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Among the different mechanisms used by bacteria to resist antibiotics, active efflux plays
a major role. In Gram-negative bacteria, active efflux is carried out by tripartite efflux
pumps that form a macromolecular assembly spanning both membranes of the cellular
wall. At the outer membrane level, a well-conserved outer membrane factor (OMF)
protein acts as an exit duct, but its sequence varies greatly among different species. The
OMFs share a similar tri-dimensional structure that includes a beta-barrel pore domain
that stabilizes the channel within the membrane. In addition, OMFs are often subjected
to different N-terminal post-translational modifications (PTMs), such as an acylation with
a lipid. The role of additional N-terminal anchors is all the more intriguing since it is
not always required among the OMFs family. Understanding this optional PTM could
open new research lines in the field of antibiotics resistance. In Escherichia coli, it has
been shown that CusC is modified with a tri-acylated lipid, whereas TolC does not show
any modification. In the case of OprM from Pseudomonas aeruginosa, the N-terminal
modification remains a matter of debate, therefore, we used several approaches to
investigate this issue. As definitive evidence, we present a new X-ray structure at 3.8
Å resolution that was solved in a new space group, making it possible to model the
N-terminal residue as a palmitoylated cysteine.

Keywords: multidrug resistance, efflux pump, membrane protein, post-translational modification, lipoyl, X-ray
structure

Introduction

After several decades of continuous antibiotic therapy success, we are now facing the appearance
of multi-drug resistant strains and the near absence of new antibiotic family development for
more than 10 years (Fischbach and Walsh, 2009; Hede, 2014). These facts highlight the need for
new anti-infection strategies (Walsh, 2003; Olivares et al., 2013), although a promising compound
isolated from natural soil bacteria that is able to kill Gram-positive pathogens, was recently reported
(Ling et al., 2015). Among the most virulent nosocomial pathogens are Pseudomonas aeruginosa,
Escherichia coli, Staphylococcus aureus, Enterococci, and Acinetobacter baumannii (Poole, 2004;
Lister et al., 2009; Bereket et al., 2012; Bayram et al., 2013). These strains have developed several
resistance strategies including active efflux pumps (Cattoir, 2004; Li and Nikaido, 2009; Nikaido,
2009; Nikaido and Pages, 2012). In Gram-negative bacteria efflux pumps are multimers of three

Abbreviations: ßOG, beta-octyl glucopyranoside; DDM, dodecyl maltoside; MexAp, MexA palmitylated; MexAnp, MexA
non palmitylated; PTM, posttranslational modification.
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different proteins that form a long transmembrane scaffold
linking the cytoplasm to the outside of the cell (Nikaido and
Pages, 2012). These tripartite assemblies are composed of an
inner membrane protein from the RND (Resistance Nodulation
cell Division) family, which corresponds to the pumping motor
that uses the proton-gradient as an energy source; an outer
membrane channel from the OMF (Outer Membrane Factor)
family; and a periplasmic protein from the MFP (membrane
fusion protein) family, anchored to the inner membrane and
connecting the other two proteins. In P. aeruginosa, up to 12
different pumps have been sequenced (Yen et al., 2002), including
OprMOMF-MexAMFP-MexBRND which is one of the most studied
pumps because of its constitutive expression whereas the others
appear under antibiotic pressure (Li and Poole, 2001; Nakajima
et al., 2002; Schweizer, 2003). This study will focus on the versatile
membrane channel OprM, which has the ability to work with
at least four different pumps, including OprM-MexAB, OprM-
MexXY (Aires et al., 1999; Morita et al., 2012), OprM-MexJK
(Chuanchuen et al., 2002), and OprM-MexMN (Mima et al.,
2005).

The X-ray structure of OprM was solved in two different space
groups showing its trimeric nature [Protein Data Bank (PDB)
code: 1WP1 (Akama et al., 2004); 3D5K (Phan et al., 2010)].
The architecture of OprM is composed of a beta-barrel domain
that is ∼40 Å in height spanning the outer membrane and a
periplasmic alpha-helical domain that is ∼100 Å in length and
bears a central buoy. Most of the structure has been determined
with the exception of the eleven C-terminal amino acids, which
are not visible in the electronic density maps of both structures.
In addition, the structure of the post-translational modification
(PTM) that covalently links the Cys-terminal residue to a lipoyl
has never been properly characterized at any resolution, despite
palmitoylation being suggested some time ago (Nakajima et al.,
2000). This lipoyl modification is not commonly shared among
OMF family members. For instance, the E. coli homolog TolC
(PDB code: 1EK9, Koronakis et al., 2000), has an N-terminus that
is 44 residues shorter and does not begin with a cysteine. Other
OMFs with known structures, such as VceC from Vibrio cholerae
(PDB code: 1YC9, Federici et al., 2005), CusC of the metal effluent
pump from E. coli (3PIK, Kulathila et al., 2011; 4K7R, Lei et al.,
2014a) and CmeC from E. coli (4MT4, Su et al., 2014) begin
with residues Cys-Ser (Figure 1; Supplementary Figure S1) like
OprM. The OMF protein with the most recently solved structure,
MtrE (4MT0, Lei et al., 2014b) fromNeisseria gonorrhoeae, begins
with Cys-Thr. The structure of CusC indicates the presence of
a di-acylated thiol on the N-terminal cysteine, with or without
a supplementary acyl chain on the N-terminal amine (tri-
acylation), depending on the protomer. As the CusC sequence
is highly similar to OprM, it has been suggested that the latter
may be modified in a similar manner, rather than with only one
palmitoyl chain attached by a thio-acyl bound to the N-terminal
Cys as previously described (Kulathila et al., 2011). Di-acylation
is also found in CmeC, but nothing has been found to be added
to the N-terminal cysteine of the MtrE structure. In the VceC
structure, the protein sequence was cloned without the first 12
amino acids, therefore, the N-terminal cysteine was not present.
In the OprM structure solved in the R32 space group (Akama

et al., 2004), the three monomers were found to be identical by the
threefold crystallographic symmetry axis, and despite a resolution
of 2.6 Å there was no evidence of lipidation to the thiol or amine
of the N-terminal cysteine. The same observation applies to the
OprM structure solved at 2.4 Å of resolution (Phan et al., 2010)
in which the P212121 space group does not stabilize sufficiently
the N-terminal modified cysteine.

Consequently, the N-terminal modification of OMFs remains
an open question. Post-translational lipidation is particularly
essential for the secretion and localization of some membranous
proteins, a process involving different biological modifiers such
as palmitoyl acyl transferases (Aicart-Ramos et al., 2011),
palmitoyl thioesterases, lipoprotein diacylglyceryl transferase or
lipoprotein N-acyl transferase (Linder and Deschenes, 2007;
Kovacs-Simon et al., 2011; Nakayama et al., 2012). These
modifying enzymes could potentially lead to new therapeutic
targets. In addition, it is not known why some OMF proteins
need to undergo PTM in addition to their trans-membrane beta-
barrel insertion, or what is the nature of this modification. We
asked this question using OprM from P. aeruginosa with specific
N-terminal chemical probes to investigate whether it is actually
palmitoylated via a thio-acyl or subjected to other PTMs, and
resolved a new OprM structure in a new crystallographic space
group.

Materials and Methods

Expression and Purification of OprM, MexAp,
and MexAnp
The three proteins were produced following the protocol
described by Phan et al. (2010) and Ferrandez et al. (2012)
with some modifications. The protein genes were inserted into
the pBAD33-GFPuv plasmid with a C-terminal 6-histidines tag
and the N-terminus extremity being dedicated to the signal
peptide. For the non-palmitoylated form of MexA (MexAnp),
the signal peptide was deleted from the construct, resulting in
a non-membranous protein bearing a free N-terminal cysteine.
Wt MexA has the same amino acid sequence as MexAnp, but its
starting cysteine is palmitoylated after maturation (MexAp).

The plasmids were transformed into the C43-DE3 E. coli strain
(Miroux and Walker, 1996). For each protein 6 L of cultures
were grown; they were begun at OD600 = 0.05 from dilution
of an overnight pre-culture at 37◦C in LB medium containing
25 μg/ml chloramphenicol, and were then grown at 30◦C. Cells
were induced at OD600 = 0.6–0.8 by the addition of 0.02% L-
arabinose and grown for 2 h before centrifugation for 20 min
at 9,000 g. The cell pellet was resuspended in 45 ml of buffer
containing 20 mM Tris-HCl (pH 8.0), 5 mM MgCl2, 1 μl/ml
cocktail of anti-protease inhibitors set III (Calbiochem) and 50
units of benzonase (Promega).

Cells were broken using a French pressure cell at 69 MPa and
then centrifuged twice for 30 min at 8,500 g to remove inclusion
bodies and unbroken cells. As for OprM, the supernatant was
applied to a sucrose step gradient (0.5 and 1.5 M) and then
centrifuged for 3 h at 200,000 g at 4◦C for membrane separation.
The pellet, corresponding to the outer membrane fraction, was
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FIGURE 1 | Sequence alignment of the six outer membrane factor (OMF)
proteins with known structures. Only the N- and C-terminal portions of the
alignment (extract from Supplementary Figure S1) corresponding to the most
divergent 3D structure regions of these OMF proteins are shown. The

numbering corresponds to the OprM sequence after cleavage of the targeting
signal presented in grey letters. The secondary structure of OprM is indicated at
the top of the aligned sequences. The red brackets indicate the beginning and
end of each protein resolved PDB structure.

re-suspended in a solution containing 20 mM Tris-HCl (pH 8.0),
10% glycerol (v/v) and 2% βOG (w/v) (Anatrace) and then stirred
overnight at 23◦C. The solubilized membrane proteins were
recovered by centrifugation for 30 min at 50,000 g. For MexAp,
the lysis supernatant was directly centrifuged at 100,000 g for 1 h
at 4◦C, and the pellet was resuspended in a solution containing
20 mM Tris-HCl (pH 8.0), 10% glycerol (v/v), 2% βOG (w/v)
(Anatrace) 0.2% N-lauryl sarkosyl, and 15 mM imidazole, then
stirred overnight at 23◦C. The solubilized membrane proteins
were recovered by centrifugation at 4◦C for 1 h at 100,000 g.
For MexAnp, because it is produced directly in the cytoplasm,
there is no need for a detergent solubilization step. After lysis and
centrifugation, 15 mM imidazole was added to the supernatant
before loading onto the column. For the three proteins, the same
protocol was then used. The proteins were loaded onto a Ni-
NTA resin column pre-equilibrated with 20 mM Tris-HCl (pH
8.0), 200 mM NaCl, 10% glycerol (v/v), 15 mM imidazole for
MexAnp, the same buffer plus 0.9% βOG (w/v) for OprM, and
the addition of 0.2% N-lauryl sarkosyl for MexAp. After washing
of the column, the proteins were eluted in the same respective
buffers containing 300 mM imidazole, and then desalted using a
PD-10 desalting column (GE) to remove the imidazole. MexAp
and MexAnp were concentrated up to 2.5 mg/ml. OprM was
concentrated up to 8 mg/ml using the 30-kDa cutoff Amicon
system (Millipore).

Labeling of the N-Terminal Amine
The fluorescent compound 4-chloro-7-nitrobenzofurazan (NBD-
Cl) is a fluorogenic reagent that reacts with protein N-terminal
amines but not with lysines in the conditions used as their
respective pKa largely differ (Ghosh and Whitehouse, 1968;
Bernal-Perez et al., 2012). A NBD-Cl stock solution was prepared
in DMSO (dimethylsulfoxide) and 6 μM of OprM in 50 mM

Hepes buffer (pH 7.5) and 0.05% DDM (w/v) containing 1 mM
EDTA was mixed with 0.5 mM of NBD-Cl at 4◦C. After 6 h
the reaction was stopped by adding SDS-PAGE loading buffer
[60 mM Tris-HCl (pH 6.8), 25% glycerol (v/v), 2% SDS (w/v),
0.1% bromophenol blue (w/v)] and the solution was deposited
on an SDS gel together with unmarked OprM protein. The gel
was analyzed for fluorescence using a UV transilluminator at an
emission wavelength of 504 nm. A clear band was visualized for
the labeled OprM.

Labeling of the N-Terminal Cysteine Sulfur
The fluorescent compound MTS-EMCA [N-(2-
Methanethiosulfonylethyl)-7- methoxycoumarin-4-acetamide,
Toronto Research, Chemicals Inc.] is a sulfhydryl active reagent
that covalently attaches to the reduced cysteine via a disulfide
bond. 25 mM proteins (MexAp, MexAnp, and OprM) were
incubated for 2 h with 2 mM MTS-EMCA in 10 mM HEPES
pH 7.5, 150 mM NaCl, βOG 1% (w/v), at room temperature
away from light. Reactions were stopped by adding an equivalent
volume of SDS-PAGE loading buffer. After electrophoresis, gels
were visualized with a UV transilluminator at 312 nm before
coomassie blue staining. MTS-EMCA fluorescence appeared for
the labeled proteins.

Crystallization and Data Collection
OprM crystals were grown by vapor diffusion using the hanging
drop method. Two different crystal forms were obtained, both
leading to the recording of a diffraction dataset after 100s of
crystal tests on the different beam lines of both SOLEIL and
ESRF synchrotrons. One crystal was obtained in a 1 M sodium
citrate (pH 5-6) precipitation solution and was found to belong
to the P212121 space group. The structure in this space group
has been previously published (Phan et al., 2010). The second
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crystal was obtained in 100 mM sodium acetate (pH 4.5),
6% PEG 20 000 (w/v), 300 mM ammonium citrate, 25-30%
glycerol (v/v), and 0.9% βOG (w/v). These rhombohedral crystals
(100 μm × 100 μm × 30 μm) belong to the C2 space group and
diffracted to 3.8 Å resolution. A complete dataset was collected on
beamline ID29 (ESRF, Grenoble) with an exposure time of 10 s
per degree of oscillation. Owing to its low resolution, this data
set has been kept for a long time without solving the structure,
but the recent question of the N-terminal modification nature
prompted us to ultimately solve the OprM structure in the C2
space group.

Data processing, Model Building, and
Refinement
Reflections were integrated, scaled and reduced using the
programs XDS (Kabsch, 1993) and TRUNCATE from the
CCP4 suite (1994). Data collection statistics are summarized in
Table 1.

We have solved the C2 structure of OprM by molecular
replacement with PHASER (McCoy et al., 2007) in automatic
mode using our previously solved structure (PDB code 3D5K,
Phan et al., 2010) as a model. Refinements were conducted using
Phenix (Adams et al., 2002) and the protein was rebuilt with
COOT (Emsley and Cowtan, 2004). The Bfactors were refined

TABLE 1 | Crystallographic data and refinement statistics.

Data collection

Beamline ESRF ID29

X-ray wavelength (Å) 1.0052

Crystal – detector distance (mm) 400

Space group C2

Cell dimensions

a, b, c (Å) 152.6, 87.9, 355.9

α, β, γ(◦ ) 90, 98.9, 90

Matthews coefficient (Å3/Da) 3.80

Solvent content (%) 67.7

Resolution (Å)a 87.9 − 3.8 (3.9–3.8)

Number of reflections 131 301

Number of unique reflections 40 566 (3571)

Rmerge (%)a,b 12.2 (31.2)

Completeness (%)a 87.7 (77.9)

Redundancya 3.2 (3.3)

I/sigmaa 8.5 (3.3)

Refinement

Rwork/Rfree (%)c,d 29.7/34.6

Number of residues 2 741

Number of solvent molecules 0

Rmsd from ideal values

Bonds (Å) 0.010

Angles (◦ ) 1.400

Mean B-factor (Å)2 94.2

aValues in brackets correspond to the highest resolution shell.
bRmerge = �h� i|I(h)i − <I(h)>|/�h� i <I(h)> where I(h) is the observed intensity.
cRwork = Shkl | | Fobs| − | Fcalc | | /Shkl | Fobs| .
dRfree was calculated for 7% of reflections randomly excluded from the refinement.

by groups. These groups were determined after a refinement
step using the two Bfactors per residues option, but the resulting
structure was not kept for the continuation. The TLS option was
not used.

The last 19 C-terminal residues could not be assigned,
probably due to the large flexibility of this region. The validity
of our model was checked using MolProbity (Davis et al., 2007)
and the polygon tool (Urzhumtseva et al., 2009) from Phenix (see
Supplementary Figure S3). The OprM structure model of the C2
crystal was deposited in the PDB (4Y1K).

Figures were created with Pymol (DeLano, 2002).

Sequence Alignment
Sequence alignment of the different OMF proteins whose
structures were deposited in the PDB was performed using the
program MUSCLE (MUltiple Sequence Comparison by Log-
Expectation)1 . The alignment was submitted to ESPript 3.0
(Robert and Gouet, 2014) for customization.

Results

Chemical Analysis of the Lipoyl Position
Among the different PTMs that can occur on an N-terminal
cysteine (Chalker et al., 2009) N- or S-palmitoylation or
acetylation are readily observed (Resh, 1999; Tooley and Schaner
Tooley, 2014). As these different modifications are regulated
by specific transferases, it is important to characterize the
exact nature of OprM PTM. Thus, two questions needed to
be clarified: what is the chemical nature of the modification,
and which group of the amino acid is modified? To address
these two questions, two different types of chemical labeling
were performed on purified OprM. To analyze the occupancy
of the N-terminal amine, this protein was labeled with the
fluorogenic molecule 4-chloro-7-nitrobenzofurazan (NBD-Cl) at
neutral pH. This molecule has been proven to be a specific probe
for the N-terminal amine only (Bernal-Perez et al., 2012). After
incubation with NBD-Cl, the protein was analyzed on an SDS
gel, revealing a bright fluorescent band when exposed at 475 nm
(Figure 2A), thus showing that the N-terminal amine of OprM is
actually accessible.

Following the same approach, a different probe was used to
verify the occupancy of the sulfhydryl group of the cysteine. The
fluorescent compound MTS-EMCA, which specifically links to
this group, was used to label OprM. As a control we also analyzed
MexAp (wt palmitylated MexA), MexAnp (a mutated form of
MexA lacking the signal peptide and bearing a free N-terminal
cysteine) and MexAnp in the presence of DTT to reverse thiol
acylation. After migration on an SDS gel, UV exposure of the gel
at 312 nm (Figure 2B, lower panel) revealed a bright band for
MexAnp and a faint band for MexAnp with DTT but no signal
for OprM, demonstrating that the N-terminal cysteine of OprM
is occupied on its thiol by lipoyl modification. Therefore, it can
be concluded that the lipoyl modification is anchored exclusively
to the sulfhydryl group of OprM.

1http://www.ebi.ac.uk/Tools/msa/muscle/
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FIGURE 2 | Chemical analysis of the N-terminal cysteine of OprM.
(A) SDS-PAGE of the NBD-Cl (4-Chloro-7-nitrobenzofurazan)-labeled protein:
non-boiled OprM incubated with (+) or without (−) 0.5 mM NBD-Cl. Note
that most of the non-boiled OprM remained as a trimer. (B) SDS-PAGE of
MTS-EMCA [N-(2-Methanethiosulfonylethyl)-7-methoxycoumarin-4-
acetamide]-labeled proteins: MexAnp with a free N-terminal cysteine (lane 1),
MexAnp plus 5mM DTT (lane 2), MexAp with a palmitoylated N-terminal

cysteine (lane 3), and boiled OprM (lane 4). A coomassie blue coloration
shows all of the purified proteins. Fluorescence visualization of NBD-Cl
(λ = 475 nm) that shows that the N-terminal amine of OprM is available
(A) whereas visualization of MTS-EMCA (λ = 312 nm) shows that the
N-terminal thiol of OprM is not available for labeling (B) and is thus occupied
by the palmitoyl moiety. Only MexAnp with a free N-terminal thiol is available
for MTS-EMCA labeling (B).

As a third approach, measuring the precise protein mass
has also been considered. Indeed, in our case, one needs
to distinguish between a palmitoyl (chemical composition
C16H32O2 resulting in a mass of 256 Da) and a tri- or di-acyl that
can adopt a variable length. As an example, in the CusC structure
can be found a tri-acyl composed of C19O5H33 (PDB code: 3PIK)
resulting in a mass of 341 Da, or a di-acyl (PDB code: 4K7R) of
chemical composition C14O4H25, resulting in a mass of 257 Da,
which is close to the mass of a palmitoyl. This result illustrates
how difficult it is to obtain an answer using this technique as
several combinations result in the same mass and it is necessary
to measure mass with a precision as high as one Dalton, which
is far to be routinely achieved to date with membrane proteins
of that size. Attempts to address this question in the proteolyzed
protein using the electrospray and MALDI techniques have been
unsuccessful because the N-terminus peptide was not detected
despite the use of different protease enzymes, and even thought
90% of the OprM sequence was covered by the analysis (data not
shown).

OprM Crystal Structure in the C2 Space Group
and Comparison with the Structure Solved in
P212121
As the question about the nature of the modification
remained unanswered, it has been envisaged to refine the
OprM crystallographic structure in a different space group,
as different crystal packing could stabilize the N-terminus
and eventually reveal the complete structure of the added
lipid. We previously solved the structure of OprM at 2.4 Å
resolution in the P212121 space group (Phan et al., 2010) but
this structure showed only the beginning of the N-terminal

lipoyl. We previously generated several OprM datasets
in the C2 space group, but they were set aside without
solving their structures owing to their lower resolution.
To investigate the lipoyl structure, we decided to solve the
structure of the best diffracting dataset limited to 3.8 Å
resolution.

The here-solved structure comprises two trimers in the
asymmetric unit with the second trimer being poorly defined.
The crystal packing of our C2 OprM structure is slightly different
from the P212121 structure (see Supplementary Figure S2) but
they share common type I crystal packing in which the homo-
trimer channels interact in a head-to-head manner through
the hydrophobic beta-barrel domains mimicking a lipid bilayer
plane. Despite its higher resolution (2.4 Å), the crystal structure
of OprM in the P212121 space group does not reveal the entire
palmitoyl moiety because all the three N-termini are oriented
toward the solvent and this results in high thermal motions.
For two monomers, the closest amino acid is located more than
10 Å away from the expected palmitate main chain, and for
the third, only the cysteine portion is clearly constrained, but
this is not sufficient to build in the palmitoyl tail. In contrast,
when stabilized by a more packed environment around the
N-terminus, the entire fatty acid chain appears in the density map
of the C2 form where two different orientations are observed
(Figure 3). This is the sole, but crucial, advantage of this
structure, because the crystal packing of OprM is equivalent
to that previously published in the R32 space group (Akama
et al., 2004) with the exception that the three monomers are not
linked by crystallographic symmetries. Attempts were made to
highlight some eventual local differences between the monomers
even if at low resolution. Superposition of the six different
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FIGURE 3 | Palmitoyl modified N-terminal cysteine of OprM. Packing of the C2 crystal structure of OprM showing the interactions around the palmitate from
monomers A (A) and B and C (B). The red lines indicate an artificial membrane. Enlargements show the respective electron densities of the palmitoyl modified
cysteines (contour at 1 and 0.8 sigma, respectively).

monomers from the C2 asymmetric unit onto monomer A
demonstrates a mean Cα-atom RMSD of 0.2 Å for monomers B
and C, and 0.58 Å for monomers D, E, and F. These monomer
superposition values have to be compared to those obtained for
the two other structures of OprM in different space groups (a
mean RMSD of 0.50 Å for 440 Cα atoms in both cases) and
that of the other OMF solved structures (1.87 Å for CmeC
for 377 Cα atoms, 1.28 Å for CusC on 381 Cα atoms, 1.79
Å for VceC on 347 Cα atoms, 1.32 Å for MtrE on 383 Cα

atoms, and 2.47 Å on 321 Cα atoms for the closest TolC
structure [PDB code: 2VDE (Bavro et al., 2008)]. Although
no striking differences among the alternative crystal structures
of OprM monomers were revealed, this analysis highlights
the highly conserved folding within the OMF family with the
most divergent being TolC in accordance with the sequence
alignment (Supplementary Figure S1). Thus it appears that the
only reason OprM would crystallize in either the R32 or C2
space groups is that the N-terminus lipoyl adopts a different
conformation within the three monomers. To understand the
different orientations of the palmitoyl, we compared their
respective environments (Figure 4). For the three N-termini, the
main chain is stabilized by hydrogen bonds with R133 and the
carboxyl group of L128. In each case, the palmitoyl tail then
turns around two hydrophobic residues, L128 and F129. The
palmitoyl from the B monomer (subsequently called Palm-B)
is located near the Palm-C of a symmetrical molecule but not
close enough to form van der Waals contact because the distance
between them is greater than 7 Å. Interestingly, Palm-A instead
makes short van der Waals contacts with its own symmetric
structure, justifying the quality of the electron density map for
this region (see Figure 3) even at low resolution. The quality
of the electron density for this particular monomer makes us
confident about the exact nature of the fatty acid modification
of OprM. As a final control the N-terminal PTMs that were
generated in other OMF protein structures, namely CusC and

CmeC (Figure 4E) were superimposed on our structure and
these demonstrate a longer acyl chain for OprM, supporting its
palmitoyl nature.

Discussion

Post-translational modifications (PTMs) play an important role
in cell life as they govern most signaling events. Among the
different PTMs, lipidation ranks as the second most common
modification after phosphorylation2 (dbPTM – database of
protein PTMs; Beltrao et al., 2013), anchoring proteins to
the membrane and stabilizing their interactions with the lipid
bilayer.

It is not well understood why proteins that are embedded
within cellular membranes via a large hydrophobic structural
domain need supplementary PTMs such as the N-terminal
lipidation of OMF proteins. Akama et al. (2004) suggested
that these proteins first have to be anchored to the membrane
by an N-terminal lipid so that the insertion of their large
hydrophobic domain may be triggered. This later step is
critical for the correct folding of OMFs. This hypothesis
has been reinforced by structural determination of two CusC
mutants for which the signal peptide has been conserved but
the first cysteine residue after processing is replaced with
a serine (C1S-CusC) or is deleted (�C1-CusC), (Lei et al.,
2014a). The structures result in a random folding of the beta-
barrel domain of both mutants together with inappropriate
opening of the periplasmic helices. These structures support the
essential role of OMF N-terminal lipidation in the membrane
insertion mechanism; moreover, they also highlight the possible
involvement of membrane-interacting components in the OMF
opening process and consequently the efflux-pump function.

2http://dbptm.mbc.nctu.edu.tw
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FIGURE 4 | Environment comparison between palmitates from the three
different monomers in the C2 space group. (A–C) neighboring of the
palmitates A, B, and C, respectively. (D) Superposition of the three monomers
showing different orientations of the palmitate. (E) The lipoyl modifications of the
CmeC structure (4MT4 in violet) and the two CusC structures (3PIK in light pink,
4K7R in magenta) are superposed on the palmitate from monomer A for length

comparison. Monomer A is shown in green, monomer B is shown in orange,
monomer C is shown in gray. The ABC trimer from the asymmetric unit together
with the closest monomer from packing is represented in each view. The
residues in contact with the palmitates are represented as sticks, and the
closest contacts are indicated by dotted lines in black for van der Waals and
blue for hydrogen bonds.

In addition to this function, other functions have been
attributed to lipid PTMs. It has been shown that the size
of the hydrophobic regions of membrane proteins does not
necessarily match the thickness of the cellular membrane (Mitra
et al., 2004). Additional hydrophobic elements could then
help membrane proteins to fit into membranes of variable
thickness, which would explain why some proteins require
the addition of 16 carbons, whereas others require only
fourteen, depending on the transmembrane domain shape and
size.

Regarding OprM, several constructs were previously designed
for N-terminal labeling, membrane targeting and antibiotic
response experiments (Nakajima et al., 2000) and demonstrated
that only when residue 18 is a cysteine is the protein labeled
by radioactive palmitate and targeted to the outer membrane.
Nevertheless, the three tested OprM mutants (C18G, C18F,
C18W) were functional, although none were properly targeted to
the outer membrane.

Concerning MexA, the MFP component from the OprM-
MexAB efflux pump that is also palmitylated at its N-terminus
and attached to the inner membrane, when this PTM is missing
MexA becomes unable to interact with OprM as highlighted by
in vitro blue native gel experiments (Ferrandez et al., 2012).

All of these data highlight interest in the study of
these lipoproteins and the protein partners involved in their
modification. To gain insight into these lipoproteins, it seemed
important to identify which modification occurs on OprM. To
that end, we analyzed the chemical accessibility of the N-terminal
cysteine thiol and amine using different fluorescent probes, which
revealed that only the thiol was occupied. In addition, the nature
of the attached lipoyl was proven to be a palmitoyl by our
determination of the structure of OprM in a new space group that
trapped the lipoyl chain at the interface of one monomer with its
own symmetric structure.

We now know the nature of OprM N-terminal PTM, and that
other OMFs such as CusC and CmeC from different bacterial
strains, have similar but different N-terminal modifications.
Nevertheless, if anchorage was important for the function of
this class of proteins, why would the analog TolC not undergo
PTMs? The sequences of OprM and TolC were submitted to the
prediction of palmitoylation site3, which confirmed that C18 was
a palmitoylation target in OprM and that there was no such site
in the TolC sequence. When comparing the structure of TolC
with that of OprM, CusC, and CmeC (Figure 5), it appears

3http://csspalm.biocuckoo.org/
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FIGURE 5 | Cartoon representation of the C2 OprM structure with the
superposition of the N- and C-terminal regions of OprM, TolC and
CmeC. The OprM trimer is shown in light blue, gray, and brown. The
N-terminal region of OprM is shown in cyan, and its C-terminus is dark blue.
The N- and C-termini of TolC are magenta and violet, respectively. Only the
C-terminus of CmeC is presented (green) as the N-terminus is similar to that
of OprM. The distance between the C-terminal residue present in the TolC

structure and the closest N-terminal cysteine from a monomer in the OprM
trimer is indicated (red). For comparison, a schematic drawing of the
peptidoglycan (PG) has been added at scale for both Pseudomonas
aeruginosa and Escherichia coli (dimension data are from Matias et al.,
2003). Two close-up views of the buoy region with only one OprM monomer
are presented for clarity. They correspond to the highlighting of the
superposition of the N- and C-termini, respectively.

that only TolC is different at the N-terminus. In particular,
TolC is 44 residues shorter in sequence than OprM (Figure 1;
Supplementary Figure S1), meaning that the TolC structure starts
at the buoy level. Nevertheless, it should be noted that although it
possesses a shortened N-terminus, TolC has a longer C-terminal
tail (Figure 1; Supplementary Figure S1), which is not present in
its solved structure. Even without knowing anything about the
role of this long C-terminal region, it can be hypothesized that it
could lead to an additional interaction with the membrane. This
hypothesis is supported by the fact that the C-terminal structure
of CmeC (an OMF protein with the longest C-terminal sequence
of those known) is oriented toward the outer membrane, and the
C-terminal alpha-helix of TolC is structurally equivalent to the
N-terminal alpha-helix of the other OMFs according to structure
superposition (Figure 5). In addition, the distance between the
last visible C-terminal amino acid of the TolC structure and
the membrane proximal N-terminus of the superposed OprM
monomer is approximately 60 Å, a distance that could be covered

by a 42 residue-long helix, which corresponds to the number of
residues missing at the C-terminus of the TolC construct.

The fact that TolC can be properly inserted in the membrane
despite its particularity, the absence of lipid anchor, can be
due to the differences in the peptidoglycan (PG) structure
between Gram-negative bacteria. The NMR structure of a 2 kDa
synthetic fragment composed of NAG–NAM (pentapeptides;
Meroueh et al., 2006) allowed to visualized TolC as completely
embedded in the PG, its periplasmic alpha-helical domain just
flushing the limit of the PG. Measurements of the cell wall
dimensions of both E. coli and P. aeruginosa were performed
by cryo-transmission electron microscopy (Matias et al., 2003),
revealing large size differences between the different cell wall
constituents, particularly the PG. The empty space between
the PG and the outer-membrane d(PG-OM), and the total
thickness, PG + d(PG-OM), were estimated to be 53 ± 9 and
61 ± 9 Å for d(PG-OM), and 117 ± 14 and 85 ± 14 Å
for PG + d(PG-OM) in E. coli and P. aeruginosa, respectively
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(see Figure 5). Consequently, TolC is more likely to be tightly
embedded in the membrane barrier than OprM. Nevertheless, no
published experiments can support these hypotheses to date.

Conclusion

In this study, we have shown that OprM is palmitylated at its
N-terminal cysteine by thio-palmitoylation. It is now necessary to
search for the different proteins involved in this acylation, lipid-
transferases, and signal peptidases. These lipoprotein modifiers
could represent new interesting targets for the fight against
antibiotic resistance.
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