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In individuals with human immunodeficiency virus type 1 (HIV-1) infection, CD4:CD8
lymphocyte ratio is often recognized as a quantitative outcome that reflects the critical
role of both CD4* and CD8* T-cells in HIV-1 pathogenesis or disease progression. Qur
work aimed to first establish the dynamics and clinical relevance of CD4:CD8 ratio in a
cohort of native Africans and then to examine its association with viral and host factors,
including: (i) length of infection, (i) demographics, (i) HIV-1 viral load (VL), (iv) change
in CD4™* T-lymphocyte count (CD4 slope), (v) HIV-1 subtype, and (vi) host genetics,
especially human leukocyte antigen (HLA) variants. Data from 499 HIV-1 seroconverters
with frequent (monthly to quarterly) follow-up revealed that CD4:CD8 ratio was stable in
the first 3 years of infection, with a modest correlation with VL and CD4 slope. A relatively
normal CD4:CD8 ratio (>1.0) in early infection was associated with a substantial delay
in disease progression to severe immunodeficiency (<350 CD4 cells/wl), regardless
of other correlates of HIV-1 pathogenesis (adjusted hazards ratio (HR) = 0.43, 95%
confidence interval (Cl) = 0.29-0.63, P < 0.0001). Low VL (<10,000 copies/ml) and
HLA-A*74:01 were the main predictors of CD4:CD8 ratio > 1.0, but HLA variants (e.g.,
HLA-B*57 and HLA-B*81) previously associated with VL and/or CD4 trajectories in
eastern and southern Africans had no obvious impact on CD4:CD8 ratio. Collectively,
these findings suggest that CD4:CD8 ratio is a robust measure of immunologic health
with both clinical and epidemiological implications.
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Introduction

Progressive and systemic deterioration of immunologic health is
amajor hallmark of human immunodeficiency virus type 1 (HIV-
1) pathogenesis (Taylor et al., 1989; Miedema, 1992; Brenchley
et al., 2006; Maartens et al., 2014). The status of immunologic
health is routinely assessed by several quantitative traits that
center on CD4%" T-cells (CD4), including absolute CD4 count
(cells/p1), CD4 percentage, change in CD4 count over time (CD4
slope), and/or two thresholds of severe CD4 deficiency (typically
<350 and <200 cells/p]). These CD4-based and often partially
correlated outcomes have also been used for studying quantitative
trait loci (QTLs) in viral and host genomes (Lazaryan et al., 2011;
Apps et al,, 2013; Bartha et al., 2013; Peterson et al., 2013), with
clear evidence that determinants of CD4-related manifestations
of HIV-1 infection have rather limited overlap with those of either
virologic measures (Lazaryan et al., 2011; Amornkul et al., 2013;
Antoni et al., 2013; Peterson et al., 2013; Prentice et al., 2013,
2014b) or those of HIV-1 acquisition (Tang et al., 2008; Gao et al.,
2010; Song et al., 2011; Merino et al., 2012). As CD4 data are
sparse in many resource-poor regions, current understanding of
immunologic health in HIV-1-infected Africans is still limited.
Recent observation of a low threshold CD4 count (as few as 457
cells/pl) in HIV-1 seronegative Africans (Karita et al., 2009) may
pose further challenges for making guidelines and policies based
solely on CD4 count thresholds.

Among other immunologic markers of HIV-1 pathogenesis,
CD8 activation (Giorgi et al., 1999; Sousa et al.,, 2002), CD8
exhaustion (Eichbaum, 2011; Hinrichs et al., 2011), CD4:CD8
ratio (Taylor et al., 1989; Zaman et al.,, 2000; Margolick et al,,
2006; Pahwa et al, 2008), and delayed-type hypersensitivity
(DTH) to recall antigens (Dolan et al., 2007) can also serve as
outcome measures that reflect immunologic health (or lack of).
Documentation of CD4:CD8 ratio as a genetically controlled
trait in healthy humans (Amadori et al., 1995; Ferreira et al,
2010) implies that factors associated with CD4:CD8 ratio may
offer novel insights about the wide spectrum of HIV-1-related
immune malfunction. The CD4:CD8 ratio is rarely measured
below 1.0 in healthy subjects (Amadori et al, 1995), so an
inverted CD4:CD8 ratio is often viewed as clinically relevant
(Zaman et al, 2000; Pahwa et al., 2008). Examination of
CD4:CDS8 ratio as another quantitative trait can be important to
patient care, especially when T-cell immunophenotyping using
banked or newly collected samples becomes increasingly feasible
(Sambor et al., 2014). Accordingly, our main objective was to
characterize the relationships between CD4:CDS8 ratio and HIV-1
disease outcomes in an African cohort with sufficient follow-up
data.

Materials and Methods

Study Population

This study focused on native Africans who were recent HIV-
1 seroconverters (SCs) enrolled from Kenya, Rwanda, Uganda,
and Zambia under a uniform study protocol developed and
implemented by the International AIDS Vaccine Initiative (IAVT;

Price et al., 2011; Amornkul et al, 2013). All volunteers
underwent written informed consent procedures prior to study-
related procedures that were approved annually by institutional
review boards at all collaborating institutions.

Follow-Up Strategies before and after HIV-1
Infection

Identification of SCs relied on frequent (monthly to quarterly)
testing of HIV-1 seronegative subjects at high risk of acquiring
HIV-1 infection through heterosexual and homosexual exposure,
with the vast majority being partners of HIV-1 discordant,
heterosexual couples and/or individuals diagnosed with sexually
transmitted infections. As described in detail elsewhere (Karita
et al., 2007; Amornkul et al., 2013; Prentice et al., 2013), the
estimated date of HIV-1 infection (EDI) for each subject was
defined as one of the following: (i) the midpoint between the
last seronegative and first positive HIV-1 antibody tests, (ii)
2 weeks before the first positive test for HIV-1 p24 antigen
in plasma, (iii) 10 days before the first positive test for
plasma viral load (VL) while being negative for both p24 and
rapid HIV-1 antibody tests, and (iv) event date for the only
known high-risk exposure. Following confirmation of HIV-
1 infection (detection of VL), clinical visits were scheduled
monthly for the first 3 months after EDI, quarterly for the 3-
24 months interval, and every 6 months thereafter. Initiation
of antiretroviral therapy (ART) followed national guidelines
(Ngongo et al., 2012), and all visits and VL measurements after
ART initiation were excluded. In all, 499 SCs (Supplementary
Table S1) were selected based on availability of biological
specimens for DNA extraction and human leukocyte antigen
(HLA) class I genotyping, as well as at least three time points
of VL in the early chronic phase (3-24 months) of infection,
with no gap greater than 1 year between two consecutive VL
measurements. The SCs excluded from analyses (n = 81) were
mostly those with limited follow-up (less than three eligible
visits for various outcome measures) or lack of biological
specimens.

Quantification of HIV-1 Viral Load (VL)

Plasma VL (HIV-1 RNA copies/ml) was measured at a central
location (Clinical Laboratory Services, Johannesburg, South
Africa) using the Amplicor Monitor v1.5 assay (Roche Applied
Science, Indianapolis, IN, USA) through January 2011 and the
Abbott real-time HIV-1 v1.0 assay (Abbott Laboratories, Abbott
Park, IL, USA) thereafter and following good clinical laboratory
practices (Amornkul et al., 2013). Eligible VLs in the 3- to 24-
month interval were all beyond the acute-phase of infection (Tang
et al,, 2011). The geometric mean VL (Prentice et al.,, 2014b)
was calculated from the average log;gp VL during the 3- to 24-
month interval and then divided into three categories (Fideli
etal., 2001; Tang et al., 2010) with biological and epidemiological
implications: low (<4.0 logi), medium (4.0-5.0 log), and high
(>5.0 logyo). For logjo-transformation, all VLs below the lower
limit of detection (400 RNA copies/mL) were assumed to be 1.30
(half of logip 400), as other alternatives (e.g., 2.30 log;p or 200
copies/ml) yielded similar results in data analyses (Prentice et al.,
2014b).
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Viral Sequencing and Human Leukocyte

Antigen (HLA) Class | Genotyping

Methods for HIV-1 pol gene sequencing and subtype
determination have been described elsewhere (Tang et al,
2011; Amornkul et al., 2013; Prentice et al., 2014b). PCR-based
assays also resolved allelic variants at three HLA class I genes
(HLA-A, HLA-B, and HLA-C; Tang et al.,, 2010; Merino et al,
2012; Prentice et al.,, 2014b). Assignment of HLA haplotypes
followed algorithms described elsewhere (Tang et al, 2010;
Prentice et al., 2013, 2014b).

Immunologic Outcomes and

Immunodeficiency in the Absence of
Antiretroviral Therapy

For our study population, CD4 count was the initial outcome
defined by T-cell immunophenotyping (Amornkul et al., 2013;
Prentice et al., 2013) performed at individual clinics using
the FACScount System (Beckman Coulter Ltd., London, UK).
These assays also quantified CD4:CD8 ratio. For consistency
with previously applied criteria, we considered CD4:CD8 ratio
>1.0 as an indication of immunologic health (lack of disease
progression). The date of the first of two consecutive visits
with CD4 count <350 cells/jLL was deemed the onset of severe
immunodeficiency (Amornkul et al., 2013).

Descriptive Statistics

With a focus on data beyond the acute phase (first 3 months)
of HIV-1 infection, subjects with contrasting CD4:CD8 ratios
(>1.0 versus <1.0) during the 3- to 24-month period after EDI
were compared for their overall baseline characteristics, including
t-test for quantitative variables with a normal distribution,
Wilcoxon’s rank-sum test for quantitative variables lacking a
normal distribution, and %? or Fisher exact test for categorical
variables (Supplementary Table S1). These and other analytical
procedures were done using SAS, version 9.3 (SAS Institute, Cary,
NC, USA). All baseline characteristics that differed between two
major patient groups (CD4:CD8 ratio >1.0 versus <1.0) were
treated as covariates in subsequent analyses. The inclusion of data
over the 24- to 36-month period after EDI (not applicable to all
subjects) led to similar conclusions.

Central Hypothesis and Analytical Procedures

This study aimed to test a central hypothesis that CD4:CD8
ratio as a composite outcome is distinct from two conventional
measures (VL and CD4 slope) of HIV-1 pathogenesis, after
accounting for potential confounders like geography (eastern
and southern Africa), sex, and major viral subtypes (Al, C,
and others). Statistical analyses focused on: (i) the dynamics of
CD4:CD8 ratio, VL, and CD4 slope in the first 3 years after
EDI; (ii) the pairwise relationships between CD4:CD8 ratio, VL,
and CD4 slope; (iii) the prognostic value of early CD4:CD8
ratio for subsequent disease progression; and (iv) host and
viral correlates of CD4:CD8 ratio. Main analytical procedures
included the following: (a) local regression (LOESS) curves,
(b) Spearman’s correlation test, (c) Kaplan-Meier curves and
Cox proportional hazards models, and (d) logistic regression
models. To maximize sample size, CD4:CD8 ratio from the 3-

to 24-month interval was analyzed first. Alternative analyses
considered the addition of data from the 24- to 36-month period
(not applicable to all subjects). Summary statistics, including
correlation coefficients (rho), regression beta (), HR, odds ratio
(OR), 95% CI, P-value, and false discovery rate (FDR or g-value)
were tabulated using SAS, version 9.3, as described in earlier work
related to the same cohort (Prentice et al., 2013, 2014b). The
overall performance of multivariable logistic regression models
was also assessed using the area under the curve (AUC) estimates
(C-statistics).

Refinement of Host Genetic Factors Based on
Linkage Disequilibrium (LD) and Biological
Relevance

Wherever possible, HLA factors showing putative associations
with CD4:CD8 ratio were refined by analyses of LD profiles
and HLA haplotypes in subjects before and after stratification
by geography (eastern versus southern Africa), with further
reference to fully resolved haplotypes seen in other populations
(Cao et al, 2001). Alternative analyses of 2- and 3-locus HLA
haplotypes were deemed informative if the adjusted effect sizes
improved over those for the component alleles. The likelihood
of biological relevance was evaluated in the context of (i) HIV-
1-specific CTL epitopes and escape mutations documented for
individual HLA allelic products':? (Carlson et al, 2014), (ii)
relationships to single nucleotide polymorphisms (SNPs) that
have biological and/or epidemiological importance (Horton et al.,
2004; Fellay et al., 2009; Prentice et al., 2014a), and (iii) other
evidence as reported in the literature, especially the Finemapping
Data Portal® (Farh et al.,, 2015) and the HaploReg database* (last
accessed in April 2015).

Results

The Dynamics of CD4:CD8 Ratio in Primary

HIV-1 Infection

Among native African subjects enrolled between February 2006
and December 2011, 196 Zambians, 125 Ugandans, 102 Kenyans,
and 76 Rwandans had at least three measurements of CD4:CD8
ratio and other outcomes (VL and CD4 slope) within the 3- to
24-month intervals after EDI. Overall, CD4:CD8 ratio was steady
during this early period of infection (Figure 1), with a heavy bias
toward the <1.0 (abnormal) group (P =2.2 x 10~ !¢ in normality
tests). For seven consecutive sliding time windows (3 months
each), the pairwise Spearman rho values for comparing cross-
sectional CD4:CD8 ratio ranged from 0.71 to 0.88 (P < 0.0001
for all; Table 1). The mean CD4:CD8 ratio within the 3-
to 24-month intervals had a modest, inverse correlation with
geometric mean VL (Spearman rho = —0.33, P < 0.0001),
accompanied by a weak, positive correlation with CD4 slope
(Spearman rho = 0.14, P < 0.01; Table 2). A negative correlation

Thttp://www.hiv.lanl.gov/content/immunology
Zhttp://1drv.ms/1152Gla
Shttp://www.broadinstitute.org/pubs/finemapping/?q=data-portal
“http://www.broadinstitute.org/mammals/haploreg/haploreg.php
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FIGURE 1 | CD4:CD8 T-lymphocyte ratio in early human
immunodeficiency virus type 1 (HIV-1) infection, in the absence of
antiretroviral therapy. Results are shown for 499 seroconverters (SCs;
native Africans) with 4,144 person-visits during the 3- to 36-month period
after estimated date of infection. Thick and thin lines correspond to the mean
ratio and 95% confidence interval (Cl), respectively. Arrow points to the
threshold of abnormal (inverted) ratio that is rarely seen in HIV-1 seronegative,
healthy subjects.

between geometric mean VL and CD4 slope was weak as well
(rho = —0.20, P < 0.0001), suggesting that these three outcome
measures were mostly independent of one another. Similar
results were observed when additional data from the 24- to 36-
month period were included in the correlation analyses (Figure 1
and Table 2).

The Prognostic Value of Early CD4:CD8 Ratio
Beyond the initial 3-month period (acute phase) after EDI,
the first available CD4:CD8 ratio was relatively normal (>1.0)
in 113 (or 22.6%) subjects and abnormal (<1.0) in the
remainder (77.4%). The rates of subsequent disease progression,
as measured by time to CD4 count <350 cells/pnL, clearly
differed (log-rank P < 0.0001) between these two immunologic
subgroups (Figure 2). A favorable prognosis (a crude HR of
0.37, 95% CI = 0.25-0.54, P < 0.0001) for patients with
CD4:CD8 ratio >1.0 was evident over a time span of up to
7 years after EDI. These HR estimates were insensitive to
statistical adjustments for other potential confounders, including
demographics, two reported HLA variants (HLA-B*45:01 and
B*81:01), and geometric mean VL: the adjusted HR for CD4:CD8
ratio >1.0 was 0.43 (95% CI 0.29-0.63, P < 0.0001;
Table 3).

Factors Associated with CD4:CD8 Ratio

In stepwise univariable models (Supplementary Table S1),
patients defined by their average CD4:CD8 ratios (>1.0 and
<1.0) during the 3- to 24-month period after EDI were highly
comparable (P > 0.13 in all tests) in terms of age, sex ratio, and
distribution of five HLA variants (B*18, B*45, B*53, B*57, and
B*81) that were previously associated with VL and/or CD4 count
in the same cohort (Amornkul et al., 2013; Prentice et al., 2013).
The two immunologic subgroups did show clear differences in
geography (P < 0.001) and HIV-1 subtype (P = 0.009). Similar
results were seen when the time horizon for calculating the
average CD4:CD8 ratio was expanded to the 3- to 36-month
period after EDI (data not shown). Further analyses focused on
the average CD4:CD8 ratios over the 3- to 24-month period
alone.

TABLE 1 | Pairwise Spearman’s correlation coefficients (rho) for cross-sectional CD4:CD8 ratio measurements (seven consecutive time windows in early

human immunodeficiency virus type 1 (HIV-1) infection).

Time window (subjects)? 3-6 6-9 9-12 12-15 15-18 18-21 21-24
(a) 3-6 months (424) 1.00

(b) 6-9 months (446) 0.81 1.00

() 912 months (458) 0.78 0.83 1.00

(d) 12-15 months (434) 0.78 0.82 0.88 1.00

() 15-18 months (425) 0.75 0.80 0.87 0.88 1.00

(f) 18-21 months (400) 0.71 0.76 0.83 0.84 0.86 1.00

() 21-24 months (375) 0.72 0.74 0.82 0.83 0.84 0.86 1.00

aThe timing for measuring CD4:CD8 ratio in 499 subjects is not always equally spaced, as precision in inferring dates of infection can vary by the three methods used
(see Materials and Methods). P < 0.0001 in all tests. The maximum value under each time window is shown in bold.

TABLE 2 | Spearman correlation coefficients for mean CD4:CD8 ratio, set-point viral load (VL), and CD4 slope in 499 HIV-1 seroconverters (SCs).

3-24 months after EDI?

3-36 months after EDI?

Outcomes CD4:CD8 ratio VL CD4 slope CD4:CD8 ratio VL CD4 slope
CD4:CD8 ratio (mean) 1.00 1.00

VL (geometric mean) -0.33 1.00 -0.33 1.00

CD4 slope 0.14 -0.20 1.00 0.20 -0.25 1.00

2Results are shown for two overlapping time intervals after estimated date of infection (EDI). The maximum value under each column is shown in bold.
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FIGURE 2 | Progression to severe immunodeficiency among 499 HIV-1
SCs stratified by early CD4:CD8 ratio. Based on the first CD4:CD8 ratio
measured beyond the initial 3-month period of infection, subjects are divided
into two subgroups (CD4:CD8 ratio >1.0 in green color versus <1.0 in red
color). The first of two consecutive visits with CD4* T-cell count <350
cells/pL is plotted as the event time (Amornkul et al., 2013). The numbers of
subjects available at nine time points are boxed and color coded. The crude
hazard ratio (HR) and 95% Cl are based on a Cox proportional hazards model
(unadjusted). The adjusted model is shown in Table 3.

HLA-A*74:01 as a Novel Correlate of CD4:CD8
Ratio

Apart from hypothesis-testing for B*18, B*45, B*53, B*57, and
B*81 (all with related evidence from earlier work), 29 other
HLA class 1 variants were also frequent enough (>5%) for
association analyses. Based on regression models adjusted for
age, sex, and geography, A*74:01 was most noteworthy for its
favorable association with mean CD4:CD8 ratio >1.0 (OR =2.29,
P =0.005, g = 0.172), while the remaining HLA class I variants
were readily dismissed (P > 0.05 in all tests; Supplementary
Table S2).

HLA-A*74:01-Related Haplotypes

In the study population, HLA-A*74:01 was in weak LD
(r? < 0.05) with B*35:01, B*42 (*42:01 and *42:02), B*44
(*44:03 and *44:15), B*49:01, B*58 (*58:01 and *58:02), C*02:10,
C*04:01, and C*17:01 (P-values ranging from 0.0001 to 0.042).
The individual haplotypes defined by LD profile and random
combination were too rare (<1.8% for all) to justify sub-analyses.
Data stratification by country did not facilitate further analysis of
HLA haplotypes either.

Bioinformatic Analyses for HLA-A*74:01

The current HIV Molecular Immunology Database has compiled
a total of 991 HIV-1 CTL epitope polymorphisms associated
with HLA-A alleles, but none for HLA-A*74:01. Additional data

TABLE 3 | Progression to severe immunodeficiency (CD4 count <350
cells/iL): prognosis based on early CD4:CD8 ratio and other potential
factors in 499 HIV-1 seroconverters.

Factors in model n HR 95% confidence P

(no. of subjects) interval (Cl)

Age > 40 years 75 1.78 1.29-2.45 <0.001
Age < 40 years 424 1.00 - -
Female sex 187 1.16 0.88-1.52 0.294
Male sex 312 1.00 - -
Region: Zambia 196 1.28 0.98-1.66 0.066
(southern Africa)

Region: eastern Africa 303 1.00 - -
HLA-B*45:012 81 1.38 1.01-1.90 0.043
HLA-B*81:012 25 0.44 0.22-1.00 0.049
Low VL (<10,000 142 0.33 0.22-0.49 <0.0001
RNA copies/mL)

Medium VL 265 1.00 - -
(10,000-100,000)

High VL (>100,000) 92 1.67 1.23-2.25 <0.001
Early CD4:CD8 ratio? 113 0.43 0.29-0.63 <0.0001
>1.0

Early CD4:CD8 ratio? 386 1.00 - -
<1.0

a8As reported previously for the study cohort (based on interim data analyses;
Amornkul et al., 2013; Prentice et al., 2013).
bFirst available measurement beyond the acute phase of infection (see text).

specific for southern Africans (including Zambians; Carlson
et al., 2014) indicate that HLA-A*74:01, as part of the A03
supertype, has been associated with three mutations in HIV-
1 Gag (R20K/S, R91X, and V94I) and two in Pol (R432K
and R521K). These mutations often overlap with the optimal
epitope, GR11 in HIV-1 Gag-p24, for A*74:01 (Matthews
et al,, 2011). Meanwhile, an intergenic SNP (rs9468675 G/T,
also known as rs114788707 or rs118104426) that effectively
tags A*74:01 in an African population (Yoruban; de Bakker
et al., 2006) has been mapped to an enhancer element (the
HaploReg version 2 database), without any confirmed functional
attributes.

Joint Assessment of Host and Viral Factors as
Independent Correlates of CD4:CD8 Ratio

During the 3- to 24-month period after EDI, geography, HLA-
A*74:01 and low VL (<10,000 RNA copies/mL) were the
major correlates of CD4:CD8 ratio > 1.0, with adjusted P-values
between <0.0001 and 0.048 (Table 4). Two potential confounders
(age and sex) observed in healthy subjects (Amadori et al., 1995)
had no obvious impact on CD4:CD8 ratio >1.0 in this cohort
(adjusted P > 0.43), whereas low VL (<10,000 copies/ml) and
HLA-A*74:01 were independent predictors of healthy CD4:CD8
ratio (OR > 2.0 in all tests), with further confirmation by an
alternative model in which geography was replaced by viral
subtype as a covariate (Table 5). By excluding three subjects
with missing data (viral sequencing failed), the alternative model
revealed that HIV-1 subtype A1 and infrequent subtypes (not A1l
and not C) were positively associated with CD4:CD8 ratio >1.0
(adjusted OR = 1.74 and 1.89, P = 0.042 and 0.045, respectively,
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TABLE 4 | Host and viral factors as independent correlates of
immunologic health (average CD4:CD8 ratio >1.0) in early HIV-1 infection.

Ratio >1.0 during the 3- to 24-month intervals?

Factors in the n ORP 95% ClI Adjusted P
model?

Age > 40 years® 75 1.14 0.61-2.15 0.678
Female sex® 187 1.21 0.75-1.93 0.436
Region (Zambia) 196 0.61 0.37-1.00 0.048
HLA-A*74:01 64 2.07 1.14-3.78 0.017

Low VL (<10,000 RNA 142 2.71 1.67-4.39 <0.0001
copies/mL)

High VL (>100,000) 92 0.53 0.24-1.17 0.117

a0verall area under the curve (AUC) = 0.70 and P < 0.0001 for the model.
Estimates of odds ratio (OR) and 95% CI have been adjusted for all factors in the
model.

bReference groups for several multi-entry factors are listed in Table 3.

CAge and sex have been associated with CD4:CD8 ratio in healthy subjects
(Amadori et al., 1995).

TABLE 5 | An alternative model for assessing correlates of immunologic
health (mean CD4:CD8 ratio >1.0) in 496 HIV-1 SCs.?

Mean CD4:CD8 ratio >1.0 in the
3-24 months period®

Factors in the Subjects ORd 95% ClId Adjusted P
joint model®

Age > 40 years 75 1.13 0.60-2.13 0.704
Female sex 185 1.15 0.72-1.84 0.569
HLA-A*74.01 63 2.01 1.09-3.68 0.025
HIV-1 subtype A1 183 1.74 1.02-2.95 0.042
HIV-1 subtype C 215 1.00 - -
Other HIV-1 98 1.89 1.02-3.50 0.045
subtypes (not A1 or

Q)

Low VL (<10,000) 140 2.62 1.61-4.26 <0.0001
High VL (>100,000) AN 0.52 0.23-1.15 0.106

aH|V-1 subtype replaces geography as a covariate; three subjects with missing
information for viral subtype are excluded; one of them has HLA-A*74:01.

Qverall AUC = 0.70, P < 0.0001 for the model.

®Reference groups for several multi-entry factors are listed in Table 3.

dEstimates of OR and 95% Cl have been adjusted for all factors in the model.

when compared with subtype C). Further refinement for the
infrequent HIV-1 subtypes was not feasible, as neither subtype D
(n =75) nor recombinant forms (n < 20) were common enough
to allow separate models.

AUC Estimates for Predicting Healthy

CD4:CD8 Ratios

For the overall cohort of 499 SCs, host and viral factors had
robust AUC estimates for predicting average CD4:CD8 ratios
>1.0 during the 3- to 24-month period after EDI (AUC = 0.70,
P < 0.0001; Table 4). In additional models that tested two major
HIV-1 subtypes separately, host and viral factors had similar
predictive value for subtype C (AUC = 0.70, P < 0.0001) and
subtype Al infection (AUC = 0.65, P < 0.001) (data not shown).

Discussion

In line with our primary hypothesis, prospective data from 499
HIV-1 SCs did suggest that CD4:CDS8 ratio in early (primary)
infection has three main features. First, this ratio is relatively
stable during the first 3 years of HIV-1 infection, in that regard
resembling the set-point VL (Prentice et al., 2014b). Second, early
CD4:CD8 ratio is predictive of subsequent disease progression:
a favorable ratio (>1.0) is a clear sign of immunologic health
that is strongly associated with a delayed course to severe CD4
deficiency. Third, CD4:CD8 ratio has a rather weak correlation
with two conventional and extensively studied outcome measures
(VL and CD4 slope). As a result, QTLs (i.e., HLA factors)
associated with CD4:CD8 ratio are expected to differ starkly from
the well-known QTLs already documented for VL and CD4 count
(Amornkul et al., 2013; Peterson et al., 2013; Prentice et al., 2013).

Although CD4 depletion is an important manifestation of
HIV-1 pathogenesis, exacerbation of immunologic health can be
further attributable to persistent immune activation (expression
of CD38 and HLA-DR) driven by viral antigens and microbial
translocation (Jirillo et al., 1991; Savarino et al., 2000; Brenchley
et al., 2006; Douek, 2007). T-cell exhaustion (expression of PD-
1) is another trait in HIV-1 infection that has gained close
attention (Day et al., 2006; Petrovas et al., 2006; Trautmann et al.,
2006). As immunophenotyping becomes increasingly feasible in
resource-poor nations (Karita et al., 2009), analyses of banked
and newly collected samples should help further elucidate the
relationships between CD4:CD8 ratio and other established
correlates of T-cell function. These parameters of immunologic
health can be gradually incorporated into the HIV-1 treatment
continuum when the focus shifts from virologic suppression to
immune recovery and management of comorbidities (Buggert
et al., 2014; Serrano-Villar et al., 2014). Until then, evidence
from earlier work based on general populations (Amadori et al,,
1995; Ferreira et al, 2010) and our analyses of HLA class I
genes in HIV-1-infected Africans can pave the way for studying
CD4:CD8 ratio as a genetically modulated and clinically relevant
trait.

A putative association between HLA-A*74:01 and a favorable
CD4:CD8 ratio is rather consistent with previous reports based
on analyses of HIV-1 acquisition, VL and/or CD4 count after
HIV-1 infection (Koehler et al., 2010; Leslie et al., 2010; Tang
et al., 2010; Lazaryan et al., 2011; Peterson et al, 2013).
Genetic diversity in our cohort of native Africans enabled us
to rule out the potential confounding by other HLA class I
alleles, which is a critical step toward a definitive dissection
of functional mechanisms. The description of three HIV-1-
specific CTL epitopes in another African cohort (Matthews
et al, 2011) already suggests that antigen presentation by
HLA-A*74:01 can direct CTL responses to multiple antigens.
Furthermore, unlike HLA-B and HLA-C alleles that also mediate
innate immunity through interaction with natural killer (NK) cell
receptors (Carrington et al., 2008), HLA-A*74:01 is unlikely to
have a prominent role in innate immunity. Such distinction, if
proved true, would effectively eliminate the need for considering
A*74:01-driven NK cell function that is expected to be more
generic than adaptive immune responses.
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HLA-A*74:01 and its proxy (allele T of rs9468675) are mostly
restricted to Africans (de Bakker et al., 2006). While further
attention to A*74:01-restricted HIV-1 epitopes (Matthews
et al, 2011) may ultimately uncover relevant mechanisms
of immunologic health in subjects with HLA-A*74:01, other
loci (beyond the HLA-A locus) are known to regulate CD8
T-lymphocyte function in populations of European ancestry
(Cruzetal., 2006, 2008; Ferreira et al., 2010). Further examination
of SNPs associated with CD4:CD8 ratio in healthy subjects can
be helpful (Ferreira et al., 2010), especially since A*74:01-positive
subjects (~15%) in this study (Supplementary Table S2) can
only account for <50% of those with a favorable CD4:CD8 ratio
(Figure 2).

In our previous studies that focused on VL and CD4
count (two conventional outcome measures) in HIV-1-infected
Africans, HLA-A*74:01 was not recognized as a prominent
factor in systematic evaluation of cross-sectional and longitudinal
data (Amornkul et al., 2013; Prentice et al., 2013). Instead,
HLA-B*18, B*45, B*53, B*57, and B*81 were implicated,
often in a time-sensitive manner (Amornkul et al, 2013;
Prentice et al., 2013). To further establish independent correlates
of CD4:CD8 ratio, multivariable models conditioned on VL
and CD4 slope did not obscure the association of HLA-
A*74:01 with immunologic health, suggesting that individuals
with HLA-A*74:01 might have certain unique immunologic
traits that analyses of VL and CD4 count alone cannot
reveal. In other words, HLA factors may operate in different
immune pathways to impact the manifestations of HIV-1
infection.

Host genetics aside, correlates of CD4:CD8 ratio further
included HIV-1 subtype, even when VL was retained as a
covariate in the analytic model (Table 5). High-throughput deep
sequencing may eventually facilitate a better understanding of
viral characteristics (Haaland et al., 2013) that are important to
immunologic health, as viruses from acute and early chronic
phases of infection can be readily compared for replicative fitness
(Claiborne et al., 2015; Yue et al., 2015).

Despite our emphasis on longitudinal data, our study did
have two apparent limitations that are worth reiterating. First,
CD4:CD8 ratio was rarely measured before acquisition of
HIV-1 infection. For subjects with CD4:CD8 ratio <1.0 soon
after HIV-1 infection, we were unable to determine if this
was the result of rapid disease progression or low CD4:CD8
ratio before infection. Second, the opportunity for studying
opportunistic infections and other AIDS-defining conditions was
precluded by treatment guidelines. These limitations can be a
recurring issue in follow-up studies as well. A revisit to earlier
cohorts with prolonged follow-up without therapy may offer
a feasible option for answering questions about AIDS-related
outcomes.

Overall, our study represents the first comprehensive
comparison of CD4:CD8 ratio with VL, CD4 trajectory and
CD4 deficiency in an African cohort with frequent follow-up.
It is evident that measurement of CD4:CD8 ratio can have
added value for predicting subsequent disease progression,
at least irrespective of other known factors (demographics,

HIV-1 subtypes, etc.). Certain characteristics seen in subjects
with a favorable CD4:CD8 ratio, including HLA variants, may
offer valuable insights into the determinants or mechanisms of
immunologic health in HIV-1 infection. Recent approaches to
fine mapping of causal variants in HLA genes and neighboring
loci have provided promising leads for follow-up studies
(McLaren et al, 2012; Prentice et al.,, 2014a; Farh et al,
2015).
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