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Repurposing celecoxib as a topical
antimicrobial agent
Shankar Thangamani, Waleed Younis and Mohamed N. Seleem*

Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA

There is an urgent need for new antibiotics and alternative strategies to combat
multidrug-resistant bacterial pathogens, which are a growing clinical issue. Repurposing
existing approved drugs with known pharmacology and toxicology is an alternative
strategy to accelerate antimicrobial research and development. In this study, we show
that celecoxib, a marketed inhibitor of cyclooxygenase-2, exhibits broad-spectrum
antimicrobial activity against Gram-positive pathogens from a variety of genera, including
Staphylococcus, Streptococcus, Listeria, Bacillus, and Mycobacterium, but not against
Gram-negative pathogens. However, celecoxib is active against all of the Gram-negative
bacteria tested, including strains of, Acinetobacter, and Pseudomonas, when their
intrinsic resistance is artificially compromised by outer membrane permeabilizing agents
such as colistin. The effect of celecoxib on incorporation of radioactive precursors into
macromolecules in Staphylococcus aureus was examined. The primary antimicrobial
mechanism of action of celecoxib was the dose-dependent inhibition of RNA, DNA,
and protein synthesis. Further, we demonstrate the in vivo efficacy of celecoxib in a
methicillin-resistant S. aureus (MRSA) infected Caenorhabditis elegans whole animal
model. Topical application of celecoxib (1 and 2%) significantly reduced the mean
bacterial count in a mouse model of MRSA skin infection. Further, celecoxib decreased
the levels of all inflammatory cytokines tested, including tumor necrosis factor-α,
interleukin-6, interleukin-1 beta, and monocyte chemo attractant protein-1 in wounds
caused by MRSA infection. Celecoxib also exhibited synergy with many conventional
antimicrobials when tested against four clinical isolates of S. aureus. Collectively,
these results demonstrate that celecoxib alone, or in combination with traditional
antimicrobials, has a potential to use as a topical drug for the treatment of bacterial
skin infections.

Keywords: celecoxib, antimicrobial resistance, repurposing, skin infection, anti-inflammatory

Introduction

Bacterial infections caused by multi-resistant pathogens have emerged as a major
global crisis during the past few decades (Fischbach and Walsh, 2009). The U.S.
Centers for Disease Control and Prevention [CDC] (2013) indicated that at least two
million individuals per year in the U. S. becomes infected with multidrug-resistant
pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), and multidrug-
resistant Pseudomonas aeruginosa. More importantly, the emergence and spread of
multidrug-resistant S. aureus clones such as MRSA USA100, USA200, and USA300
are approaching epidemic proportions and becoming a major global health concern
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(Diep et al., 2006; King et al., 2006; Seybold et al., 2006; Davis
et al., 2007; Tenover et al., 2008, Tattevin et al., 2009; Tenover
and Goering, 2009; Tong et al., 2009; Stryjewski and Corey, 2014).
Clones like USA300 are highly virulent and cause skin and soft
tissue infections that lead to morbidity and mortality in infected
patients (King et al., 2006). Furthermore, the exo-proteins
and toxins secreted by these MRSA strains trigger excess host
inflammatory responses and further complicate the situation,
especially in the management of wound infections (Fournier and
Philpott, 2005; Diep et al., 2006, 2012; Gordon and Lowy, 2008).
Further complicating the problem, there is increasing incidence
of staphylococcal resistance to topical antimicrobials such as
mupirocin and fusidic acid (Dobie and Gray, 2004; Kresken et al.,
2004; Chambers andDeleo, 2009). Although there are several new
approved systemic antibiotics available to treat skin infections
such as oritavancin, tedizolid, there is unmet need for novel
topical antimicrobial capable of modulating the host immune
response and reducing the excessive inflammation associated
with bacterial skin infections without exposing the patient to a
systemic antibacterial agent.

The development of new antimicrobials is very slow process
and has not been able to keep pace with the emergence of
bacterial resistance (Fischbach and Walsh, 2009). Hence, novel
drugs and treatment strategies are urgently needed to combat
these bacterial pathogens. Repurposing of approved drugs is a
promising alternative strategy that can accelerate the process
of antimicrobial research and development (Rangel-Vega et al.,
2015; Thangamani et al., 2015). Unlike conventional drug
discovery, finding new uses for existing drugs is a proven shortcut
from bench to bedside, that reduces the cost and time associated
with antibiotic development (Ashburn and Thor, 2004; Chong
and Sullivan, 2007; Rangel-Vega et al., 2015; Thangamani et al.,
2015).

Celecoxib (Celebrex) is a non-steroidal anti-inflammatory
drug widely used for the treatment of pain, fever, and
inflammation (Frampton and Keating, 2007; McCormack,
2011). It specifically inhibits the enzyme cyclooxygenase-2
(COX2), thereby reducing the synthesis of proinflammatory
prostaglandins (Bensen, 2000). Beyond its anti-inflammatory
activity, celecoxib has been shown to possess antimicrobial

activity against several microbial pathogens. In a study by
Pereira et al. (2013) celecoxib was found to reduce the total
fungal load in Histoplasma capsulatum infected mice. Further,
celecoxib treatment also increased the survival rate of the mice
infected with lethal dose of H. capsulatum (Pereira et al., 2013).
Another study by Chiu et al. (2009) found that celecoxib
inhibited the growth of Francisella tularensis and F. novicida.
In addition, celecoxib also exhibited antibacterial activity against
S. aureus and S. epidermidis (Chiu et al., 2012). Apart from
antimicrobial activity, celecoxib inhibits multidrug efflux pumps
in Mycobacterium smegmatis and S. aureus, and increases the
sensitivity of bacteria to various antibiotics, including ampicillin,
kanamycin, ciprofloxacin, and chloramphenicol (Kalle and Rizvi,
2011; Annamanedi and Kalle, 2014). However, the antibacterial
mechanism of action of celecoxib and its potential clinical
application remain underexplored.

In this study, we investigated the antibacterial activity of
celecoxib, as well as the spectrum of its activity against various
clinical isolates of multidrug-resistant Gram-positive and Gram-
negative pathogens. We also investigated its mechanism of action
and validated its in vivo antimicrobial efficacy in two different
animal models, including Caenorhabditis elegans and mouse
models of MRSA infection. Additionally, we investigated the
immunomodulatory activity of celecoxib in a topical application
against MRSA skin infection. Finally, we tested the activity of
celecoxib in combination with various antimicrobial agents to
investigate the potential for synergistic activities.

Materials and Methods

Bacterial Strains and Reagents
The bacterial strains used in this study are presented in
Tables 1–3. Müller–Hinton Broth (MHB) was purchased from
Sigma–Aldrich. Trypticase soy broth (TSB), trypticase soy agar
(TSA), and mannitol salt agar (MSA) were purchased from
Becton, Dickinson (Cockeysville, MD, USA). Celecoxib was
purchased from TSZ chemicals. Vancomycin hydrochloride
was obtained from Gold Biotechnology; linezolid from Selleck
Chemicals, mupirocin from Aapplichem, NE, clindamycin from

TABLE 1 | Minimum inhibitory concentration (MIC) of celecoxib against Gram-positive bacteria.

Bacteria Description Celecoxib (μg/ml)

Methicillin-resistant Staphylococcus aureus ATCC 4330 Clinical isolate resistant to methicillin and oxacillin 32

Vancomycin-resistant S. aureus (VRSA10) Resistant to ciprofloxacin, clindamycin, erythromycin, and
gentamicin

32

Streptococcus pneumoniae ATCC 49619 Isolated from sputum of 75-year-old male, Phoenix, AZ, USA 64

Bacillus anthracis Stern vaccine strain 16

B. anthracis UM23 Weybridge strain which contains the toxigenic pXO1 plasmid and
lacks the pXO2 capsule plasmid

16

B. anthracis AMES35 Isolated from 14-month-old heifer that died in Texas in 1981. It is a
derivative of B. anthracis, strain Ames that was treated with
novobiocin to cure it of the pXO2 plasmid.

16

B. subtilis CU 1065 - 16

Listeria monocytogenes F4244 CDC. Clinical isolate from patient cerebrospinal fluid (CSF) 32

Mycobacterium smegmatis ATCC 14468 Reference strain 16

Frontiers in Microbiology | www.frontiersin.org 2 July 2015 | Volume 6 | Article 750

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Thangamani et al. Repurposing celecoxib as antibacterials

TABLE 2 | Minimum inhibitory concentration of celecoxib against Gram-negative bacteria.

Bacteria Description MIC of celecoxib (μg/ml)

(−) (+) Sub-inhibitory concentration
of colistin

(+) Sub-inhibitory concentration
of reserpine

Pseudomonas aeruginosa
ATCC15442

Isolated from animal room water
bottle

>256 16 >256

P. aeruginosa ATCC
BAA-1744

Clinical isolate and VITEK 2 GN
identification card quality control
organism

>256 16 >256

Escherichia coli
O157:H7ATCC 700728

Non-toxigenic and quality control
strain

>256 16 >256

Acinetobacter baumannii
ATCC BAA1605

MDR strain isolated from the
sputum of a Canadian soldier

>256 8 >256

A. baumannii ATCC
BAA747

Human clinical specimen -ear pus >256 16 >256

Salmonella Typhimurium
ATCC 700720

Wild type strain isolated from a
natural source

>256 32 >256

Klebsiella pneumoniae
ATCC BAA 2146

Clinical isolate New Delhi
Metallo-β-Lactamase (NDM-1)

>256 8 >256

K. pneumoniae ATCC BAA
1705

Clinical isolate with
Carbapenemase (KPC) resistant to
carbapenem

>256 16 >256

E. coli 1411 Wild type strain >256 ND ND

E. coli SM1411 � acrAB Mutant for acrAB efflux pump 64 ND ND

TCI Chemicals, and fusidic acid and rifampicin from Sigma–
Aldrich.

Antibacterial Assays
Minimum inhibitory concentrations (MICs) were determined
in triplicate, in Mueller–Hinton broth, using the broth micro
dilution method described by the Clinical and Laboratory
Standards Institute (CLSI; Mohamed et al., 2014). The MIC
was interpreted as the lowest concentration of the drug able to
completely inhibit the visible growth of bacteria after incubating
plates for at least 16 h at 37◦C. The highest MIC value taken from
two independent experiments was reported.

Gram-Negative Outer Membrane Permeability
Assay
The MIC of celecoxib in the presence of colistin was measured
as described in the antibacterial assays section, above. Sub-
inhibitory concentration of colistin (0.065–0.25 μg/ml, Table 2)
was added to the media to increase outer membrane permeability
and facilitate the entrance of celecoxib. The following sub-
inhibitory concentration of colistin was used; P. aeruginosa
ATCC15442 and S almonella Typhimurium (0.25 μg/ml),
P. aeruginosa ATCC BAA-1744 and Klebsiella pneumoniae
(0.125 μg/ml), Escherichia coli O157:H7ATCC 700728 and
Acinetobacter baumannii (0.0625 μg/ml).

Effect of Efflux Pump on Celecoxib Activity
The effect of efflux pumps on the ability of celecoxib to gain entry
into Gram-negative bacteria was investigated using known efflux
pump inhibitor (reserpine) and efflux pump deletion mutant
strain of E. coli. The MIC of celecoxib was examined in the
presence of sub-inhibitory concentration of reserpine (32 μg/ml)

against all strains of Gram-negative bacteria used in this study.
Efflux pump deletion mutant E. coli SM1411 � acrAB was
employed to determine if acrAB efflux pump plays a role in
contributing to intrinsic resistance to celecoxib as described
before (O’Neill et al., 2002; Randall et al., 2013).

Time Kill Assay
The time kill assay was performed as described before
(Mohamed et al., 2014). Briefly, MRSA USA300 was diluted
to 1 × 106 CFU/mL and treated with 4X MIC of control
antimicrobials (vancomycin or linezolid), 4X and 8X MIC of
celecoxib (in triplicates) in MHB. Cultures were incubated at
37◦C and samples were collected at indicated time points to count
MRSA colony forming units (CFU).

Macromolecular Synthesis Assay
Staphylococcus aureus strain ATCC 29213 was grown overnight
on TSA plates and the isolated colonies were cultured in 15 ml
of MHB to an early exponential phase (OD600 = 0.2–0.3).
Aliquots (100 μl) of the early exponential phase culture were
added to triplicate wells of a 96-well microtiter plate. Antibiotics
with known mechanisms of action (ciprofloxacin, rifampicin,
linezolid, vancomycin, and cerulenin) and auranofin were added
to the plate as controls. DMSO was added to the control groups.
After 30 min of incubation at 37◦C, radiolabeled precursors
such as [3H] thymidine (0.5 μCi), [3H] uridine (0.5 μCi), [3H]
leucine (1.0μCi), [14C]N-acetylglucosamine (0.4μCi), and [3H]
glycerol (0.5 μCi) were added to quantify the amount of for
DNA, RNA, protein, cell wall, and lipid synthesis, respectively.
Reactions measuring the inhibition of DNA and RNA synthesis
were stopped after 15 min by the addition of 5% trichloroacetic
acid (TCA). Then, the tubes were chilled on ice for 30 min.
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TABLE 3 | Minimum inhibitory concentration of celecoxib against clinical isolates of S. aureus strains.

Strain type Strain ID Source Phenotypic properties Celecoxib (μg/ml)

Methicillin resistant USA100 U. S. (OH) Resistant to ciprofloxacin, clindamycin, 32

S. aureus (MRSA) erythromycin

USA200 U. S. (NC) Resistant to clindamycin, methicillin 32

erythromycin, gentamicin,

USA300 U. S. (MS) Resistant to erythromycin, methicillin, tetracycline 32

USA400 U. S. (ND) Resistant to methicillin, tetracycline 16

USA500 U. S. (CT) Resistant to ciprofloxacin, clindamycin, 32

erythromycin, gentamicin,

methicillin, tetracycline, trimethoprim

USA700 U. S. (LA) Resistant to erythromycin, methicillin 32

USA800 U. S. (WA) Resistant to methicillin 32

USA1000 U. S. (VT) Resistant to erythromycin, methicillin 32

USA1100 U. S. (AL) Resistant to methicillin 32

NRS194 U. S. (ND) Resistant to methicillin 32

NRS108 France Resistant to gentamicin 32

NRS119 U. S. (MA) Resistant to linezolid 16

ATCC 43300 U. S. (KS) Resistant to methicillin 32

ATCC BAA-44 Lisbon, Portugal Multidrug-resistant strain 32

NRS70 Japan Resistant to erythromycin, clindamycin, spectinomycin 32

NRS71 UK Resistant to tetracycline, methicillin 32

NRS100 U. S. Resistant to tetracycline, methicillin 32

NRS107 U. S. Resistant to methicillin, mupirocin 32

Vancomycin-intermediate NRS1 Japan Resistant to aminoglycosides and 32

S. aureus (VISA) tetracycline; glycopeptide- intermediate S. aureus

NRS19 U. S. (IL) Glycopeptide-intermediate S. aureus 32

NRS37 France Glycopeptide-intermediate S. aureus 32

Vancomycin-resistant VRS1 U. S. Resistant to vancomycin 128

S. aureus (VRSA) VRS2 U. S. Resistant to vancomycin, erythromycin, spectinomycin 128

VRS3a U. S. Resistant to vancomycin 32

VRS3b U. S. Resistant to vancomycin 32

VRS4 U. S. Resistant to vancomycin, erythromycin, spectinomycin 128

VRS5 U. S. Resistant to vancomycin 16

VRS6 U. S. Resistant to vancomycin 16

VRS7 U. S. Resistant to vancomycin, β-lactams 128

VRS8 U. S. Resistant to vancomycin 32

VRS9 U. S. Resistant to vancomycin 64

VRS11a U. S. Resistant to vancomycin 32

VRS11b U. S. Resistant to vancomycin 32

VRS12 U. S. Resistant to vancomycin 32

VRS13 U. S. Resistant to vancomycin 32

The TCA-precipitated materials were collected on a 25 mm
GF/1.2μMPES 96-well filter plate. Filters were washed five times
with 5% TCA, dried, and then counted using a Packard Top
Count microplate scintillation counter. Reaction wells measuring
the inhibition of protein synthesis were stopped after 40 min,
precipitated, and counted in a manner similar to that used for
the DNA and RNA synthesis inhibition assays. Reaction wells
measuring the inhibition of cell wall synthesis were stopped after
40 min by the addition of 8% SDS and then heated for 30 min at
95◦C. After cooling, the material were spotted onto nitrocellulose
membrane filters (0.8 μM) and washed three times with 0.1%
SDS. Filters were dried and counted using a Beckman LS3801
liquid scintillation counter. Reactions measuring the inhibition

of lipid synthesis were stopped after 40 min by the addition of
chloroform/methanol (1:2) and centrifuged at 13,000 rpm for
10 min. Then, the organic phase was carefully transferred to
a scintillation vial, dried, and counted using liquid scintillation
counting. Incorporation of radiolabeled DNA, RNA, protein, cell
wall, and lipid precursors was quantified using the scintillation
data and inhibition was calculated. Results were presented as the
percent inhibition of each macromolecular synthesis pathway.

Toxicity Assay in C. elegans
Caenorhabditis elegans AU37 (sek-1; glp-4) strain glp-
4(bn2) were used for the toxicity studies. L4-stage worms
were synchronized as described previously (Alajlouni
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and Seleem, 2013). Synchronized worms (∼20 worms)
in 50% M9 buffer and 50% TSB were added to each
well of a 96-well plate. Drugs (celecoxib and linezolid)
at indicated concentrations (16 or 32 μg/ml) were added
to the wells and the plates were incubated for 4 days at
room temperature. Worms were assessed every day; the
percentage of worms remaining alive in each group was
calculated.

Efficacy of Celecoxib in MRSA-Infected
C. elegans
Caenorhabditis elegans AU37 (sek-1; glp-4) strain glp-4(bn2) was
used to test the in vivo antimicrobial efficacy of celecoxib as
described previously (Alajlouni and Seleem, 2013). S. aureus
strain MRSA USA300 was used for infection and the MIC
of control antibiotic (linezolid) and celecoxib against MRSA
USA300 were 2 and 32 μg/ml, respectively. Briefly, L4-stage
worms were infected with MRSA USA300 for 8 h at room
temperature. The worms were washed with M9 buffer, and then
drugs (celecoxib and linezolid) at indicated concentrations were
added to the 96-well plates containing approximately 20 worms
per well. After 24 h, the worms were washed four times with
PBS and 100 mg of sterile, 1.0-mm silicon carbide particles
(Biospec Products, Bartlesville, OK, USA) were added to each
tube. Worms were disrupted by vortexing the tubes at maximum
speed for 1 min. The final suspension containing MRSA was
plated onto MSA plates to count the bacteria. The total CFU
count in each well was divided by the number of worms present
in the respective well. The results shown are the percent reduction
in CFU per worm, compared with an untreated control.

Efficacy of Celecoxib in MRSA-Infected Mice
Eight-week-old female BALB/c mice (Harlan Laboratories,
Indianapolis, IN, USA) were used in this study. All animal
procedures were approved by the Purdue University Animal Care
and Use Committee (PACUC). The mouse model of MRSA skin
infection was performed as described previously (Cho et al., 2010,
2011; Mohamed and Seleem, 2014). Briefly, mice were infected

FIGURE 1 | Time-kill assay for celecoxib tested against
Staphylococcus aureus. Killing kinetics of celecoxib (4X and 8X MIC),
vancomycin (4X MIC), and linezolid (4X MIC), against methicillin-resistant
S. aureus (MRSA) USA300 in MHB are shown. The results are presented as
means ± SD (n = 3). Data without error bars indicate that the SD is too small
to be seen.

intradermally with 1.65 × 108 CFU MRSA300. After 48 h of
infection, open wounds formed and the mice were divided into
five groups of five mice each. Two groups were treated topically
with 20 mg of either 1 or 2% celecoxib in petroleum jelly.
One group received the vehicles alone (20 mg petroleum jelly).
Another group was treated topically with 20 mg of 2% fusidic
acid in petroleum jelly and the last group was treated orally with
clindamycin (25 mg/kg). All groups were treated twice a day for
5 days. 24 h after the last treatment, the skin area around the
wound was swabbed with 70% ethanol and the wound (around
1 cm2) was precisely excised and homogenized. Bacteria in the
homogenate were counted using MSA plates.

Determination of Cytokine Levels
Skin homogenates obtained from infected mice were centrifuged
at 4000 rpm for 10 min and the supernatants were used for the
detection of cytokine levels. Tumor necrosis factor-α (TNF-α),
interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and monocyte
chemo attractant protein-1 (MCP-1) ELISA kits (R&D Systems,
Inc.) were used to determine the levels of these cytokines
according to the manufacture’s instruction (Rioja et al., 2004).

Synergy Assay
Synergy between celecoxib and conventional antimicrobials
(gentamicin, clindamycin, vancomycin, linezolid, daptomycin,
retapamulin, fusidic acid, andmupirocin) in the treatment of four
clinical isolates of S. aureus (MRSA300, NRS107, NRS119, and
VRSA5) was evaluated using the Bliss Independence Model, as
described previously (Morones-Ramirez et al., 2013). Synergy (S)
was calculated using the formula: S = (fA0/f00)(f0B/f00) – (fAB/f00).
The parameter fAB refers to the optical density of the bacteria
grown in the presence of celecoxib and antibiotics; parameters
fA0 and f0B refer to the bacterial growth rate in the presence of
antibiotics alone and celecoxib alone, respectively; the parameter
f00 refers to the bacterial growth in the absence of drugs. Degree
of synergy (S) values corresponds to the following cut-offs: Zero
indicates neutral, values above zero (positive value) represents
synergism, and values below zero (negative values) correspond
to antagonism. Drug combinations with higher positive value
represents high degree of synergism.

Statistical Analyses
Statistical analyses were performed using GraphPad Prism 6.0
software (GraphPad Software, La Jolla, CA, USA). P-values were
calculated by using two-tailed unpaired Student t-tests. P-values
<0.05 were considered significant.

Results

Antibacterial Activity
The antibacterial activity of celecoxib was tested using various
important multidrug-resistant strains of Gram-positive (Table 1)
and Gram-negative (Table 2) pathogens. Celecoxib showed
activity against all Gram-positive bacteria tested, including
methicillin- and vancomycin-resistant S. aureus (VRSA),
Streptococcus pneumonia, Listeria monocytogenes, Bacillus
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FIGURE 2 | Macromolecular synthesis assay in the presence of
celecoxib and control antibiotics. Incorporation of radiolabeled precursors
such as [3H] thymidine, [3H] uridine, [3H] leucine, [14C] N-acetylglucosamine
and [3H] glycerol for DNA, RNA, protein, cell wall, and lipid synthesis,
respectively, were quantified in S. aureus ATCC 29213. Based on the
incorporation of radiolabeled precursors, percent of inhibition by celecoxib at

concentration dependent manner was examined. Control antibiotics including
ciprofloxacin (DNA), rifampicin (RNA), linezolid (protein), cerulenin (lipid
synthesis), and vancomycin (cell wall synthesis) at 8X MIC were used. Triplicate
samples were used for each group and the statistical analysis was calculated by
the two-tailed Student t-test. All treatment groups were compared to untreated
control group. P-value of (∗P ≤ 0.05) is considered as significant.

FIGURE 3 | Evaluation of toxicity in Caenorhabditis elegans model.
C. elegans strain glp-4; sek-1 (L4-stage) were grown for four days in the
presence of celecoxib (16 and 32 μg/ml) and linezolid (16 μg/ml). Worms were
monitored daily and the live worms were counted. Results were expressed as
percent live worms in relative to the untreated control groups. Triplicate wells
were used for each group and the results were means ± SD (n = 3).

anthracis, B. subtilis, and M. smegmatis, with MICs ranging
from 16 to 64 μg/ml (Table 1). In contrast, celecoxib alone did
not show antibacterial activity against Gram-negative bacteria.
However, when the outer membranes of Gram-negative bacteria
were compromised with a sub-inhibitory concentration of
colistin, celecoxib showed antimicrobial activity against all
Gram-negative pathogens tested, including P. aeruginosa, E. coli,
K. pneumonia, S. Typhimurium, A. baumannii, with MICs

ranging from 8 to 32 μg/ml (Table 2). In addition, there was
a fourfold decrease in celecoxib’s MIC observed in an acrAB
mutant E. coli as compared to the wild type strain. We did not
observe any change in the MIC with addition of the efflux pump
inhibitors reserpine (Table 2).

The antibacterial activity of celecoxib was also assessed using
a series of multidrug-resistant S. aureus clinical isolates (Table 3).
The MIC of celecoxib required to inhibit 90% (MIC90) of the
MRSA and vancomycin-intermediate S. aureus (VISA) clinical
isolates was found to be 32 μg/ml. However, the MIC90 of
celecoxib against VRSA clinical isolates tested was 128 μg/ml.

Killing Kinetics of S. aureus by Celecoxib
We investigated the rate of bacterial killing by celecoxib. As
seen in Figure 1, MRSA USA300 treated with 4X and 8X
MIC of celecoxib exhibits a biphasic killing pattern. Treatment
with celecoxib consists of an initial rapid bactericidal phase
(2.49 ± 0.23 log10 and 3.01 ± 0.26 log10 CFU reduction at 4 h
with 4X and 8X MIC) followed by a regrowth of MRSA. In
comparison, vancomycin had a bactericidal activity after 24 h,
while linezolid treatment results in single log reduction after 24 h
incubation exhibiting a bacteriostatic activity.

Mechanism of Action
In view of the results demonstrating broad-spectrum
antibacterial activity, we used macromolecular synthesis
assays in S. aureus ATCC 29213 to investigate the antibacterial
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mode of action of celecoxib. As shown in Figure 2, RNA, DNA,
and protein synthesis inhibition were detected at concentrations
significantly below the MIC (0.25X). However, a secondary
effect was also observed at higher concentration, with a clear
dose-dependent disruption of [3H] glycerol incorporation
indicating decreased lipid synthesis. Cell wall synthesis
inhibition was evident only at a concentration above the
MIC (2X).

Toxicity in C. elegans
The safety of celecoxib was evaluated in a C. elegans whole-
animal model. As shown in Figure 3, C. elegans treated with 16
or 32 μg/ml of celecoxib for 4 days did not show any significant
toxicity. These results are similar to those seen in the linezolid
(16 μg/ml) and untreated control groups.

Efficacy in Animal Models
Having demonstrated a comfortable safety profile, the
antibacterial efficacy of celecoxib was tested in a C. elegans,
whole-animal MRSA infection model. As seen in Figure 4A,
celecoxib treatment significantly reduced the mean bacterial
count, compared with the untreated control. Treatment with
celecoxib at 16 and 32 μg/ml significantly decreased the bacterial
CFU of 0.56 ± 0.33 log10 and 0.94 ± 0.43 log10, respectively. For
comparison, linezolid at 16 μg/ml had significant reduction in
bacterial CFU (0.99 ± 0.17 log10), compared with the untreated
control.

Next we tested the in vivo antibacterial efficacy of celecoxib
in a mouse model of MRSA skin infection. As shown in
Figure 4B, all treatment groups (1 or 2% celecoxib, 2%
fusidic acid, or clindamycin oral treatment) significantly reduced
the mean bacterial counts, compared with the control group
(P ≤ 0.05). Groups treated topically with 1 and 2% celecoxib
had a reduction in MRSA CFU of 0.66 ± 0.19 log10 and
1.02 ± 0.27 log10, respectively. Topical treatment with 2% fusidic
acid and oral clindamycin (25 mg/kg) treatment reduced the
bacterial load of 2.90 ± 0.23 log10 and 2.40 ± 0.32 log10 CFU,
respectively.

Effect of Celecoxib on Inflammatory Cytokine
Levels Induced by MRSA Skin Infection
We investigated the immune-modulatory activity of celecoxib in
MRSA skin infection by measuring the levels of the inflammatory
cytokines IL-6, TNF-α, IL-1β, andMCP-1 using ELISA.As shown
in Figure 5, treatment with 2% celecoxib significantly reduced
the levels of all tested inflammatory cytokines, compared with
an untreated control. Treatment with 1% celecoxib significantly
reduced the levels of IL-6 and IL-1β. Clindamycin treatment also
reduced levels of TNF-α and IL-1β.

Synergism with Topical and Systemic
Antimicrobials
The antimicrobial activities of combinations of celecoxib with
topical and systemic antimicrobials were investigated in vitro,
using the Bliss independence model, with clinical isolates of
multidrug-resistant S. aureus. Celecoxib acted synergistically
with all tested antimicrobials (with the exception of linezolid)

against all strains of multi-drug resistant S. aureus tested,
including MRSA300, VRSA5, linezolid-resistant S. aureus
(NRS119), and mupirocin-resistant S. aureus (NRS107).
However, celecoxib showed slight antagonism when combined
with linezolid against VRSA5 (Figure 6).

Discussion

The emergence of bacterial resistance is not a new phenomenon.
However, because only a few antibiotics have been developed
over the past few decades, the continuous evolution and
spread of multidrug-resistant bacterial strains is a serious
threat to the public health (Centers for Disease Control and
Prevention [CDC], 2013). The pharmaceutical companies’ lack
of interest in antimicrobial research and development has
also become a major concern (Thangamani et al., 2015). The
World Health Organization has already warned that we are
heading toward a “post-antibiotic era” and suggested that
urgent measures need to be taken (Aryee and Price, 2015).
Therefore, recent research had been directed toward finding
new antimicrobials and novel strategies to combat multidrug-
resistant bacterial pathogens. One promising approach gaining
increased attention is the repurposing of existing approved drugs
as antimicrobials.

In an attempt to repurpose approved drugs, we and others
(Chiu et al., 2009, 2012; Pereira et al., 2013) have found
that celecoxib exhibits broad-spectrum antimicrobial activity
against Gram-positive and Gram-negative bacterial pathogens.
Celecoxib, a classical Non-steroidal anti-inflammatory drug
(NSAID) and inhibitor of the enzyme COX2, has been widely
used as an anti-inflammatory drug for the treatment of acute
pain, arthritis, menstrual pain, and discomfort (Tindall, 1999;
Bensen, 2000; Kumar et al., 2013). Independent of its anti-
inflammatory action, celecoxib exhibits antimicrobial activity
against F. tularensis and S. aureus (Chiu et al., 2009, 2012).
Celecoxib also reduces H. capsulatum burden by enhancing
phagocytosis of alveolar macrophages and decreasing levels of
inflammatory cells and cytokines, thereby exhibiting a protective
role in pathogenesis of H. capsulatum (Pereira et al., 2013).
Our study demonstrated that celecoxib possesses activity against
various multidrug-resistant Gram-positive bacteria, including
S. aureus, S. pneumonia, L. monocytogenes, B. anthracis, B.
subtilis, and M. smegmatis. However, we noticed that Gram-
negative pathogens are not susceptible to celecoxib, and the
lack of activity was found to be due to the permeability barrier
conferred by the outer membrane. This was further confirmed
by the fact that the antimicrobial activity of celecoxib against
Gram-negative bacteria was restored when the integrity of
the outer membrane was compromised using a sub-inhibitory
concentration of colistin (Vaara, 2010; Vaara et al., 2010; Velkov
et al., 2013). In addition, celecoxib also showed activity when
an efflux pump such as acrAB was deleted in E. coli. AcrAB
has been known to contribute for resistant phenotype for
various antibiotics including ampicillin, chloramphenicol, and
rifampicin (Okusu et al., 1996). Taken together, in addition to
the intrinsic physical barrier outer membrane, celecoxib entry
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FIGURE 4 | Efficacy of celecoxib in MRSA-infected animal models.
(A) L4-stage worms infected with MRSA USA300 were treated with celecoxib
(16 and 32 μg/ml) and linezolid (16 μg/ml) for 24 h. At this point, the worms
were disrupted and the amount of MRSA in the lysate (CFU) was determined.
CFU per worm in treated groups relative to the untreated control groups were
shown. Triplicate wells were used for each group and the results were

means ± SD (n = 3). (B) Efficacy of treatment of MRSA-infected mouse skin
lesions with celecoxib 1 and 2%, clindamycin (25 mg/kg), fusidic acid 2%, and
petroleum jelly (negative control) twice daily for 5 days were evaluated. Five mice
per group was used and the results were means ± SD of five mice. CFU per
wound was calculated and presented. ∗P ≤ 0.05 and ∗∗P ≤ 0.01 were
considered as significant.

FIGURE 5 | Effect of celecoxib on IL-6, TNF-α, IL-1β, and MCP-1 production in MRSA infected skin lesions. Supernatants from skin homogenates were
used for cytokine detection by ELISA. Each point represents single mice and each group has five mice. Statistical analysis was calculated by the two-tailed Student’s
t-test. P-values of ∗P ≤ 0.05, ∗∗P ≤ 0.01 are considered as significant.

into Gram-negative bacteria is also influenced by efflux pumps
such as AcrAB. Our results indicate that the target of celecoxib
is present in both Gram-positive and Gram-negative bacteria
and that celecoxib can be combined with other approved drugs
that cause leakage in the outer membrane, such as colistin, to
sensitize Gram-negative pathogens. Next, we investigated the
activity of celecoxib against clinical isolates of multidrug-resistant

S. aureus. Celecoxib inhibited the growth of all tested clinical
isolates of MRSA, VISA, VRSA, linezolid-resistant S. aureus
(NRS119), and mupirocin-resistant S. aureus (NRS107). MIC
values determined in our study for celecoxib against MRSA
correlates with MIC values reported for celecoxib against
F. tularensis and S. aureus in previous published studies (Chiu
et al., 2009, 2012).
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FIGURE 6 | Synergistic activity of celecoxib with topical and systemic
antimicrobials. The Bliss Independence Model confirms a synergistic effect
between celecoxib and conventional antimicrobials against various
drug-resistant strains of S. aureus (MRSA300, NRS119, NRS107, and VRSA5).

The degree of synergy was quantified after 12 h of treatment with celecoxib
(8 μg/ml) in combination with sub-inhibitory concentrations of topical
(mupirocin, fusidic acid, daptomycin, and retapamulin) and systemic
antimicrobials (gentamicin, clindamycin, vancomycin, and linezolid).

Time kill kinetics of celecoxib against S. aureus revealed
a unique biphasic killing pattern. The bactericidal effect of
celecoxib lasted for only a short time, after which gradual
regrowth of bacteria was noticed. This pattern of inhibition and
regrowth was reported for some antibiotics such as azlocillin and
tobramycin against P. aeruginosa (White et al., 1980; McFarland
et al., 1994). We suspected that the regrowth might be due to
resistant bacterial subpopulation but our attempts to isolate a
stable mutants to celecoxib failed. Additionally, at high MIC,
celecoxib tends to precipitate in the growth media which might
attributed to the regrowth of bacteria.

The mechanism of celecoxib’s broad-spectrum antibacterial
activity remains unidentified. In our study, we found that
celecoxib inhibited the synthesis of DNA, RNA, and protein
at concentrations significantly below the MIC. Additionally,
the disruption of lipid synthesis was evident at higher MIC
concentration, whereas no significant effect was observed on
the cell wall synthesis. These results indicate that perturbation

of the lipid synthesis by celecoxib might be a secondary
effect due to the early RNA and protein synthesis inhibition.
The effect of celecoxib on multiple macromolecular synthesis
pathways indicating that celecoxib may in fact have a complex
mode of action that involves inhibition of multiple targets in
S. aureus or it may disrupt general cellular energy metabolism.
Further, we attempted to generate a S. aureus mutant that
is resistant to celecoxib. No colonies resistant to celecoxib at
three-, five-, or tenfold the MIC were detected. In addition,
serial passage of S. aureus with sub-inhibitory concentration
of celecoxib for 12 days did not result in mutants resistant to
celecoxib. The potential inhibition of multiple bacterial enzymes
and pathways by celecoxib may help explain our inability to
isolate spontaneous celecoxib-resistant mutants. Future studies
are warranted to identify the precise molecular target (s) of
celecoxib.

In view of the broad spectrum antibacterial activity exhibited
by celecoxib in vitro, we decided to investigate the in vivo
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antibacterial activity of celecoxib in animal models of MRSA
infection. First we tested the efficacy inMRSA infected C. elegans.
Whole animal model including C. elegans, provides a great
platform for validating the in vivo efficacy of novel compounds
(Alajlouni and Seleem, 2013; Rajamuthiah et al., 2015). In
addition, C. elegans models enables simultaneous assessment of
efficacy and toxicity of the tested drugs, reduces the associated
cost of drug discovery and lowers the burden for extensive animal
testing (Alajlouni and Seleem, 2013; Rajamuthiah et al., 2015).
Our results indicates that celecoxib at 16 and 32 μg/ml, which
are concentrations without considerable toxicity to the host,
significantly reduced the mean bacterial load (by 71 and 85%,
respectively) when compared with a control group (P ≤ 0.05).
Celecoxib at 32 μg/ml had an effect on the mean bacterial
count that was comparable to that of linezolid (16 μg/ml).
Next, we moved forward to validate celecoxib’s efficacy in
a mouse model of MRSA infection. However, a high MIC
that cannot be achieved systemically is a major impediment
to the potential use of celecoxib as an antimicrobial agent.
While the use of celecoxib to treat systemic bacterial infections
is not currently possible, local application of celecoxib for
treating/preventing bacterial infections in wounds is a novel
application for this drug that holds considerable promise.
Therefore we decided to test the activity of celecoxib in
a topical MRSA skin infection model. Celecoxib 1 and 2%
significantly reduced the bacterial load in the wounds (by 72
and 87%, respectively) when compared with a control group
(P ≤ 0.05).

However, staphylococcal skin infections and exotoxins
secreted by S. aureus often induce excess host inflammatory
cytokines, which in turn aggravate the pathogenesis of the disease
(Montgomery et al., 2013; Sharma-Kuinkel et al., 2013).This
aggravated inflammatory cascade is thought to play a greater
role in the severity of S. aureus skin infections more than the
size of the bacterial burden (Montgomery et al., 2013; Sharma-
Kuinkel et al., 2013). Additionally, inflammation has been shown
to delay healing and to result in increased scarring (Eming
et al., 2007). Drugs with anti-inflammatory properties, especially
those that inhibit pro-inflammatory cytokines such as IL-6 and
TNF-α, would accelerate the healing of chronic wounds. (Tindall,
1999; Fournier and Philpott, 2005; McCormack, 2011; Kumar
et al., 2013; Sharma-Kuinkel et al., 2013). Celecoxib, which is
known to have anti-inflammatory activity, would potentially
be able to limit the inflammatory process induced by MRSA
infection. Therefore, we measured the inflammatory cytokines
in MRSA lesions treated with celecoxib. Topical treatment
with celecoxib 1% significantly (P ≤ 0.05) reduced levels of
TNF-α and IL-1β, while celecoxib 2% significantly (P ≤ 0.05)
reduced the levels of all the inflammatory cytokines measured
(IL-6, TNF-α, IL-1β, and MCP-1). This ability of celecoxib
to dampen the inflammatory response might aid the healing
of chronic wounds (Wallace and Stacey, 1998; Fournier and
Philpott, 2005; Cowin et al., 2006; Jialal et al., 2007; Khanna
et al., 2010; Donath, 2014). Celecoxib’s recognized beneficial
role in the wound healing process, reducing scar formation
without disrupting reepithelization, is an added advantage

for the treatment of bacterial skin infections (Wilgus et al.,
2003).

With increased emergence of resistant strains of S. aureus
to topical drugs of choice, such as mupirocin and fusidic acid,
combination therapies have recently been gaining attention
(Farrell et al., 2011; Huang et al., 2011; McNeil et al., 2011;
Brynildsen et al., 2013; Hu and Coates, 2013; Mohammad
et al., 2015). Identifying other antimicrobial partners capable
of being paired with celecoxib can potentially prolong the
clinical utility of these antibiotics and reduce the likelihood
of emergence of resistant strains. We, therefore, investigated
whether celecoxib has potential to be combined with antibiotics
against multidrug-resistant S. aureus strains by using the Bliss
independence model (Morones-Ramirez et al., 2013). Celecoxib
was found to exhibit a synergistic relationship with topical
(mupirocin, fusidic acid, daptomycin, and retapamulin) and
systemic antimicrobials (gentamicin, clindamycin, vancomycin,
and linezolid), against most of the tested multidrug-resistant
staphylococcal strains, including MRSA300, NRS119, NRS107,
and VRSA5. This finding provides a potential basis for
the combination of celecoxib with conventional antimicrobial
drugs for the treatment staphylococcal skin infections and
reducing the likelihood of strains developing resistance to
monotherapy. This combination therapy is also expected to
overcome some of the limitations associated with celecoxib
monotherapy through lowering the required therapeutic dose,
though further in vivo studies are needed to confirm this
point.

Taken together, our results show that celecoxib exhibits several
beneficial properties, including broad spectrum antimicrobial
activity against various multidrug resistant Gram-positive and
Gram-negative pathogens, synergistic action with conventional
antimicrobials, and anti-inflammatory activity that reduces
excess host inflammation during infection. Celecoxib may,
therefore, be a good candidate for repurposing for the
treatment of topical bacterial infections. This emerging approach
might form a novel alternative strategy in search of new
antimicrobials.
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