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Biofilms constitute the prevalent way of life for microorganisms in both natural and
man-made environments. Biofilm-dwelling cells display greater tolerance to antimicrobial
agents than those that are free-living, and the mechanisms by which this occurs
have been investigated extensively using single-strain axenic models. However, there
is growing evidence that interspecies interactions may profoundly alter the response
of the community to such toxic exposure. In this paper, we propose an overview of
the studies dealing with multispecies biofilms resistance to biocides, with particular
reference to the protection of pathogenic species by resident surface flora when
subjected to disinfectants treatments. The mechanisms involved in such protection
include interspecies signaling, interference between biocides molecules and public
goods in the matrix, or the physiology and genetic plasticity associated with a structural
spatial arrangement. After describing these different mechanisms, we will discuss the
experimental methods available for their analysis in the context of complex multispecies
biofilms.
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Introduction

In nature, microorganisms are commonly found living associated to surfaces and enclosed in
self-generated extracellular polymers that maintain them together forming biofilms (Costerton
et al., 1995). These organized communities are essential to ensure an ecological equilibrium as
the inhabitants of biofilms are characterized by their survival under stressful conditions such
as desiccation or nutrient starvation and their participation in the global biogeochemical cycle
(Burmølle et al., 2012). Biofilms are also found in man-made environments, where they may
be related to nosocomial infections, food spoilage, and damage to industrial pipelines (Hall-
Stoodley et al., 2004; Bridier et al., 2011a; Flemming, 2011a). After more than 30 years of
intensive research, extensive knowledge has been accumulated on the mechanisms that govern
this multicellular behavior, such as the production of matrix polymers, cell–cell communication,
or the generation of multiple cell types within the biostructure (Stewart, 2002; Høiby et al.,
2010; Bridier et al., 2011a). Most of those pioneer studies were performed on single-strain
biofilms, probably because of the experimental limitations associated with more complex
communities. However, simple laboratory models are hardly representative of natural biofilms
where multispecies communities are by far the most predominant (Hall-Stoodley et al., 2004).
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The presence of different partners in the biofilm matrix renders
both the structure and function of the community more complex
and mechanisms other than those considered in single-strain
biofilms need to be considered.

Interspecies interactions can drive ecological advantages in
a biofilm. For example, the establishment of a mixed biofilm
favors the uptake by Pseudomonas sp. of the waste substances
secreted by Burkholderia sp. in the presence of the pollutant
chlorobiphenyl (Nielsen et al., 2000). Likewise, the spatial
organization and stratification of incompatible bacteria, such
as aerobic nitrifiers and anaerobic denitrifiers, allows their co-
metabolism and the degradation of toxic compounds (Terada
et al., 2003). The anthropocentric negative impact of interactions
between species is reflected in biofilms related to chronic
infections. The colonization by multiple pathogenic species of
native tissues such as the lungs of cystic fibrosis patients, chronic
wounds, or the urinary tract frequently induces more severe and
recalcitrant infections (Wolcott et al., 2013). For instance, co-
infection by Pseudomonas aeruginosa and Staphylococcus aureus
delays wound healing and trigger host inflammatory response
(Seth et al., 2012; Pastar et al., 2013). Similarly S. aureus
virulence is induced in the presence of P. aeruginosa or the
fungus Candida albicans (Hendricks et al., 2001; Peters et al.,
2010) as well as P. aeruginosa exhibited enhanced virulence
in a Drosophila model when it was co-inoculated with Gram-
positive bacteria (Korgaonkar et al., 2013). Moreover, recent
works have reflected a growing concern about the increasing
resistance of pathogens to antibiotics observed in multispecies
communities (Adam et al., 2002; Al-Bakri et al., 2005; Luppens
et al., 2008; Harriott and Noverr, 2009; Lopes et al., 2012; Lee
et al., 2014).

Multispecies interactions are also involved in the persistence
of pathogens on inert surfaces in medical or industrial
environments. In such cases, the biocontamination of equipment
is associated with nosocomial and foodborne infections despite
frequent and intensive cleaning and disinfection procedures
(Mack et al., 2006; Shirtliff and Leid, 2009; Bridier et al.,
2015). Unlike antibiotics, which usually have a specific target,
disinfectants are multi-target agents (e.g., cell wall, proteins,
DNA, and RNA) whose actions typically cause disruption
of the bacterial membrane (Maillard, 2002). Although these
biocides are highly effective on planktonic bacteria, their
efficacy relative to spatially organized biofilms is open to
question in light of some published reports (Russell, 1999;
Bridier et al., 2011a; Davin-Regli and Pagès, 2012; Abdallah
et al., 2014). The tolerance of biofilm-dwelling cells to
disinfectants is attributed to multiple factors, often operating
in concert, and which include the presence of extracellular
polymers that hamper their diffusion/reaction, and differences
in physiological status depending on the biofilm stratum
(Stewart and Franklin, 2008; Bridier et al., 2011a). There is
also increasing evidence that interspecies interactions within
the matrix further increase the tolerance against disinfectants
observed in single-strain biofilms (Burmølle et al., 2006;
Bridier et al., 2012; Schwering et al., 2013; Wang et al.,
2013). However, the specific mechanisms underlying this
tolerance are still poorly understood, and their clarification is

difficult due to the complexity and heterogeneities of these
biostructures.

Some of the mechanisms by which biofilms cells are
resistant to antibiotics are likewise behind the resistance to
disinfectants. This review therefore focuses on the mechanisms
involved in the tolerance and resistance to disinfectants
of multispecies biofilms, with particular attention to the
protection of pathogenic species. The experimental methods
available for the study of spatially organized multispecies
communities, and their response to biocides, will also be
reviewed.

Do Mixed-Species Biofilms Tolerate the
Action of Biocides Better than their
Single-Strain Counterparts?

It is becoming increasingly obvious that social behavior
within a mixed community confers bacterial tolerance to
environmental stresses, including the action of disinfectants that
until now has been largely underestimated. Table 1 presents
a great number of studies showing an increased resistance
to disinfectants in multispecies biofilms. For example, four
species isolated from a marine alga formed a multispecies
biofilm with increased biomass and a eightfold enhancement
in its tolerance to hydrogen peroxide when compared to its
single-strain counterparts (Burmølle et al., 2006). Similarly,
the association in a mixed biofilm of Bacillus cereus and
Pseudomonas fluorescens two species frequently isolated on
surfaces in food processing industries, led to a remarkable
increase in their tolerance to two frequently used disinfectants,
chloride dioxide and glutaraldehyde (Lindsay et al., 2002; Simões
et al., 2009). In some reports, a “public good” produced by
one species has been observed to offer protection for the
whole population. One example is the curli-producer Escherichia
coli that was found to protect Salmonella Typhimurium in a
dual-species biofilms when subjected to chlorine (Wang et al.,
2013).

One of the most worrying issues raised by recent findings is
that resident surface flora have been shown to protect pathogens
from biocide action in different situations. In one example, the
presence of Veillonella parvula in an oral biofilm enabled a
50% increase in the survival rate of Streptococcus mutans when
subjected to five different antimicrobial agents (Kara et al., 2006;
Luppens et al., 2008); in other cases of multispecies biofilms,
Lactobacillus plantarum protected Listeria monocytogenes from
the action of benzalkonium chloride and peracetic acid (van
der Veen and Abee, 2011), while a biofilm formed by nine
environmental species protected different pathogens (E. coli,
Enterobacter cloacae, P. aeruginosa) against the action of chlorine
(Schwering et al., 2013). The importance of resident flora in
foodborne or nosocomial infections is often neglected because
these strains are generally non-virulent. However, they may
be particularly persistent due to adaptation mechanisms that
are associated with their frequent exposure to biocides, and
thus provide shelter for pathogenic strains. For instance, a
study showed that a Bacillus subtilis strain isolated from an
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TABLE 1 | Species associations leading to increased biocidal resistance in biofilms as determined by studies so far.

Biocide Species Conditions for biofilm formation Reference

Chloride dioxide B. cereus, P. fluorescens Flow cell chamber Lindsay et al. (2002)

Glutaraldehyde B. cereus, P. fluorescens Stainless steel coupons Simões et al. (2009)

Essential oils P. putida, S. enterica, L. monocytogenes Stainless steel coupons Chorianopoulos et al. (2008)

Essential oils S. aureus, E. coli Polypropylene coupons Millezi et al. (2012)

Peracetic acid Listeria innocua, P. aeruginosa Stainless steel coupons Bourion and Cerf (1996)

Peracetic acid
Ortho-phthalaldehyde acid

B. subtilis, S. aureus Microtiter plates Bridier et al. (2012),
Sanchez-Vizuete et al. (2015)

Chlorhexidine
Hydrogen peroxide

S. mutants, V. parvula Microtiter plates Kara et al. (2006), Luppens
et al. (2008)

Chlorine Kocuria sp., Brevibacterium linens, S. sciuri Stainless steel coupons Leriche et al. (2003)

Chlorine 9 drinking water system flora, E. coli,
P. aeruginosa
Stenotrophomonas maltophilia, E. cloacae

Calgary biofilm device Schwering et al. (2013)

Betadine P. putida, Vogesella indigofera Chemostat reactor Whiteley et al. (2001)

Hydrogen peroxide Methylobacterium phyllosphaerae, Shewanella japonica
Dokdonia donghaensis, Acinetobacter lwoffii

Microtiter plates Burmølle et al. (2006)

Benzalkonium chloride L. monocytogenes, P. putida Stainless steel and polypropylene
coupons

Saá Ibusquiza et al. (2012)

Chlorine E. coli, S. Typhimurium Microtiter plates Wang et al. (2013)

Chlorine S. Typhimurium, P. fluorescens Polycarbonate coupons Leriche and Carpentier (1995)

Benzalkonium chloride
Peracetic acid

L. monocytogenes, Lb. plantarum Microtiter plates van der Veen and Abee (2011)

Isothiazolone Alcaligenes denitrificans, Pseudomonas alcaligenes
S. maltophilia, Fusarium oxysporum,
Flavobacterium indologenes Fusarium solani,
Rhodotorula glutinis

Flow cell system Elvers et al. (2002)

Benzalkonium chloride P. putida, L. monocytogenes Stainless steel coupons Giaouris et al. (2013)

Chlorhexidine S. mutants, S. aureus, P. aeruginosa Titanium disk Baffone et al. (2011)

Carvacrol
Chlorhexidine

S. mutans, Porphyromonas gingivalis
Fusobacterium nucleatum

Titanium disk Ciandrini et al. (2014)

SDS Klebsiella pneumoniae, P. aeruginosa
P. fluorescens

Flow cell system Lee et al. (2014)

Chlorine P. aeruginosa, B. cepacia Chemostat reactor Behnke et al. (2011)

Sodium hypochlorite A. calcoaceticus, B. cepacia,
Methylobacterium sp. Mycobacterium mucogenicum,
Sphingomonas capsulata,
Staphylococcus sp.

Microtiter plates Chaves Simões et al. (2010)

endoscope washer-disinfector, which was particularly resistant
to the high concentrations of oxidative disinfectants used daily
in these devices, was able to protect S. aureus from the
action of peracetic acid within a multispecies biofilm (Bridier
et al., 2012). Similarly, it was demonstrated in a recent work
that resident flora from lettuce increases S. Typhimurium
resistance to UV-C irradiation in this habitat (Jahid et al.,
2015).

These telling examples should not lead us to believe that
bacterial protection in multispecies biofilms is a universal
trait. Thus the food-borne pathogen L. monocytogenes can
be protected from biocide action in a mixed biofilm by
Lb. plantarum (van der Veen and Abee, 2011), but not
by Salmonella enterica or P. putida (Chorianopoulos et al.,
2008; Kostaki et al., 2012). Likewise, the complex biofilms
formed by S. aureus, P. aeruginosa, and C. albicans were
shown to be more susceptible to some antimicrobials than
their single-strain homologous counterparts (Kart et al., 2014).

Enterococcus faecalis was also found more susceptible to
sodium hypochlorite when cultured with two oral bacteria
(Yap et al., 2014). In light of these studies, the evaluation
of specific interspecies interactions, either leading to higher
or lower susceptibility to disinfectants, becomes of extreme
importance in order to establish new strategies against pathogens
persistence.

Mechanisms Involved in Interspecies
Protection

Some of the mechanisms involved in the tolerance of axenic
biofilm-dwelling cells to disinfectants action can be applied
to multispecies communities. However, in most situations the
specific interactions between different species make it necessary
to consider other mechanisms that are not observed in single-
strain biofilms.
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The Biofilm Matrix as an Interspecies Public
Good
Biofilm cells produce extracellular polymeric substances that
hold them together and favor the three-dimensional spatial
arrangement (Branda et al., 2005). While the biofilm matrix
mostly contains polysaccharides, proteins, lipids, and DNA, its
composition can differ markedly depending on environmental
conditions, the species, and even between different strains of
the same species (Flemming and Wingender, 2010; Bridier et al.,
2012; Combrouse et al., 2013). Although biocides can gain direct
access to their microbial targets in planktonic cultures, they may
encounter diffusion-reaction limitations through the matrix of
polymers so that they hardly reach the deepest layers of the
biofilm in their active form (Stewart et al., 2001; Jang et al., 2006;
Bridier et al., 2011b). Multispecies biofilms are often associated
with increased matrix production and because of the complexity
of its biochemical nature this may exacerbate such diffusion-
reaction limitations (Skillman et al., 1998; Sutherland, 2001;
Andersson et al., 2011).

The protective function of the matrix may be associated
with specific components produced by one species that benefit
the whole population (Flemming, 2011b). This is the case of
enzymes secreted in the matrix by one strain that may alter the
reactivity of the biocide; e.g., secretion of a specific hydrolase
by P. aeruginosa was found to confer tolerance to SDS on a
mixed community (Lee et al., 2014). Other matrix components
with protective functions are amyloids, a specific class of highly
aggregated proteins associated with different bacterial functions
such as adhesion, cohesion, and host interactions (Pawar et al.,
2005; Tükel et al., 2010; Blanco et al., 2012). The best described
biofilm-associated amyloids are TasA in B. subtilis, FapC in
Pseudomonas sp., and curli in E. coli or Salmonella sp. (Chapman
et al., 2008; Romero et al., 2010; Dueholm et al., 2013). Amyloids
have also been detected in natural multispecies biofilms, such
as the communities formed by S. enterica and E. coli, two
species able to cooperate and share curli subunits in vivo in the
context of a process called cross-seeding (Zhou et al., 2012).
Interestingly, a significant increase in the tolerance of E. coli cells
to biocides was observed in a mixed biofilm when associated
with a curli-producing S. enterica strain, but not with a non-
producer. Symmetrically, the biocidal tolerance of an S. enterica
non-producing strain was enhanced when it grew with a strain
of E. coli producing curli (Wang et al., 2013). The effect of
protection observed is probably due to the sharing of curli
subunits whose polymerization may be accelerated by preformed
amyloid aggregates as it has been shown in yeasts (Glover et al.,
1997).

The BslA amphiphilic protein produced by B. subtilis has
been shown to form a protective coating at the interface between
a macrocolony on agar and air. This hydrophobic coating
prevents the penetration of biocides and protects the matrix
inhabitants (Epstein et al., 2011; Kobayashi and Iwano, 2012).
This “molecular umbrella” is a typical public good of the matrix
that may benefit other species in the community. As well as
these specific protective components, sharing the matrix with
other species can trigger an increase in the synthesis of a precise
polymer or in the number of producing cells, and hence the

abundance of biocide-interfering organic material (Leriche and
Carpentier, 1995; Lindsay et al., 2002; Simões et al., 2009). This
is the case with the B. subtilis TasA amyloid matrix protein that
is mostly overproduced in the presence of other strains from
the Bacillus genus (Shank et al., 2011). Coaggregation between
bacteria of different species can promote matrix synthesis, the
overall biofilm population and tolerance to biocides, e.g., the
oral pathogen S. mutans was found to coaggregate with the
early colonizer V. parvula and this resulted in a multispecies
biofilm that produced more matrix and was more tolerant to
chlorhexidine and five other biocides than the corresponding
axenic biofilms (Kara et al., 2006; Luppens et al., 2008). Similarly,
the coaggregation of six strains isolated from a drinking water
systemwas also suggested to explain the high tolerance to sodium
hypochlorite of the multispecies consortia (Chaves Simões et al.,
2010). Another mechanism is metabolic cross-feeding between
species that can promote the growth of biofilm-dwelling cells and
enhance their survival when challenged by biocides (Kara et al.,
2006; Ramsey et al., 2011; Stacy et al., 2014).

Populations of cells over-expressing biocide-interfering
components can also emerge in the community through the
selection of specific mutants (Morris et al., 1996; Boles et al.,
2004; Römling, 2005; Uhlich et al., 2006; Starkey et al., 2009;
Singh et al., 2010). This emergence of genetic variants may be
stimulated under multispecies conditions. This was the case of
P. putida variants evolving phenotypically distinct morphologies
that resulted in a more stable and productive community in the
presence of a strain of Acinetobacter sp. (Hansen et al., 2007).
A recent study revealed a synergistic genetic diversification
of the model strain P. putida KT2440 in the presence of an
environmental isolate of P. putida, but not in single-strain
biofilms (Bridier et al., under revision).

Spatially Driven Cellular Physiology in Mixed
Communities
Microorganisms are not randomly organized within a
multispecies biofilm, but follow a pattern that contributes
to the fitness of the whole community (Marsh and Bradshaw,
1995; Rickard et al., 2003; Robinson et al., 2010), e.g., species are
organized in layers, clusters, or are well-mixed (Elias and Banin,
2012). This spatial organization partially determines bacterial
survival when the biofilm is exposed to toxic compounds (Simões
et al., 2009). This depends to a great extent on interactions
between the species and their local micro-environments in
the matrix with respect to nutrient, oxygen, and metabolite
gradients (Stewart and Franklin, 2008). In a mixed biofilm,
matrix reinforcement and competition for resources can
intensify the slope of these gradients, and hence the physiological
diversification of the population, including tolerant slow-growth
cells. Oxygen depletion in spatially organized multispecies
biofilms was suggested as an explanation for the protection of
Staphylococcus sciuri by Kocuria sp. when exposed to chlorine
(Leriche et al., 2003). The structured association of Burkholderia
cepacia and P. aeruginosa and their related cell physiologies also
led to a higher rate of survival following exposure to chlorine
(Behnke et al., 2011). A specific sub-population of cells described
as persisters corresponds to phenotypic variants that are present
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in small proportions in the biofilm but are highly tolerant to
killing by biocides (Lewis, 2010). As yet, the generation of
persister cells in multispecies biofilms has been little investigated
but it is known that they emerge under stressful situations such
as nutrient limitation or oxidative stress (Wang and Wood,
2011). It has been demonstrated that the siderophore pyocyanin
is secreted by P. aeruginosa in order to generate oxidative stress
and thus to compete with other bacteria (Tomlin et al., 2001).
Thus, exogenous pyocyanin has been shown to trigger the
appearance of a sub-population of persister cells in Acinetobacter
baumannii, an emerging pathogen isolated from the same sites of
infection as P. aeruginosa and able to form mixed biofilms with
it (Bhargava et al., 2014).

Interspecies Communication
Quorum sensing (QS) signals, known as autoinducers (AI),
can be used for intra-species cell-to-cell communication, as
is the case of acyl-homoserine lactones (AHLs) in Gram-
negative microorganisms, and modified oligopeptides in Gram-
positive microorganisms (Parsek and Greenberg, 2000; Miller
and Bassler, 2001). They induce coordinated responses for the
development of genetic competence, the regulation of virulence
and biofilm formation (Jayaraman and Wood, 2008). These cell-
to-cell communication mechanisms may play a role in governing
specific gene expression in order to modulate the biocidal
resistance of biofilms (Hassett et al., 1999). Autoinducer-2 (AI-
2) is considered to be a universal language molecule that is well
suited to interspecies communication between microorganisms
(West et al., 2012; Pereira et al., 2013). AI-2 has been detected and
produced by a variety of microorganisms isolated from chronic
wounds (Rickard et al., 2010). One species may therefore interfere
with the signaling pathway of other species in a biofilm, either
stimulating, inhibiting, or inactivating QS signals (Bauer and
Robinson, 2002; Zhang and Dong, 2004; Elias and Banin, 2012;
Rendueles and Ghigo, 2012). These interferences may alter gene
expression or be more than a “simple message” directly affecting
the physiology of the co-habitants (Schertzer et al., 2009). It
has been shown that the biofilm formation and antimicrobial
resistance of a mixed community formed by the opportunistic
pathogen Moraxella catarrhalis and Haemophilus influenzae is
promoted by the A1-2 QS signal produced by H. influenzae
(Armbruster et al., 2010). Signaling within a dual-species oral
bacteria community has also been reported (Egland et al., 2004).
These authors showed that Veillonella atypical produced a signal
that caused Streptococcus gordonii to increase the expression of
the gene coding for an α-amylase.

The ability of certain microorganisms to produce enzymes
that interfere with the communication system of other species
is considered as a primary defense mechanism of bacteria
(Chen et al., 2013). For instance, some species of Bacillus
produce AHL-lactonases that inhibit the formation of biofilms
of other pathogenic species (Dong et al., 2001; Wang et al.,
2007). QS molecules may also exhibit antimicrobial properties,
as has been described for the auto-inducer CAI-1 produced
by Vibrio cholerae. This QS signal exerts a dual effect on
the inhibition of P. aeruginosa, in a concentration-dependent
manner; whereas at low concentrations it was seen to inhibit

P. aeruginosa QS, at higher concentrations this AI caused
pore formation in Pseudomonas membrane, leading to cell
death (Ganin et al., 2012). Under iron-limited conditions, the
transcription of iron-regulated genes in P. aeruginosa was
decreased in the presence of S. aureus (Mashburn et al., 2005). QS
molecules produced by P. aeruginosa probably induce the lysis
of S. aureus and its use as an iron source. By contrast, other QS
signals may act as iron chelating molecules (Bredenbruch et al.,
2006).

Alongside the classic QS mediators, recent studies have
highlighted a signaling activity for the exopolysaccharides
produced by the B. subtilis eps operon. This polymer is recognized
by the extracellular domain of a tyrosine kinase which activates
its own synthetic pathway (Elsholz et al., 2014). Similarly, in
P. aeruginosa, it has been demonstrated that the Ps1 polymer
stimulates matrix production in neighboring cells via c-di-GMP
activation, although the precise mechanism remains unknown
(Irie et al., 2012).

Genetic Plasticity in Multispecies Biofilms
The intercellular space of a biofilm offers an excellent reservoir
of genetic material that can be exchanged between species. The
physical proximity and presence of extracellular DNA (eDNA)
in the matrix facilitates horizontal gene transfer (HGT) between
species (Christensen et al., 1998; Hausner and Wuertz, 1999). It
has been demonstrated that S. epidermis produced more eDNA
when in a mixed biofilm with C. albicans leading to an increased
biofilm biovolume and an enhanced infection in a in vivo model
(Pammi et al., 2013). HGT is a prevalent driving mechanism
for bacteria, enabling them to acquire new genetic material that
provides antimicrobial resistance and other functionalities which
can promote their persistence in natural environments (de la
Cruz and Davies, 2000; Barlow, 2009; Wiedenbeck and Cohan,
2011). In Vibrio cholera it has been demonstrated that HGT can
be induced in response to AI derived from other Vibrio species
in multispecies biofilms (Antonova and Hammer, 2011). Genetic
determinants for biofilm formation can also be transferred
between E. coli and S. enterica, as has been hypothesized to
occur in a biofilm formed by curli-producing and non-producing
strains (Wang et al., 2013).

Resistant mutants can also emerge spontaneously in the
population under stressful conditions such as exposure to
antimicrobial agents (Cantón and Morosini, 2011). In mixed
biofilms, interactions and competition between species can
enhance the emergence of genetic variants, as demonstrated for
P. aeruginosa in the presence of C. albicans (Trejo-Hernández
et al., 2014).

Experimental Methods to Study
Multispecies Biofilms and their
Response to the Action of Biocides

The establishment of a multispecies biofilm is a complex
biological process that involves interspecies interactions
(cooperation, antagonism, etc.). Re-creating these driving
interactions in the laboratory is one of the most difficult
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challenges that researchers must face when growing multispecies
biofilms. Most published studies have involved two or three
species because of the problems encountered in setting up
a repeatable biostructure. Strains and growth conditions
(e.g., temperature, culture media, and biofilm set-up) must
be chosen and controlled with particular care, otherwise
the results obtained can be distinct. The Figure 1 shows
different spatial interactions between the hospital isolate of
B. subtilis NDmed and four different pathogens species. Another
important choice is the disinfectant agent used to treat the
mixed-biofilm. For example, a mixed biofilm of P. fluorescens
and B. cereus led to an increase in the tolerance of both
species to a surfactant and an aldehyde when cultivated in a
rotating stainless steel device for 7 days (Simões et al., 2009);
however, when co-cultured in a flow system for 16 h, B. cereus
proved to be more susceptible to the oxidant agent chlorine
than in an axenic biofilm (Lindsay et al., 2002). Although the
techniques available to study biofilms have evolved significantly
during recent decades (confocal laser microscopy, fluorescent
reporters, micro-electrodes, etc.), the analysis of multispecies
biofilms still remains a technical challenge due to the lack of
methods adapted to complex communities and to the difficulty
of preserving certain fundamentals traits in these complex
samples.

Visualization of the Spatial Organization of
Species in Multispecies Biofilms
Confocal laser scanning microscopy (CLSM) coupled with
specific fluorescent labeling has emerged as a non-invasive

FIGURE 1 | Spatial organization in mixed-species biofilms. B. subtilis
NDmed mCherry (red) displays a specific distribution when grown with
different pathogenic partners (green). B. subtilis with (A) S. enterica GFP
(B) S. aureus GFP, (C) E. coli K12 GFP, or (D) E. coli SS2 GPF.

technique that is widely used for the in situ observation of the
structure and reactivity of biofilms. Nucleic acid stains, such
as Syto9 or SYBR Green are widely used to label individual
cells and visualize biofilm architecture (Bridier et al., 2010).
However, in a multispecies context, this approach cannot
discriminate between each species in the structure. Fluorescent
in situ hybridization (FISH) has appeared as a powerful tool
allowing the visualization of both laboratory and environmental
multispecies biofilms (Thurnheer et al., 2004; Amann and Fuchs,
2008). Fluorescent DNA probes specifically designed for each
species and labeled with a fluorophore of a given color hybridize
to bacterial ribosomal RNA, even if cells are in a “dormant”
state (Baudart et al., 2005; Servais et al., 2009). Limitations of
this technique in terms of probes diffusion within the biofilm,
penetration into the cell and binding to nucleic acids (Amann
and Fuchs, 2008; Almstrand et al., 2013) have been overcome
with the use of peptide nucleic acid (PNA) (Stender et al.,
2002; Cerqueira et al., 2008; Almeida et al., 2009). Coupled
with CLSM, this method enables the study of the composition
of multispecies communities and their spatial organization
without drastically affecting their biological structure (Dige
et al., 2009; Malic et al., 2009; Almeida et al., 2011). As an
alternative to PNA-FISH and when antibodies are available,
immunofluorescence can be used to visualize one or two species
of interest within a community (Guiamet and Gaylarde, 1996;
Hausner et al., 2000; Chalmers et al., 2008). At the single-
cell level, techniques such as microautoradiography (MAR),
Raman spectroscopy, and secondary ion mass spectrometry
(SIMS), that use isotope labeling to detect and quantify
metabolic activities, have been applied to complex communities
in combination with FISH in order to obtain information
not only about the community composition but also the
metabolic state or the molecular composition (Lee et al.,
1999; Orphan et al., 2001; Kindaichi et al., 2004; Nielsen and
Nielsen, 2005; Huang et al., 2007; Wagner, 2009; Musat et al.,
2012).

When dynamic information is required, a set of mutant strains
expressing fluorescent proteins can be used simultaneously in
a multispecies biofilm, i.e., one strain expressing the green
fluorescent protein (GFP), the other strain expressing the red
fluorescent protein (RFP), (Rao et al., 2005; Moons et al., 2006;
Ma and Bryers, 2010). In situ 4D confocal imaging enables
recovery of the spatio-temporal patterns of colonization of each
species within the biostructure. Although it is theoretically
possible to monitor more than four or five types of cells in
a biofilm using this approach, technical limitations usually
restrict the acquisitions to two or three cell types in the same
sample (Klausen et al., 2003; Bridier et al., 2014). Fluorescent
proteins are also widely used to reveal the expression of
specific genes in the biofilm with single cell resolution, as
well as protein localization (Christensen et al., 1998; Ito et al.,
2009; Wei et al., 2011; Moormeier et al., 2013). However,
the use of such fluorescent reporter technologies is limited
to strains that can be genetically manipulated and to the
intensity of the fluorescence they emit, which in turn is
dependent on the local pH and oxygen content (Hansen et al.,
2001).
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Quantification of the Action of Biocides in a
Multispecies Biofilm
Quantifying the action of a biocide on a biofilm population
can be achieved using global invasive approaches such as CFU
counting, the Calgary Biofilm Device, the crystal violet assay,
or the respiration assay with TTC (Ceri et al., 1999; Ren et al.,
2014; Sabaeifard et al., 2014). CFU counting on different selective
agar media can estimate the cultivable fraction of each species
in a sample (Seth et al., 2012; Giaouris et al., 2013; Schwering
et al., 2013); however, not all bacterial species are able to grow
in laboratory [viable but non-cultivable (VBNC) subpopulation]
or need interspecies interactions to grow (Trevors, 2011; Li
et al., 2014). Besides, the complete detachment of cells from
the surface and the effective disruption and resuspension of
biofilm aggregates are a concern when applying these culture-
based approaches. Real-time quantitative PCR (qPCR) has
emerged as a successful molecular tool for the identification
and quantification of specific microorganisms in multispecies
communities (Maciel et al., 2011; Pathak et al., 2012). This
technique allows discrimination between live and dead cells
by the combination of specific amplification of rRNA regions
and the use of propidium monoazide (PMA) able to penetrate
compromised or damaged membranes, intercalate DNA, and
prevent its amplification (Nocker et al., 2006). This method
was recently applied to the study of antimicrobial resistance
in multispecies biofilms (Alvarez et al., 2013; Yasunaga et al.,
2013; Kucera et al., 2014; Sánchez et al., 2014). Although it
was found to be relatively efficient, molecular analysis require
expensive preparation and the protocols need to be adapted
to each condition because of the considerable complexity of
multispecies biofilms. Recent studies have also demonstrated that
qPCR-PMA tends to overestimate the fraction of live cells (Løvdal
et al., 2011; Slimani et al., 2012; Gensberger et al., 2013). Flow
cytometry can also be applied to quantify viability of different
bacterial species after resuspension of multispecies biofilms. As
an example, the viability of P. aeruginosa,B. cepacia, and S. aureus
in a mixed culture was quantified by means of fluorescence
detection using multifluorescent labeling with antibody, lectins,
SYBR Green and propidium iodide (Rüger et al., 2014). This
method has also been applied to P. aeruginosa axenic biofilms
in order to separate active and dormant cell populations and
compare their phenotypes and resistance to various antimicrobial
agents (Kim et al., 2009).

The techniques presented so far are performed on detached
and resuspended biofilms, losing thus the spatial information
on the community. Some microscopic approaches are able
to combine viability status at single cell resolution with

other information such as the species localization or function.
LIVE/DEAD staining and esterase activity dyes have been applied
successfully for the real-time visualization of cell inactivation in
biofilms (Takenaka et al., 2008; Harmsen et al., 2010; Bridier et al.,
2011b; Løvdal et al., 2011). One interesting approach to decipher
biocidal limitations in multispecies biofilms is to combine such
dyes with species-specific labeling or fluorescent lectins (Neu
et al., 2001).

Concluding Remarks

Today, the non-specific and disproportionate utilization of
biocides is causing major problems of environmental pollution
(Martinez, 2009; Moellering, 2012). Now that society begins
to be aware of increasing bacterial resistance to antibiotics,
a growing number of studies have reported cross-resistance
events between different types of antimicrobials, such as
disinfectants and antibiotics (Gilbert et al., 2002; Davin-
Regli and Pagès, 2012). One process giving rise to the
tolerance bacteria to chemical disinfectants, and which has been
largely underestimated in recent years, is interspecies bacterial
interactions in spatially organized biofilms. One significant
concern regarding these biological associations is the increase
of pathogens persistence that is favored by the protection of
resident flora. The studies reviewed in this paper highlight
the pressing need to gain a clearer understanding of the
specific mechanisms associated with these protective effects.
Although the spatial organization of a mixed community is
fundamental to its response to antimicrobials, little use is still
made of visualization techniques such as PNA-FISH or real-
time CLSM. New standardized protocols need to be established
in order to decipher the associated mechanisms and support
the development of specific control strategies with respect to
multispecies biofilms.
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