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The active seepage of the marine cold seeps could be a critical process for the
exchange of energy between the submerged geosphere and the sea floor environment
through organic-rich fluids, potentially even affecting surrounding microbial habitats.
However, few studies have investigated the associated microbial community changes.
In the present study, 16S rRNA genes were pyrosequenced to decipher changes in
the microbial communities from the Thuwal seepage point in the Red Sea to nearby
marine sediments in the brine pool, normal marine sediments and water, and benthic
microbial mats. An unexpected number of reads from unclassified groups were detected
in these habitats; however, the ecological functions of these groups remain unresolved.
Furthermore, ammonia-oxidizing archaeal community structures were investigated using
the ammonia monooxygenase subunit A (@moA) gene. Analysis of amoA showed
that planktonic marine habitats, including seeps and marine water, hosted archaeal
ammonia oxidizers that differed from those in microbial mats and marine sediments,
suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along
the environmental gradient from active seepage sites to peripheral areas. Changes in
the microbial community structure of AOA in different habitats (water vs. sediment)
potentially correlated with changes in salinity and oxygen concentrations. Overall, the
present results revealed for the first time unanticipated novel microbial groups and
changes in the ammonia-oxidizing archaea in response to environmental gradients near
the active seepages of a cold seep.

Keywords: cold seep, Red Sea, 16S rRNA gene, pyrosequencing, ammonia oxidizing archaea

Introduction

Cold seeps mainly occur in geologically active and passive continental margins, and they transport
dissolved and gaseous phase compounds to the ocean to sustain significant chemosynthetic
biomass by providing bioactive reductants, sulfides, methane and hydrogen (Levin, 2005; Suess,
2010). Many early studies have focused mainly on carbon and sulfur cycling in these specialized
ecosystems, with a specific focus on the anaerobic oxidation of methane (AOM) coupled to
sulfate reduction (SR) in microbes in hypersaline cold seep sediments (Maignien et al., 2013).
In particular, AOM in a cool seep environment has been extensively studied using metagenomic
and metatranscriptomic methods (Stokke et al., 2012), while changes in the microbial composition
along the environmental gradient near the seepage sites have only been marginally assessed.
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In cold seep ecosystems, microbes must rapidly transform
carbon, sulfur and nitrogen compounds. Nitrogen fixation plays
important roles in cold seeps (Pernthaler et al, 2008; Dang
et al, 2009; Dekas et al, 2009; Miyazaki et al., 2009), and
high rates of nitrogen removal due to denitrification in cold
seep sediments have been proposed (Bowles and Joye, 2011).
The diversity and abundance of anaerobic ammonium oxidizing
(anammox) bacteria in cold seep hydrocarbon-rich fluids have
been reported (Russ et al., 2013; Shao et al., 2014). A reduced
diversity and abundance of the ammonia oxidizing archaea
(AOA) thaumarchaea were found in cold seep sediments in
the Okhotsk Sea (Dang et al, 2010) and northeastern Japan
Sea (Nakagawa et al., 2007). All of these studies have shed
some light on the possible contributions of various types of
microorganisms to nitrogenous nutrient recycling; however, the
ecological functions of the thaumarchaea in cold seeps remain
largely unresolved.

The oxidation of ammonia is the first and rate-limiting
step in the process of nitrification (Kowalchuk and Stephen,
2001) performed by bacterial and archaeal groups. Ammonia
monooxygenase (amo) catalyzes the oxidation of ammonia and
consists of several subunits, among which the amoA gene
encoding subunit A has been widely used as a reliable genetic
marker to explore the diversity and abundance of AOA (AOA)
in diverse ecosystems (Junier et al., 2010; Cao et al., 2011b).
Various environmental parameters, such as pH, depth, nutrients,
and dissolved oxygen, have been identified as potential factors
determining the dominant ammonia oxidizer phylotypes and
their diversity in ecosystems (Erguder et al., 2009; Cao et al,
2013). However, the ecological role of the AOA in cold seeps
remains unexplored.

The Thuwal Seeps is a cold brine seep system located at a depth
of ~850 m and was first discovered on May 7, 2010 by a remotely
operated vehicle (ROV) on the Saudi continental margin of the
central Red Sea during a survey built into the framework of
“KAUST Red Sea Expedition Spring 2010” (Batang et al., 2012).
The seep is located at the base of a steep rocky wall that is closer to
the shore (20 km) than to the axial trough (120 km). In fact, active
brine ventings have been observed at two seep sites, which are
named Thuwal Seeps I and II (I is located at 22° 17.3" N-38° 53.8’
E; 11 is located at 22° 16.9' N-38° 53.9" E). A shallow brine pool
was formed by fluids from seeps with a low temperature (21.7°C)
and salinity (74%0) compared with the other brine pools in the
Red Sea (Batang et al., 2012). Although the hypersaline brine
pools at the Thuwal Seeps are harsh to organisms, high biomass
production was observed (Batang et al., 2012). Brine waters
likely originate from evaporitic deposits of submarine geological
formations that flow from the faulting system at the base of
the rocky scarp where the Thuwal brine pool formed. Extended
chemosynthetic bacterial mats and dense aggregations of live
and dead organisms have been observed (spatangoid urchins,
anemones, serpulid tubeworms, sponges, clams, fishes, crabs and
shrimps) (Batang et al., 2012). Thus, the Thawal seeps provides a
good opportunity to understand the responses of microbes that
reside near the seepage sites of cold seeps.

To explore potential changes in the microbial communities
from the seepage site to nearby areas in this cold seep ecosystem,

habitats including marine sediments, marine water, seep water,
and microbial mats were sampled for 16S rRNA gene analysis.
Because high concentrations of inorganic nitrogen species were
detected in the environment, the AOA community structures
were also examined based on the amoA gene. The results showed
that the habitat type dictated the community structure, while
the environmental gradient shaped the changes in the AOA
community from the active seepage site to peripheral areas.

Materials and Methods

Sampling and Environmental Parameter
Measurements

Field sampling was conducted in November 2011 in the Thuwal
cold Seep II (22°16'N-38°53’E) via the ROV Max Rover
developed by Deep Sea Systems International (DSSI), USA,
during the KAUST Red Sea exploration cruise (Figure 1). The
venting site of the seepage was only about 1.5 m wide and 1.0 m
deep, while the brine pool was very shallow with a depth of
approximately 1.0 m in most places. Four types of habitats around
the brine pool approximating the seeping vents were sampled.
The samples from the seep vent (Seep4), normal marine water
(TS06W, normal marine water overlaying the pool), sediments
(TS03S and TS06S from outside the brine pool; TS08S from inside
the brine pool), and a microbial mat on the bank of the pool (top
of the microbial mat) have been described in a previous study
(Wang et al., 2014b). Two replicate each were sampled from the
seep and marine water for 16S rRNA gene analysis.

The in situ physicochemical parameters (temperature, salinity,
and concentration of dissolved oxygen) were measured as
described previously (Lee et al., 2014; Wang et al., 2014b). The
concentrations of dissolved organic carbon (DOC) and total
nitrogen (TN) in the water sample and pore-water from the
sediment were measured using the combustion method (Trichet
et al., 2001), while the concentrations of ammonium and nitrate
plus nitrite were determined separately using a TNM-I analyzer
(Simadzu, Kyoto, Japan). Detailed descriptions of the sampling
sites and their physicochemical characteristics are provided in
Figure 1 and Table 1.

Molecular Experiments

Genomic DNA was extracted from all of the sediment samples
(collected in triplicate) using the PowerMax Soil DNA Isolation
Kit (Epicentre Biotechnologies, Madison, WI, USA) according
to the manufacturer’s instructions. For microbial mat and
water filters, the modified SDS-based method described by Lee
et al. (2009) was employed. The DNA quality and quantity
were checked using a PicoGreen dsDNA quantitation kit (Life
Technologies, Carlsbad, CA, USA) and gel electrophoresis.

The amoA gene was cloned into a plasmid, and 16S rRNA
gene sequencing was conducted by pyrosequencing. PCR
amplifications using the isolated genomic DNA as template
were performed in 20-ul reactions consisting of 1.25 U of
Taq DNA polymerase (New England Biolabs, England), 2 pl
of 10x PCR buffer (15 mM Mg?T), 1 pl of deoxynucleoside
triphosphates (dANTPs) (2.5 mM), 2 pl (~30 ng) of DNA
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FIGURE 1 | Diagram of the sampling sites in the Red Sea modified from Batang et al. (2012). (A) Locations of brine pools in the Red Sea axial zone (blue
shade); (B) Location of Thuwal Seeps (dark blue patch) near coral reefs (pink patches) along the Saudi coast; (C) Outline of Thuwal Seeps brine pool (thick line)
superimposed on depth contours (Batang et al., 2012).

TABLE 1 | Physicochemical parameters of the profiles from the cold seep to the far sediments in the Red Sea (some samples and parameters were

adopted from Wang et al., 2014b).

Sample ID  Descriptions Coordinate TOC (mg/L) TN (mg/L) O3 (%) Salinity (%) NHs* (WM) NO,~+NO3~
(M)

Top Top of the microbial mat ~ 22°16.999N- 38°53.893E 35.95 7.87 25 43 - -

TS06W Deep sea water 22°17.100N- 38°53.725E 19.22 2.60 25 43 22.94 1.45

Seep4 Seep water 22°17.042N- 38°53.897E 26.12 27.22 <0.2 125 386.66 3.24

TS03S Deep sea sediment 22°17.100N- 38°53.075E 76.38 12.49 24.4 43 246.40 2.18

TS06S Deep sea sediment 22°17.100N- 38°52.90E 71.04 5.48 25 43 65.25 4.83

TS08S Brine pool sediment 22°17.210N- 38°53.736E 60.88 17.13 ~0.5 96 456.46 2.90

TS09S Brine pool sediment 22°17.313N- 38°53.645E 58.03 16.87 0.2 96 705.15 2.73

template, and 0.5 pl of each primer (10 M) (Arch-amoAF:
5-STAATGGTCTGGCTTAGACG-3' and Arch-amoAR: 5'-
GCGGCCATCCATCTGTATGT-3') (Francis et al., 2005). The
amplicons resulting from PCR performed in triplicate for each
sample were pooled and used to construct clone libraries. The
amplified 635-bp bands were excised from 1.0% (wt/vol) agarose
gels and gel-purified using the Universal DNA Purification Kit
(Tiangen Biotech, China). The purified PCR products were
cloned into the pCR2.1-TOPO vector using the TOPO TA
cloning kit for sequencing with One Shot TOP10 competent cells

according to the manufacturer’s instructions (Invitrogen, USA).
Each clone was randomly selected and screened by PCR with
primers M13F and M13R to select positive clones. The positive
clones were sequenced with the vector-specific primers M13F
and M13R using the Applied Biosystems 3730x] DNA analyzer
(Applied Biosystems, Foster City, CA, USA).

Regarding the 16S rRNA gene pyrosequencing, the hyper-
variable regions V4 to V8 of the bacterial and archaeal 16S rRNA
gene were amplified for each sample using the universal forward
primer U515F (5- GTGYCAGCMGCCGCGGTAA -3') and
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the reverse primer R1492 (5'- GACGGGCGGTGTGTRCAA -3)
(Wang et al., 2014a; Zhang et al., 2014) with unique 6-nucleotide
(nt) barcodes. Five units of Pfu Turbo DNA polymerase
(Stratagene, La Jolla, CA, USA), 1x Pfu reaction buffer, 0.2 mM
dNTPs (TaKaRa, Dalian, China), 0.1 M each barcoded primer,
and 20 ng of genomic DNA template were mixed in a 100-ul PCR
volume. The PCR procedure included an initial denaturation
at 94°C for 5 min, 26 cycles at 94°C for 30 s, 53°C for
30 s, and 72°C for 45 s, and final extension at 72°C for
6 min using a Bio-Rad thermal cycler (M]J Research Inc.,
Bio-Rad). The PCR products were purified using a TaKaRa
Agarose Gel DNA Purification Kit (TaKaRa, Dalian, China) and
quantified with a NanoDrop device. Two hundred nanograms
of each purified 16S amplicon were mixed and then subjected
to pyrosequencing using the Roche 454 FLX Titanium platform
at the Chinese National Human Genome Centre in Shanghai,
China.

Sequencing Analysis for 16S rRNA Gene
Pyrosequencing Data

The pyrosequencing data were deposited in the NCBI Sequence
Read Archive (SRA) database. The downstream bioinformatics

analysis was performed using QIIME 1.7.4 (Caporaso et al.,
2010b). The criteria used for quality control of all data have been
described in a previous study (Lee et al., 2012).

Reads were assigned to their respective samples according to
their barcodes and then subjected to a second round of quality
control using Denoiser (Reeder and Knight, 2010). Qualified
reads were clustered using uclust (Edgar, 2010) and then
assigned to operational taxonomic units (OTUs) at a similarity of
97%. Representatives of the most abundant reads were selected
from each OTU for subsequent analysis. Representative OTUs
were aligned de novo using MUSCLE (Edgar, 2004), and a
phylogenetic tree was produced using FastTree (Price et al.,
2009). Representative OTUs were also aligned using PyNAST
(Caporaso et al., 2010a) with the Silval08 database as a reference.
Successfully aligned reads were submitted to ChimeraSlayer
(Haas et al., 2011) to identify and discard chimeric reads. Species
diversity, richness, and rarefaction curves were computed at a
similarity of 97% as part of QIIME’s alpha diversity pipeline. Beta
diversity analysis was conducted after rarefying the samples in the
smallest library using QIIME. A step size of 100 was used with 100
repetitions at each step. Taxonomic assignment was conducted
using the Ribosomal Database Project (RDP) classifier version 2.2
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FIGURE 2 | Taxonomic classification at the genus level of microbial reads retrieved from different habitats in the Red Sea based on 16S rRNA gene
pyrosequencing data presented as the relative abundance (MMT and MMB denote the top and bottom of the microbial mat, respectively).
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(Wang et al., 2007) against Silval08 (Pruesse et al., 2007) with a
bootstrap confidence level of 50%. The number of reads assigned
to the different genera were converted into percentages.

Diversity Indice Calculations for the amoA

Gene

The DNA sequences of the amoA genes were transformed into
MEGA 6.0 software (Tamura et al., 2013) and aligned using
CLUSTALW in MEGA. OTUs were identified at a similarity
level of 0.97 using the MOTHUR program (Schloss et al., 2009).
Based on the OTU assignments, the nonparametric abundance
estimators, Chaol and ACE, and the diversity estimates (ACE)
were calculated using summary.single in MOTHUR. Rarefaction
curves were calculated for all samples at a distance cutoff of 0.03
using rarefaction.single (Schloss et al., 2009).

Phylogenetic Analysis of the amoA Gene

The selected OTUs from all the samples were imported into
MEGA and translated into amino acids. Reference sequences
from GenBank were downloaded to construct a comprehensive
database and then clustered at an amino acid similarity level of
0.97. After merging with the reference sequences, including those
from enrichments, the initial phylogenetic tree was constructed
based on the neighbor-joining (NJ) algorithm with 1,000
bootstrap replicates using MEGA software (Tamura et al., 2013).
The NJ phylogenetic tree was employed initially to construct the
maximum likelihood (ML) tree in MEGA.

Microbial Community Analyses for the amoA
Gene

To compare the phylogenetic diversity between different habitats,
a genetic distance matrix of the sequences from each habitat was
developed. Principal coordinate analysis (PCoA) and jackknife
environment cluster analysis were conducted using the online
software Fast UniFrac (Hamady et al., 2010), which utilizes
the genetic distance matrix based on the gene sequence data.
In addition, hierarchical clustering analysis (UPGMA algorithm
with jackknife supporting values) was used. The environmental
cluster tree was projected in MEGA 6.0 (Tamura et al., 2013).

Non-metric multidimensional scaling (NMDS) was
conducted in MOTHUR based on a genetic cutoff distance
of 0.03 for amoA to determine the similarity between samples.
The command was modeled based on the function using the
majorization algorithm (Borg and Groenen, 1997).

One-way ANOSIM methods with 999 permutations were
performed in MOTHUR to test for the significance of
differences in community composition between the clone
libraries. Simultaneously, LIBSHUFF statistical comparisons
were conducted using LIBSHUFF in MOTHUR.

Nucleotide Sequence Accession Numbers

All of the archaeal amoA gene sequences retrieved in the present
study have been deposited in the GenBank database at NCBI
under accession numbers KM109433-KM109966, and the 16S
rRNA gene pyrosequencing data have been submitted to the
NCBI SRA database under accession number SRX501833.

% Rarefaction curves of amoA gene

45 —Seep
TS06S
TS06W

——TS03S

30 MMT

——TS08S

Number of OTUs

0 10 20 30 40 50 60 70 80 90 100
Number of clones

FIGURE 3 | Rarefaction cures for amoA genes sequences from each
sample based on a cutoff of 0.03 generated by MOTHUR.

Results

Sampling Site Descriptions and

Physiochemical Parameters

The features of our sampling sites have been documented in
a previous study (Wang et al,, 2014b), and the sampling map
is also shown in Figure 1. Higher concentrations of inorganic
nitrogen compounds have been observed in the seep and site
TS08S compared with sites TS03S and TS06 (Table 1). High
concentrations of hydrogen sulfide (>200 pwmol/L) were also
recorded in the nearly anoxic brine pool (Wang et al., 2014b).

16S rRNA Gene Diversity and Composition

A total of 47,353 reads (~4304 reads per sample) were
passed through the quality check. The number of OTUs and
estimated species richness at the 3% dissimilarity level are listed
(Supplementary Figure S1). The highest number of OTUs was
found on top of the microbial mat followed by the marine
sediments (Supplementary Figure S1).

At the 50% confidence threshold, qualified reads could be
assigned to eighteen phyla based on the analyses using the
QIIME pipeline (Supplementary Figure S2). The proportions
of these phyla varied among different habitats. For example,

TABLE 2 | Diversity indices for the amoA genes in all samples from the
Red Sea.

Sample No.of operational Chao Shannon Simpson Coverage

Clone taxonomic (%)

units (OTUs)

Seepd 96 15 18756  1.79 0.25 93.8
TSO6W 98 21 3225 2.03 0.26 89.8
TS03S 95 35 63.88 2.73 0.15 76.8
TS06S 68 36 153.00 3.23 0.04 60.3
Top 95 38 88.00 3.13 0.06 82.1
TS08S 45 18 7050 1.91 0.31 66.7
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FIGURE 4 | Phylogenetic tree reconstructed from the deduced AmoA protein sequences using the maximum likelihood (ML) criterion. AmoA
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Nitr eutropha C91(ABI60535.1)

12.70% of the Proteobacteria was observed in TS06W-1. In
contrast, Proteobacteria demonstrated a low abundance in
marine sediments but were exceptionally enriched in the

microbial mat. Marine sediments contained a higher abundance
of Euryarchaeota than the seeps and marine water (<0.25%).
The Thaumarchaea was an over-represented phylum in seeps
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and marine water compared with marine sediments and the
microbial mat (Supplementary Figure S2). Nitrospirae were
highly abundant in two marine sediment samples, TS08S and
TS09S, whereas a high abundance of Deferribacteres was detected
in the seeps and marine water (Supplementary Figure S2).

Substantial variations in the microbial communities associated
with different habitats were detected down to the genus level.
For example, the microbial communities from marine water and
seeps were dominated by unclassified Thaumarchaea, ranging
from 19.27% in Seep4-2 to 62.50% in TS06W-2 (Figure 2). In
contrast, marine sediment TS09S and the top of the microbial
mat contained proportions of unclassified Thaumarchaeota of
0.34% and 2.17%, respectively (Figure 2). In cold seeps and
marine water, Thermoplasmata, Sar406 clade (Deferribacteres),
Nitrospira, Sar324 clade and the E01-9¢-26 marine group also
exhibited a high abundance. In particular, the abundance of
Sar406 was rather high in the seeps (Figure 2). Group_c3 in
the Crenarchaeota, a miscellaneous crenarchaeotic group, marine
benthic group d (MBGD) and dhveg-1 (currently designated
as Thermoplasmata) were found in microbial mats and marine
sediments. Opb95 (Nitrospira) was the dominant species group
in two of the sediment samples from the brine pool (TS08S
and TS09S) (Figure 2). The miscellaneous crenarchaeotic group
was dominant in normal marine sediment samples (TS03S
and TS06S) (Figure 2). In addition, TS03S was dominated
by MBGD and the dhveg-1 (Thermoplasmata) group. At the
genus level, another two groups, Nkb17 (Holophagae) and Rb25
(Acidobacteria), were also observed with a higher abundance in
microbial mats than in the other samples.

amoA Gene Diversity

Rarefaction curves (Figure 3) and diversity indices (Table 2) were
determined for each clone library. The results revealed that the
AOA diversity was far from exhaustively sampled, in particular
for the microbial mat sample (Figure 3). The highest diversity
indices were found on the top of the microbial mat and in
the marine sediments, which indicated that the sediment may
represent the largest reservoir of AOA diversity (Table 2). In
contrast, the diversity indices were low in water samples from
seeps, brine, and normal bottom seawater (Table 2).

Phylogenetic Tree Based on the amoA Gene

The phylogenetic analysis of the amoA gene revealed three
major monophyletic clusters (i.e., Nitrosopumilus, Nitrosotalea,
Nitrosocaldus) and a non-monophyletic cluster (Nitrososphaera)
that comprised mostly genes from the soil and sediment
environments (Pester et al., 2012; Cao et al., 2013). In addition,
one subcluster, Nitrosoarchaeum within the Nitrosopumilus
cluster, was characterized by organisms that survive in low
salinity habitats. In the present study, only two sequences (TS03S-
85 and TS06-52) were classified in the Nitrososphaera cluster,
while both the Nitrosotalea and Nitrosocaldus clusters were
absent (Figure 4). In contrast, clusters of Nitrosopumilus and
Nitrosoarchaeum were dominant in this environment (Figure 4).
Although the statistical supports for most of the nodes were weak,
based on two criteria, ML and NJ, the topologies were remarkably
consistent with one another. This result supported the stability
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FIGURE 5 | Non-metric multidimensional scaling (NMDS) function
analysis of all amoA genes in the present study. Each point represents
one OTU of the amoA gene.

of the topology, and subsequently, only ML phylogeny was
presented (Figure 4).

Most of the amoA gene sequences determined in the present
study was distributed into the Nitrosopumilus cluster, with the
highest contribution from marine sediments and the top of the
microbial mat. Within the Nitrosopumilus cluster, most of the
subclusters had low support values (Figure 4). We downloaded
all of the archaeal amoA gene sequences from GenBank to create
one database (updated to November, 2013) and would assign the
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FIGURE 6 | Principal component analysis (PCA) and jackknife
environment cluster analysis of all amoA genes from various microbial
habitats in the Red Sea.
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TABLE 3 | Anosim and Libshuff analyses to compare the similarity of archaeal ammonia oxidizer communities between two clone libraries based on

amoA gene sequences.

Comparison Anosim Libshuff
R-value P-value dCXYScore dCYXScore Significance

TS03S-TS06S -0.00430062 0.576 0.00068928 0.00083971 0.4453
TS03S-TS06W 0.772233 <0.001 0.10188576 0.10530356 <0.0001
TS03S-TS08S -0.00203718 0.481 0.00100324 0.0050561 0.1691
TS03S-Top 0.0981375 <0.001 0.00100724 0.00607718 0.0006
TS03S-Seep4 0.75163 <0.001 0.08077245 0.0915377 <0.0001
TS06S-TS06W 0.749073 <0.001 0.09460696 0.11381637 <0.0001
TS06S-TS08S -0.0531915 0.816 0.00172539 0.00138704 0.4792
TS06S-Top 0.103425 <0.001 0.00132125 0.00821533 0.0003
TS06S-Seeps 0.726427 <0.001 0.07498732 0.09949689 <0.0001
TSO0BW-TS08S 0.91786 <0.001 0.1110918 0.10863281 <0.0001
TSO06W-Top 0.746849 <0.001 0.11072986 0.10837393 <0.0001
TSO6W-Seep4d -0.0340392 0.792 0.00464578 0.01060209 0.0074
TS08S-Top -0.0489684 0.824 0.00303009 0.00709402 0.055
TS08S-Seepd 0.931857 <0.001 0.08617571 0.09733566 <0.0001
Top-Seep4 0.692334 <0.001 0.08725311 0.09484944 <0.0001

gene sequences from the present study to the closest relatives.
However, the closest relatives to most of the sequences from the
present study affiliated with the Nitrosopumilus cluster could not
be identified (Figure 4). In particular, the sequences from the top
of the microbial mat did not cluster with the sequences from
GenBank (Figure 4). This over-dispersion of sequences from
marine sediments and the microbial mat in the Nitrosopumilus
cluster might be explained by the influence of the chemocline in
the sampling area. Sequences from the microbial mat exhibited
a higher diversity than those from other habitats and were
dispersed throughout the whole phylogenetic tree, although a low
abundance of Thaumarchaea was observed in these two samples
based on 16S rRNA gene analysis (Figure 2). In addition, one
lineage with a long branch included a partial sequence of TSO6W
from normal marine water, and most sequences from the seep
clustered with those from marine water in the Gulf of Mexico
(Tolaretal., 2013) and East China Sea (Hu et al., 2011) (Figure 4).

The subcluster (designated as the Nitrosoarchaeum subcluster)
in the Nitrosopumilus cluster has been previously proposed to
reside in a Low Salinity Environment Cluster that includes
Candidatus Nitrosoarchaeum limnia (Mosier et al., 2012) and
Candidatus Nitrosoarchaeum koreensis (Kim et al., 2011), which
were isolated from low salinity environments (Cao et al., 2013).
Surprisingly, in the present study, the sequences from all of
the high salinity samples were embedded in this subcluster
(Figure 4).

Phylogenetic Ecology of the amoA Gene

Five types of habitats of archaeal ammonia oxidizers were
examined herein (Figure 5). AOA communities were more
similar within habitats than among habitats, as deduced from
NMDS, UniFrac, Anosim, and Libshuff analyses (Figures 5
and 6; Table 3). For example, the clone libraries of the amoA
gene from marine water shared more similarities with those
from the cold seep and clustered together, as supported by

UniFrac analyses (Figure 6). Based on the OTUs defined in each
sample, NMDS plotted almost all of the clones from the seeps
and marine water together. These samples were separated from
those retrieved from marine sediments and the microbial mat
(Figure 5). Although the water from the cold seeps had a higher
salinity than normal marine water, similarities were observed
among the communities of archaeal ammonia oxidizers between
the cold seep and normal marine water (Figures 5 and 6).

Discussion

An interaction between the fluid composition and microbes in
the cold seep environment has been observed in some active
cold seeps (Levin, 2005; Suess, 2010). The responses of microbes,
such as microbial nitrogen utilizers, to the organic-rich fluids,
however, has not been well investigated. In the present study,
we confirmed the previously described presence of groups of
archaeal ammonia oxidizers in a cold seep (Dang et al., 2010)
based on the amoA gene and revealed clear changes in microbial
communities along the environmental gradient from the seep
vent to the cold seep brine pool and its surroundings (Figures 2
and 4).

Based on the 16S rRNA gene analysis, most of the reads
from the microbial habitats could be sorted into known phyla.
At the genus level, however, a variety of uncultured groups
were assigned as endemic in different habitats in the Thuwal
seeps, indicating a unique repertoire of novel microbial lineages.
The potential ecological function of these groups is unclear,
and further investigations using cultures or single cell genomics
methods are necessary. For example, the OPB95 group affiliated
with the candidate division OP8 was identified as the dominant
group in marine sediment from the brine pool (Hugenholtz et al.,
1998). MBGD and dhveg-1 (Thermoplasmata) were relatively
abundant in microbial mats and in normal marine sediments
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in the present study. A previous study has already described
the role of MBGD in protein remineralization in anoxic marine
sediments (Lloyd et al, 2013). Altogether, these uncultured
microbial groups support the need for additional functional
studies.

The transition of archaeal ammonia oxidizers from the seep
vent to the surrounding microbial mats, marine sediments,
and water was clearly observed. Although relatively high
concentrations of ammonia were recorded in the brine
sediments, a high abundance of ammonia oxidizers was not
observed. This result could be attributed to the low oxygen
concentration; archaeal ammonia oxidizers still require oxygen
as an electron acceptor. Another potential explanation could
be a strong effect of salinity in determining AOA community
structure patterns. Previous studies of prokaryotic phylogenies
have revealed a clear separation between freshwater and
marine lineages (Lozupone and Knight, 2007; Auguet et al,
2010; Cao et al., 2013), suggesting that salinity is one of
the most important evolutionary barriers preventing frequent
environmental transitions (Logares et al., 2009). In the present
study, the various levels of salinity in different areas of the brine
pools and cold seeps (Wang et al., 2014b) may have had a great
influence on the evolution of AOA. In addition to the salinity, the
concentrations of inorganic nitrogen-related compounds could
represent another influential environmental parameter because
the diversity indices changed along the concentration gradient of
ammonia from the seep vent to the surrounding areas.

A lower abundance but a high diversity of unclassified
Thaumarchaea was detected in the marine sediments and
microbial mats, consistent with the findings of previous studies
(Dang et al, 2010; Cao et al, 201la, 2012). However, the
marine water and seep vent were largely composed of uncultured
Thaumarchaea with a low diversity but a high abundance, which
is in agreement with the low diversity indices observed for
the amoA sequences of marine plankton in a recent global-
scale study (Cao et al., 2013). It is possible that habitats with
low concentrations of substrate contain more diverse archaeal
ammonia oxidizers, while habitats with high concentrations of
substrate have a low diversity but a high abundance of this
group. One interesting observation was that the amoA gene
sequences from the normal marine sediments and the top of
the microbial mat in the Red Sea shared a high similarity
with sequences from the South China Sea but with limited
sequences from other marine sediments (Cao et al., 2011a,
2012; Dang et al., 2013) (Figure 4). The ecological significance
and allopatric distribution of this group of archaeal ammonia
oxidizers in the marine sediments of Red Sea and South
China Sea remains enigmatic and should be assessed in future
studies.
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