.28 (1994) 0.38 (1779) 0.35 (711) 0.47 (266)

In parentheses is the number of gene pairs satisfying the conditions to be included in each cell. The full compendium of expression data is considered.
aThe minimum of the percent of samples arrays for which either gene is on or off in the full compendium of samples.
bPosterior probability of being in an operon based on genomic evidence is more than 99% according to MicrobesOnline (Bockhorst et al., 2003).
cPosterior probability of being in an operon based on genomic evidence is less than 1% according to MicrobesOnline (Bockhorst et al., 2003).
dPathway definitions provided by the SEED (Tintle et al., 2012).

In particular, we propose the following when a two-state (on-
off) clustering model is reasonable for the observed expression
data for a pair of genes: unless both states for both genes
are present in at least 10% of the samples, the correlation
estimate should be flagged as potentially biased. In all cases,
regardless of whether the two-state (on-off) clustering model
is reasonable, genes with standard deviations of less than 0.5
for RMA normalized data suggest that downstream correlation
estimates may be biased. These “rules of thumb” were derived
by exploring the sensitivity and specificity of different standard
deviation and percent on-off rules. Tables 6, 7 provides the
sensitivity and specificity of different standard deviation and
percent of sample cutoffs at identifying pairs of genes with
correlation estimates that are likely to be biased estimates of the
true correlation. In particular, for pairs of genes predicted by
MicrobesOnline to be highly likely in the same operon (predicted
probability of at least 0.99), we examined how often different
rules of thumb “flagged” Pearson correlations above or below
0.6. We used 0.6 as a threshold of meaningful correlation for
genes truly in an operon, though other values are possible. A
good rule of thumb should flag most genes in operons with

correlations below 0.6 as biased, while not flagging many operon
genes with correlation above 0.6. As shown in Tables 6, 7, a
standard deviation of 0.5 and having both states present in at
least 10% of the samples tended to provide maximal values of
sensitivity + specificity. We note that, as with any rules of thumb,
sensitivity can be improved by increasing the standard deviation
threshold used to flag gene pairs (e.g., standard deviation cutoff
larger than 0.5), but at the expense of specificity and vice versa.

Application of the standard deviation rule of thumb to all 2735
pairs of genes likely to be in the same operon (Microbes Online
predicted probability of at least 0.99), yielded 287 gene pairs with
Pearson correlation less than 0.6 in the full compendia, 221 of
which had standard deviation less than 0.5; a sensitivity of 77%
(221/287). Specificity, was also high (72%; 1772/2448). A similar
approach applied to gene pairs for the two state model, the 10%
rule yields sensitivity of 51% and specificity of 74%. More details
are in Tables 6, 7.

In a brief follow-up analysis, we confirmed that the strategy
of eliminating genes with low variability genes does not merely
eliminate genes with low average absolute expression values. We
note that across the 27,140 genes in our analysis, 25% of the genes
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with standard deviation less than 0.5 have average expression
values above 8 (ranging as high as 14.9). Similarly, among the
genes for which a two state model fits the data well, 25% of the
genes with less than 10% of the experiments in one of the two
states have a mean expression of 8.6 or larger.

Discussion

In this manuscript we have documented widespread and
substantial bias in correlation estimates obtained from large
repositories of bacterial gene expression data. At a minimum,
this bias leads to unclear downstream inference about the biology
of bacterial organisms while, at its worst, this bias can lead to
completely incorrect inferences based on the correlation metrics.
We have demonstrated that this bias is present across a diverse
set of organisms, correlation metrics and gene pairs. Importantly,

FIGURE 7 | Pairwise Pearson correlation versus minimum standard

deviation of gene expression value: pathways. As the minimum standard

deviation of the gene pair increases, the correlation between genes in the

same pathway shows a generally increasing pattern. The Pearson correlation

for the scatterplot is 0.38.

we have clearly shown that the problem is not simply solved by
adding more samples to the repository.

Statistically speaking, the issue is sampling bias. In particular,
for a given pair of genes it is often the case that in any particular
repository of gene expression data, both genes in the pair have
not been perturbed (e.g., environmentally or genetically) in order
to cause the meaningful change in expression level necessary
in order to yield unbiased estimates of gene-gene association.
For genes where a two-state (on-off) model is a reasonable
abstraction of the data, sampling bias is easily described as failing
to sufficiently (if at all) sample one of the two states, for at
least one of the genes. For genes which show a more continuous
change in expression level, sampling bias means failing to include
samples which have substantially changed the expression level of
the gene.

We have proposed amethod which can flag correlations which
may be particularly prone to sampling bias. In particular, we
identify pairs of genes where, for at least one of the genes, less
than 10% of the samples are from one of the two (on-off) states,
or where one of the genes has a standard deviation less than 0.5.
An application of our method to pairs of genes that are highly
likely to be in operons reduced the number of low correlations
and provided reasonable levels of sensitivity and specificity. Since
operons can be viewed as close to a gold standard of pairs of genes
that should be correlated, the methodmay be widely applicable to
any gene pair being considered biologically. A handful of minor
limitations of the method are worth noting. First, the partial
compendia in our analysis ranged from ∼50 to 300 samples and
so, for sets of samples containing less than 50 or more than 300
samples, the 10% rule of thumb may not be appropriate. Caution
should be exercised when estimating gene-gene correlation on
sets of less than 50 samples as correlation estimates can illustrate
substantial chance variability in these contexts, even if sampling
bias is not present (for example, a margin of error of over

TABLE 6 | Sensitivity and specificity of different standard deviation cutoffs.

Standard deviation 0.1 0.3 0.5 0.7 0.9

Sensitivity 0 (0/287) 0.36 (103/287) 0.77 (221/287) 0.95 (274/287) 0.99 (283/287)

Specificity 1 (2448/2448) 0.93 (2272/2448) 0.72 (1772/2448) 0.49 (1193/2448) 0.31 (753/2448)

Sensitivity+ Specificity 1 1.29 1.49 1.44 1.3

For 2735 pairs of genes likely to be in the same operon, 287 have correlations below 0.6 suggesting that these correlation estimates are substantially biased, since the true correlation

between two genes in the same operon should be close to 1. Sensitivity is computed by calculating the number of these pairs of genes with standard deviations below a certain threshold.

77% (221/287) of the 287 pairs of operon pairs with low correlation also have low (<0.5) standard deviation. Of the operon pairs with larger correlations (0.6), nearly three-fourths (72%)

have standard deviations above 0.5.

TABLE 7 | Sensitivity and specificity of different state cutoff rules.

Minimum represented cutoff 0.025 0.05 0.1 0.2

Sensitivity 0.11 (26/244) 0.25 (61/244) 0.51 (125/244) 0.77 (188/244)

Specificity 0.95 (1938/2042) 0.87 (1782/2042) 0.74 (1511/2042) 0.45 (915/2034)

Sensitivity + specificity 1.06 1.12 1.25 1.22

For 2286 pairs of genes likely to be in the same operon and for whom the two state model is a good fit, 244 have correlations below 0.6 suggesting that these correlation estimates

are substantially biased, since the true correlation between two genes in the same operon should be close to 1. Sensitivity is computed by calculating the number of these 244 low

correlation pairs with the percent of samples in a state below a certain threshold. 51% (125/244) of the 244 low correlation pairs also have less than 10% of the experiments classified

to one of two states (on-off). Of the operon pairs with larger correlations (0.6), nearly three-fourths (74%) have at least 10% of the experiments in each of the two states.
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0.25 when estimating gene-gene correlations using the Pearson
correlation is possible in these contexts). Secondly, the 0.5
standard deviation rule is based on RMA-normalized data and
may not apply for other normalization strategies (e.g., MAS
5.0, MBEI). However, since most expression measures ultimately
log-transform the data, this rule may be robust to alternative
normalization strategies. Use of gene pairs likely to be in
operons to develop appropriate thresholds for use with other
technologies (e.g., RNAseq), is possible by following a process
similar to the one we conducted here. Relatedly, our analysis only
considered three possible, though commonly used, measures of
association between genes and further work is needed to extend
the result to alternative measures. We note that other flagging
strategies exist to identify genes that are never activated in
gene expression data, or never show significant change between
conditions (e.g., the gene shows know statistically significant
fold change between any two conditions, Townsend and Hartl,
2002; Faith et al., 2007; Zhang et al., 2010). Further work
is needed to evaluate the performance of different flagging
strategies with regards to the sensitivity/specificity at providing
accurate pairwise gene-gene correlation estimations. Additional
work is also needed to explore novel, more complex flagging
strategies, which would ideally improve sensitivity and specificity
and use confidence, instead of a simple flag, to better quantify
evidence of bias. Finally, we note that while our approach here
is to identify estimates prone to bias, we are currently pursuing
in silico methods of correcting biased estimates. Preliminary
efforts suggest some promise to such an approach and are being
pursued.

Our use of the synthetically created partial compendia is worth
brief discussion. In order to provide a maximally informative
analysis and pinpoint the root of the unexplained variability issue,
we created partial compendia designed to represent the sorts
of “sets of samples” that are commonly used in downstream
statistical analyses using pairwise gene correlation metrics.
While, in general, these are not actual sets that individuals
would use (except in the case of partial compendia A for E.
coli which consists of all of the GEO samples for E. coli),
we believe they capture very well what is done in practice
to generate large sets of samples. Namely, the samples from
many series of experiments are compiled together with little
regard for experimental diversity. The typical goal is simply
to get “enough samples” in order to yield robust estimates of
the correlation. Thus, a minimum of 50 samples is typically
considered sufficient to compute pairwise gene correlations, with
the generally accepted belief that when it comes to repositories
“the bigger the better.” Thus, while artificial, we feel that partial
compendia illustrate precisely how repositories are constructed
in practice. Furthermore, while we used partial compendia to
illustrate the extent of the problem, it is worth noting that we
conducted analyses on the full compendia, which could be viewed
as all available samples for these organisms; the problems we’ve
identified are not merely limited to the partial compendia, as we
illustrated in our analysis of the full compendia in conjunction
with the operon and pathway data.

We also note that the current “bigger is better” philosophy
does have some merit. With additional samples it is certainly

more likely that on or off states will be included in the
sample. However, the important caveat is that if a researcher
adds substantially more samples, and, for a particular pair of
genes, the additional samples have little variation in expression
levels for the gene pair of interest, then the observed levels
of variability for the gene pair will decrease, and, potentially
reduce the level of statistical evidence of underlying association
(correlation)—in other words, it is possible for the sampling
bias to increase with the addition of more samples. This
would happen in a case where additional technical or biological
replicates of experiments were added. Importantly, in many
procedures and papers utilizing pairwise gene correlations from
large sets of gene expression data (Westover et al., 2005;
Margolin et al., 2006; Faith et al., 2007; Okuda et al., 2007;
Chandrasekaran and Price, 2010), there is an implicit assumption
that bigger will always be better. Our proposed gene flagging
approach limits errors in downstream inference using these
methods which results from analysis of genes showing little
change in gene activity across the set of experiments being
analyzed.

As the field transitions to RNAseq technologies, these
problems will not go away. While further study is needed, since
RNAseq is merely an alternative way to quantify genome-wide
expression levels, in principle these same sampling bias issues,
leading to biased estimates of pairwise gene correlation will
still exist. Further research is needed to evaluate approaches
proposed in this paper, as potentially appropriate for RNAseq
samples.

Conclusions

We have documented sampling bias as a cause of widespread,
previously unexplained variability in pairwise gene association
metrics between large, diverse sets of gene expression samples.
We have proposed a preliminary, but easy to implement,
approach which can flag pairwise gene correlations which may
be particularly sensitive to sampling bias. Further work is
necessary to investigate if there are ways of improving the
sensitivity and specificity of the proposed flagging strategy
and conducting bias correction to correlation estimates in
silico. In the meantime, we suggest that gene-gene correlation
estimates computed on genes where at least one of the genes
has a standard deviation of expression values less than 0.5,
be flagged as potentially biased in all analyses which compute
gene-gene correlation from large, RMA-normalized expression
repositories.
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