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In herbivores, enteric methane is a by-product from the digestion of plant biomass
by mutualistic gastrointestinal tract (GIT) microbial communities. Methane is a potent
greenhouse gas that is not assimilated by the host and is released into the environment
where it contributes to climate change. Since enteric methane is exclusively produced
by methanogenic archaea, the investigation of mutualistic methanogen communities
in the GIT of herbivores has been the subject of ongoing research by a number of
research groups. In an effort to uncover trends that would facilitate the development
of efficient methane mitigation strategies for livestock species, we have in this review
summarized and compared currently available results from published studies on this
subject. We also offer our perspectives on the importance of pursuing current research
efforts on the sequencing of gut methanogen genomes, as well as investigating their
cellular physiology and interactions with other GIT microorganisms.
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Introduction

In herbivores, fermentation of feed by mutualistic gastrointestinal tract (GIT) communities of
microorganisms is essential for proper nutrition of their hosts (Hungate, 1966). These microbial
communities consist of a great number of species from phylogenetically diverse groups, mainly
bacteria, archaea, protozoa, and fungi, that are mutually dependent through complex trophic
relationships (Wolin, 1979). As a result of the collective activities of these microorganisms,
polysaccharides, proteins, and lipids are metabolized into end products such as volatile fatty acids
(VFAs) that are assimilated by their host to fulfill their energy needs.

Certain products of microbial fermentation, such as carbon dioxide and methane, are not
absorbed by the host and are released into the environment. There are two main concerns
over methane emissions by livestock animals. First, they have a negative impact on animal
productivity, as this process results in lost energy from the host, which can range between
2 and 12% of an animal’s energy intake (Johnson and Johnson, 1995). Secondly, methane is
a much more potent greenhouse gas than carbon dioxide, thus having a greater effect on
climate change (Lashof and Ahuja, 1990). Since the continuous growth of the human population
is expected to result in an increase in the number of domesticated ruminants, decreasing methane
emissions by livestock has become a priority and an integral part of climate control policies
(Thorpe, 2008).
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Methane is synthesized by obligate anaerobic archaea that
sharemethanogenesis as part of their energymetabolism (Liu and
Whitman, 2008). Many methanogenic archaea, or methanogens,
use H2 and CO2 as substrates to synthesize methane, with certain
species also capable of metabolizing small organic compounds
such as formate, methanol, methylamines, or acetate (Thauer
et al., 2008). Although they do not contribute to fulfilling their
host’s energy requirements, methanogens play an important
role in the GIT of herbivores by maintaining the fermentative
performance of the microbial community. By metabolizing
H2 generated from fermentation of plant polysaccharides,
methanogens function as a sink to maintain a low H2 pressure,
which promotes plant fiber digestion by protozoa and bacteria
(Wolin, 1982).

As the only producers of enteric methane, methanogens are
responsible for the contribution of livestock industries to climate
change (Thorpe, 2008), and have thus become the focus of
research toward developing mitigation strategies. Variations in
methane emissions according to host and/or diet present an
important challenge toward achieving this goal. For instance, an
early study reported that gray kangaroos emitted less methane
than sheep fed the same diet (Kempton et al., 1976). Similarly,
lower levels of methane were observed for camelids compared to
ruminant livestock (Pinares-Patino et al., 2003; Dittmann et al.,
2014), and Franz et al. (2010) found that methane emissions were
higher in sheep compared to ponies. Methane production has
been found to increase on higher forage/cellulose diets, especially
when comparing grass forage to legume forage (McAllister et al.,
1996). In growing beef cattle, methane emissions were not
affected by the type of grain fed during backgrounding, but they
were found to be lower for corn compared to barley during the
finishing phase (Beauchemin andMcGinn, 2005). In contrast, the
addition of high quality feeds, oils, plant secondary compounds,
or microbial modifiers can reduce methane emissions (Lovett
et al., 2003; Woodward et al., 2004; Carulla et al., 2005; Puchala
et al., 2005; Beauchemin et al., 2007, 2009; Grainger et al., 2009,
2010). In most cases, this variation does not appear to be due
to differences in methanogen cell density, but rather in the
composition of the methanogen community. For instance, it was
observed during anti-methanogen vaccination trials that, while
methane emissions from immunized animals were decreased
in early stages, they returned to control levels after prolonged
immunization (Wright et al., 2004). The vaccine was expected
to target methanogens that were highly represented in the
rumen microbial community, which may have allowed other
methanogens that would otherwise be at a disadvantage to
increase in abundance in the rumen of immunized animals
(Williams et al., 2009). Based on these results, it was hypothesized
that GIT methanogen communities may consist of different
groups that could vary in their potential for growth and methane
production.

Since the composition of a methanogen community
represented a likely determinant of its capacity to produce
methane, the investigation of mutualistic methanogen
communities in the GIT of a variety of host herbivores or
in response to different diets has been the subject of active
and ongoing research. As with other fields in environmental

microbiology, research on GIT methanogens has benefited
greatly from the rapid technological improvements of culture-
independent experimental approaches. In this review, we have
summarized and compared data available from published studies
on the composition and representation of methanogens in the
GIT of herbivores. While they tend to be distinct, according
to a variety of factors including host breed, species, diet and
geographical location, and by mechanisms that remain poorly
characterized (Kim et al., 2011), the data also indicate that GIT
methanogens form phylogenetic clusters that exhibit a certain
degree of overlap among different communities.

Prevalent Methanogens in the GIT
Communities of Herbivores

Archaea have been identified in a wide range of habitats (Liu
and Whitman, 2008), forming a large and diverse prokaryotic
domain, not only ecologically but also phylogenetically. The
majority of currently known archaeal species have been assigned
to the phyla Euryarchaeota or Crenarchaeota, but additional
phyla have been proposed to account for the high degree of
divergence found in certain archaea, including Thaumarchaeota,
Nanoarchaeota, Korarchaeota, Parvarchaeota, and Aigarchaeota
(Shin et al., 2004; Allers and Mevarech, 2005; Brochier-Armanet
et al., 2008, 2011; Nunoura et al., 2011; Rinke et al., 2013;
Petitjean et al., 2014; Raymann et al., 2015). All currently
known methanogens belong to the phylum Euryarchaeota,
which is divided into seven orders (Methanobacteriales,
Methanocellales, Methanococcales, Methanomassiliicoccales,
Methanomicrobiales, Methanosarcinales, and Methanopyrales),
that include 10 families and 31 genera (Liu and Whitman,
2008; Sakai et al., 2008; Paul et al., 2012; Iino et al., 2013).
Methanogens have colonized as a group a wide variety of
anaerobic environments, including marine and freshwater
sediments, soil, and landfills, and are thus not limited to just the
GIT of animals.

The 16S rRNA gene is the most commonly used phylogenetic
marker for the characterization of bacterial and methanogen
communities (Skillman et al., 2006; Rajendhran and
Gunasekaran, 2011). Thus, the data we have selected on
methanogen composition from the gut of herbivorous animals
was generated using 16S rRNA gene clone libraries or next
generation sequencing of amplicons. Typically, a minority of
the GIT archaeal 16S rRNA gene sequences identified to date
are identical to validly characterized methanogens species, while
the remaining majority of sequences exhibit a varying degree
of relation to methanogen species. Despite their diversity, GIT
methanogens group into very distinct phylogenetic clusters of
archaea (Kim et al., 2011). In this section, we aim to present the
major groups of methanogens that have been identified in the
GIT of herbivores.

Methanobrevibacter-Related Archaea
16S rRNA gene sequences closely related to certain
species belonging to the genus Methanobrevibacter (order
Methanobacteriales) are among the most frequently found
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in GIT samples from livestock animals. While representation
can vary according to host species, diet, and/or geographical
location, dominance of Methanobrevibacter-related archaea
reported by a number of different studies is quite striking.
Indeed, Methanobrevibacter-related methanogens represented
more than ∼80% of 16S rRNA gene sequences from hosts
ranging from birds [hoatzin (Wright et al., 2009)] andmarsupials
[wallaby-May sample (Evans et al., 2009)] to pseudo-ruminants
[alpaca (St-Pierre and Wright, 2012), Bactrian camel (Turnbull
et al., 2011)] and ruminants [buffalo – Mediterranean breed
(Franzolin et al., 2012), cattle-New Zealand (Seedorf et al., 2015),
dairy cattle (Hook et al., 2009, 2011; King et al., 2011), goats
(Cunha et al., 2011), impala (Cersosimo et al., 2015), reindeer-
Norway (Sundset et al., 2009a), sheep-Venezuela (Wright
et al., 2008), sheep-Scotland (Snelling et al., 2014), sheep-New
Zealand (Seedorf et al., 2015), and yak (An et al., 2005)]. In
other studies, they represented a lower, but well represented
proportion (27–60%) of identified clones or sequence reads in
cattle (Whitford et al., 2001; Skillman et al., 2006), reindeer-
Svalbard (Sundset et al., 2009b), white rhinoceroses (Luo
et al., 2013), Chinese roe deer (Li et al., 2014), and Mehsani
water buffaloes (Singh et al., 2015). Since characterized
species of Methanobrevibacter mainly use H2 and CO2 as
substrates for methanogenesis, it is hypothesized that uncultured
Methanobrevibacter-related methanogens identified by their 16S
rRNA gene sequence are also hydrogenotrophic.

Currently, 15 cultured Methanobrevibacter species have
been characterized according to the List of Prokaryotic
Names with Standing in Nomenclature (LPSN). However,
GIT Methanobrevibacter-related methanogens from
livestock animals tend to be more closely related to either
Methanobrevibacterruminantium, Methanobrevibacter millerae,
Methanobrevibacter gottschalkii, or Methanobrevibacter smithii.
While typically found in lower frequency, 16S rRNA sequences
with closest identity to either Methanobrevibacter olleyae,
Methanobrevibacter thaueri, or Methanobrevibacter wolinii
have also been reported in GIT samples. Methanobrevibacter
boviskoreani has been the latest addition to the list of cultured
rumen methanogens from this group (Lee et al., 2013),
with Methanobrevibacter wolinii as its closest relative.
To our knowledge, Methanobrevibacter woesei related
methanogens have only been reported in chickens, and
16S rRNA gene sequences from the GIT of herbivores
that are related to either Methanobrevibacter curvatus,
Methanobrevibacter cuticularis, Methanobrevibacter oralis,
Methanobrevibacter arboriphilus, Methanobrevibacter filiformis,
or Methanobrevibacter acididurans have only rarely if ever been
identified in this environment.

SGMT-RO Population Model for
Methanobrevibacter-Related Methanogens
While it appears that most Methanobrevibacter-related GIT
16S rRNA gene sequences tend to be closely related to a
limited number of validMethanobrevibacter species, they exhibit
a remarkable level of diversity that has been estimated to
be in the 100s of species-level operational taxonomic units
(OTUs; Kim et al., 2011). Indeed, the level of sequence identity

for Methanobrevibacter-related 16S rRNA gene sequences can
typically vary between 90 and 100% with their respective
closest valid methanogens species. Therefore, although GIT
methanogens are from similar phylogenetic groups, they appear
to form a continuum of species rather than discrete groups
(Janssen and Kirs, 2008). However, only a subset of OTUs are
identified in each sample, with typically a few OTUs that tend
to be more abundant (Wright et al., 2007, 2009; Sundset et al.,
2009a,b; Hook et al., 2011; King et al., 2011; Turnbull et al.,
2011; Franzolin et al., 2012; St-Pierre and Wright, 2012; Snelling
et al., 2014; Cersosimo et al., 2015; Seedorf et al., 2015). To
facilitate the creation of GIT methanogen community structure
models from environmental samples, sequence identity cutoffs
can be set at specific levels to group 16S rRNA genes from
methanogens of the same presumptive species or of the same
presumptive genus. The representation of each category in an
environmental sample can thus be expressed as a percentage
of the total number of clones or sequence reads identified in
its corresponding study. Methanogen communities can then
be compared between host breeds, species, feed regimens,
and/or geographical locations. While there is currently no
absolute 16S rRNA gene sequence identity cutoff that has
been set to formally distinguish methanogens of the same
species or genus from uncultured archaea, it remains a very
useful tool to uncover various trends in archaeal community
composition.

As a complementary approach, we have also explored the
use of phylogenetic analyses of Methanobrevibacter-related GIT
16S rRNA gene sequences to create community structure
models. While they appear to form a continuum of species,
we observed that Methanobrevibacter-related GIT 16S rRNA
gene sequences are mostly distributed between two large
clades. One clade consists of sequences that are closely related
to Methanobrevibacter smithii, Methanobrevibacter gottschalkii,
Methanobrevibacter millerae or Methanobrevibacter thaueri,
which we have referred to as the smithii – gottschalkii –
millerae – thaurei clade, or simply as the SGMT clade. The
other major clade groups Methanobrevibacter ruminantium and
Methanobrevibacter olleyae – like sequences, which we have
referred to as the ruminantium – olleyae or RO clade.

After re-examining available data by our research team and
other research groups to compare the sequence distribution
between the SGMT clade and the RO clade, we were able to group
samples from a wide variety of sources into more encompassing
categories (Table 1). For instance, the SGMT clade was clearly
more dominant than the RO clade in impalas (Cersosimo et al.,
2015), wallabies (May sample; Evans et al., 2009), in two separate
studies involving Holstein dairy cows (Hook et al., 2009, 2011),
in alpacas (St-Pierre and Wright, 2012), in water buffaloes
(Franzolin et al., 2012), in sheep from Venezuela (Wright et al.,
2008), in sheep from Scotland (Snelling et al., 2014), in New
Zealand sheep fed two different diets (Seedorf et al., 2015), in
Chinese roe deer (Li et al., 2014), and in reindeers (Norway and
Svalbard; Sundset et al., 2009a,b). In contrast, the RO clade was
distinctively more highly represented than the SGMT clade in
the hoatzin (Wright et al., 2009), in an early analysis involving
Holstein dairy cows (Whitford et al., 2001), in corn-fed beef
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TABLE 1 | Representation of SGMT and R0 methanogens in different hosts and diets.

Host SGMTa (%) ROa (%) Reference

Alpacas 70.0 17.6 St-Pierre and Wright (2012)

Bactrian camel (Potter sample) 30.2 66.0 Turnbull et al. (2011)

Bactrian camel (Southwick sample) 80.0 18.2 Turnbull et al. (2011)

Beef cattle (corn diet) 4.0 48.0 Wright et al. (2007)

Beef cattle (potato diet) 28.9 21.1 Wright et al. (2007)

Cattle (April 2010)c 38.0 49.0 Seedorf et al. (2015)

Cattle (September 2010)d 48.0 38.0 Seedorf et al. (2015)

Chinese roe deer (rumen) 77.0 1.0 Li et al. (2014)

Chinese roe deer (cecum) 68.0 1.0 Li et al. (2014)

Dairy cows (Holstein) 0.0 58.5 Whitford et al. (2001)

Dairy cows (Holstein) 65.7 32.5 Hook et al. (2009)

Dairy cows (Holstein) 93.4 5.9 Hook et al. (2011)

Dairy cows (Holstein)b 36.0 59.0 King et al. (2011)

Dairy cows (Jersey) 13.3 33.3 Skillman et al. (2006)

Dairy cows (Jersey)b 53.0 44.0 King et al. (2011)

Hoatzin 0.0 85.8 Wright et al. (2009)

Horses (pasture)e 0.0 66.3 Fernandes et al. (2014)

Horses (forage-grain)e 1.4 63.0 Fernandes et al. (2014)

Impalas 93.0 2.9 Cersosimo et al. (2015)

Sheep (lucerne)f 42.0 20.0 Seedorf et al. (2015)

Sheep (pasture)g 55.0 33.0 Seedorf et al. (2015)

Sheep (Scotland) 75.5–91.6 0.0–1.4 Snelling et al. (2014)

Sheep (Venezuela) 62.5 32.7 Wright et al. (2008)

Reindeer (Norway) 50.0 31.5 Sundset et al. (2009a)

Reindeer (Svalbard) 44.8 2.3 Sundset et al. (2009b)

Wallabies (May sample) 91.6 0.0 Evans et al. (2009)

Water buffaloes 62.5 28.1 Franzolin et al. (2012)

aRepresentation presented as a percentage of the total methanogen population.
bDairy cows of both breeds were maintained as a single herd under the same diet and environmental conditions.
cValues presented are the median of n = 15, as reported by Seedorf et al. (2015).
dValues presented are the median of n = 16, as reported by Seedorf et al. (2015).
eValues presented are the median of n = 6, as reported by Fernandes et al. (2014).
fValues presented are the median of n = 11, as reported by Seedorf et al. (2015).
gValues presented are the median of n = 8, as reported by Seedorf et al. (2015).

cattle (Wright et al., 2007), in Jersey dairy cows (Skillman et al.,
2006), and in horses fed a pasture or forage-grain diet (Fernandes
et al., 2014). Notably, only a few studies have reported a balanced
SGMT:RO, such as from potato-fed beef cattle (Wright et al.,
2007).

In some reports, comparative studies have revealed opposite
SGMT:RO population composition as a function of breeds or
as a function of environmental factors within the same breed.
This was observed in Holstein and Jersey dairy cows from the
same herd maintained under common environmental conditions
(King et al., 2011), as well as in cattle from New Zealand
sampled at two different time points (Seedorf et al., 2015).
In captive Bactrian camels sampled from zoological parks at
two different locations in the USA, the SGMT:RO ratio for
hindgut methanogens showed an opposite population structure
pattern between the two sampled communities (Turnbull et al.,
2011).

Dividing sequences between SGMT and RO clades can
also help in uncovering differences in community structure
between GIT samples that have a similar representation of

Methanobrevibacter-related sequences. For instance, while they
account for 93.0 and 85.8% of methanogens identified in sheep
from Venezuela and in the hoatzin, Methanobrevibacter-related
sequences have a completely opposite SGMT:RO distribution in
these hosts. While additional studies are required to elucidate
the respective contributions of host species genetics and
environmental factors in the determination of whether the SGMT
or the RO clade will be the most highly represented in a
methanogen community, they may represent archaeal groups
that thrive in different conditions. For instance, factors such as
rumen or forestomach pH, tolerance to toxic compounds, and
the rate of passage can act as selection agents, either individually
or in combination, by promoting the growth of particular groups
of methanogens, thereby affecting the population structure of the
archaeal community (Janssen and Kirs, 2008). In this context,
the natural division of Methanobrevibacter-like sequences into
the SGMT and RO clades allows a higher level of specificity in
developing population structure models for GIT methanogens
that take into account phylogeny and representation, which
can then be tested for methane production under controlled
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conditions in vivo or in vitro. This strategy could prove to be very
valuable in the design of broad range mitigation strategies in the
future.

Other Methanogen Groups Commonly
Identified in the GIT of Herbivores
In addition to Methanobrevibacter-related methanogens,
other archaeal phylogenetic groups have also been frequently
reported in herbivore GIT samples. Indeed, members of the
order Methanomassiliicoccales (Iino et al., 2013), a group
of methanogens also referred to as rice cluster III (Kemnitz
et al., 2005), rumen cluster C (Janssen and Kirs, 2008) or
Methanoplasmatales (Paul et al., 2012), are also a prominent
group of GIT methanogens. Not only are they frequently found
in GIT samples from livestock animals, they have also been
found to be a highly prevalent type of archaea in the rumen
environment. This has been the case in wallabies sampled in
November (91.7%; Evans et al., 2009), sheep from Australia
(80.8%; Wright et al., 2006), yak from China (79.4%; Huang
et al., 2012), Svalbard reindeer (47.4%; Sundset et al., 2009b), and
in beef cattle fed either a potato (50.0%) or corn (46.1%) diet
(Wright et al., 2007). Rumen methanogens from this taxonomic
group have been reported to use methylamines as substrates for
methanogenesis (Poulsen et al., 2013). Since compounds such
as betaine and choline have been shown to be metabolized by
rumen bacteria to produce methylamines (Bradbeer, 1965; Neill
et al., 1978; Mitchell et al., 1979; Moller et al., 1986; Eklund
et al., 2005), their presence in certain feedstuffs such as molasses
and wheat derived products, or their use as feed additives, may
favor the prevalence of Methanomassiliicoccales methanogens
in a rumen environment. Paul et al. (2012) also reported that
uncultured Methanomassiliicoccales methanogens could be
enriched from the gut of higher termites when methanol was
used as a substrate for methanogenesis.

Since they have been found to be highly prevalent in
host species that can also have a high representation of
Methanobrevibacter-related methanogens, this information
is necessary to generate more comprehensive models for
methanogen populations in the GIT of herbivores, such
as perhaps be incorporated with the SGMT-RO model.
Interestingly, sequences from specific habitats tend to be
associated with certain clades (Paul et al., 2012; Seedorf et al.,
2014). However, the limited number of isolates or representative
16S rRNA gene sequences that are available may not currently
allow the same level of resolution that can be obtained with
Methanobrevibacter-related sequences (Seedorf et al., 2014).

While they are in general less abundant than
Methanobrevibacter-related or Methanomassiliicoccales
sequences, 16S rRNA gene sequences that are more closely
related to other methanogen species, such as Methanosphaera
stadtmanae and Methanomicrobium mobile, or genera, such as
Methanoculleus and Methanosarcina, have also been identified
in the GIT of herbivores. While they are usually detected at
a low frequency, they have in some studies been shown to be
the most prevalent methanogens under certain conditions. For
instance, from studies conducted in India, 94.4% of 16S rRNA
gene sequences identified in the rumen of Murrah buffaloes

were closely related to Methanomicrobium mobile (Chaudhary
and Sirohi, 2009), and abundances of 97.1 and 72.3% of the
same methanogen group were reported in Surti buffaloes (Singh
et al., 2011, 2013). Furthermore, archaea belonging to the order
Methanomicrobiales were predominant in the GIT of Japanese
local ponies and thoroughbred horses (Lwin and Matsui, 2014).
It remains to be determined why these methanogens were so
prevalent in these particular conditions while they are usually
detected at a much lower frequency.Methanosphaera stadtmanae
was found to be the most prevalent methanogen in the hindgut
of captive orangutans (Facey et al., 2012). This methanogen
species has a limited substrate range for methane synthesis,
and is notably unable to use H2 and CO2 for this purpose.
Digestion of fruit pectin in frugivores like the orangutan has
been hypothesized to increase GIT concentrations of methanol
and acetate, which would provide a favorable environment for
Methanosphaera stadtmanae methanogens to thrive. Finally,
Methanocorpusculum labreanum was found to be the most
abundant (59.9%) in the hindgut of captive white rhinoceroses
(Luo et al., 2013). The identification and predominance of
this type of methanogen in a GIT environment is unusual
compared to most other reported studies. Predominance
of Methanocorpusculum has also been reported in the fecal
microbiota of Irish Thoroughbred racehorses (O’Donnell et al.,
2013), but, as pointed out by the authors of that study, the use of
the 16S rRNA gene V4 region may have underestimated archaeal
diversity. Another study on equine fecal microbiota found that
Methanocorpusculum-related methanogens were co-abundant
with Methanobrevibacter-related methanogens (Fernandes et al.,
2014). Methanocorpusculum archaea were observed at a median
of 17.7% in horses fed a forage-grain diet, and at a median
of 31.9% in horses maintained on pasture. They were only
found to be more abundant than Methanobrevibacter-related
methanogens in samples collected 4 days after a transition from
a forage-grain diet to pasture had occurred.

Future Perspectives on GIT Methanogen
Research in Herbivores

Sequencing of GIT Methanogen Genomes
Progress in biological research is often the result of technological
advancements that improve experimental approaches. Numerous
investigations of GIT methanogen communities to date have
been performed using denaturing gradient gel electrophoresis
(DGGE) analyses or Sanger sequencing of clone libraries, which
both have intrinsic limitations in scope and resolution. However,
next-generation sequencing has greatly improved the scope
of microbial ecology studies, providing more comprehensive
sequence datasets as well as allowing analysis of more
independent samples and replicates (Denman and McSweeney,
2015).

While great strides have been made in characterizing
the taxonomic composition of rumen and GIT methanogen
communities, there remains a critical need to further our
understanding of their metabolism and cellular physiology,
particularly for species or candidate species that tend to be the
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most abundant. This knowledge would greatly contribute to the
development of practical mitigation strategies. By revealing the
biochemical potential of an organisms through prediction of its
proteome, genome sequencing represents an effective strategy
to elucidate the physiology of poorly characterized organisms.
In terms of methane mitigation, it could for instance allow the
identification of enzymes whose activity may be targeted with
chemical antagonists, or surface proteins that may be used as
antigens for the production of antibodies. Whether the devised
strategies directly target methanogenesis, aim at reducing growth
rates of methanogens or antagonize interactions with other
microorganisms, they each have the potential to reduce enteric
methane production.

Representative genomes of methanogens that have been
identified in the GIT of livestock are currently limited in
number. For instance, Methanobrevibacter ruminantium (Leahy
et al., 2010) and Methanobrevibacter smithii (Samuel et al.,
2007) are the only GIT Methanobrevibacter for which genomic
data and predicted proteomes have been described in peer-
reviewed publications. Permanent drafts for Methanobrevibacter
boviskoreani and Methanobrevibacter wolinii are available,
while efforts to complete the genomes of Methanobrevibacter
millerae and Methanobrevibacter olleyae are ongoing. Both
Methanobrevibacter gottschalkii and Methanobrevibacter thaurei
have been selected to have their genome sequenced [see the Joint
Genome Institute (JGI), Genomes Online Database (GOD)1].
As discussed in previous sections, these methanogens together
represent the most common or abundant GIT archaea in
livestock animals.

For GIT intestinal methanogens belonging to the
order Methanomassiliicoccales, three genomes have so
far been reported, all from isolates cultured from human
feces: Methanomassiliicoccus luminyensis (Dridi et al.,
2012), Methanomassiliicoccus alvus (Borrel et al., 2012),
and Methanomassiliicoccus intestinalis (Borrel et al., 2013).
Once sequence information from Methanomassiliicoccales
representatives isolated from livestock become available, it will
be of great interest to compare their genome with the human
isolates. Available genomes of methanogens that are generally
less well represented in GIT environments include species from
the genera Methanosarcina (Deppenmeier et al., 2002; Galagan
et al., 2002; Maeder et al., 2006), Methanosphaera (Fricke
et al., 2006), Methanocorpusculum (Anderson et al., 2009), and
Methanomicrobium mobile (see JGI-GOD1).

Analysis of the Methanobrevibacter ruminantium genome is
a good example of the information that can be obtained from
predicting the proteome of a methanogen (Leahy et al., 2010).
For instance, it revealed the ability to use formate in addition to
H2 as a substrate for methanogenesis, showed that this organism
is unable to synthesize coenzyme M, and provided a metabolic
explanation for the requirement of acetate for growth. It also
uncovered a large array of genes encoding putative adhesins, and
identified loci related to phage genes. In addition, this genomic
information can also be used as a reference for metagenomics and
metatranscriptomics analyses in GIT environments.

1https://gold.jgi-psf.org/

While this technology is providing an unprecedented capacity
for genome sequencing, as attested by the increasing number
of published microbial genomes, the complete and accurate
determination of a prokaryotic genome is not a trivial
undertaking and requires research teams adept in technical and
bioinformatic skills. In addition, an important limitation in this
process is the isolation and cultivation of methanogens, which
remain a challenge for many strains. Therefore, genomes to
sequence should be strategically selected considering the wide
diversity of methanogens that populate the GIT of herbivores.
In this context, population structure studies such as summarized
in this review that are based on representation and phylogeny
provide a critical basis in the selection of methanogens of
interest.

In the long term, providing an increased number of available
GIT methanogens genomes is essential for the development
of effective and comprehensive mitigation strategies. Since
the use of entire genome sequences dramatically improves
phylogenetic analysis of archaea compared to only using 16S
rRNA gene sequences (Brochier-Armanet et al., 2011), this
will allow the accurate identification of phylogenetic nodes
that are shared by clusters of GIT methanogens, which can
be targeted for mitigation. In addition, comparative genome
analyses will reveal conserved proteins within phylogenic clusters
of methanogens, such as surface molecules that can be targeted
by vaccination or intracellular factors that can be targeted for
chemical inhibition. Alternatively, metatranscriptomics can also
be used to identify mitigation targets. For instance, Shi et al.
(2014) recently reported that transcription of methanogenesis
pathway genes was elevated in sheep with high methane
emissions.

Culture-Based Investigations of GIT
Methanogen Microbiology
As highlighted in the previous section, the available community
compositions from gut methanogens in herbivores has revealed
that, while there can be some overlap between samples,
each so far appears to be unique. By mechanisms that are
currently unknown, certain methanogens can be prevalent
under particular conditions (e.g., host breed, species, diet, or
geographical location), while they are detected at a lower
frequency in other cases. In order to gain further insight,
there needs to be an increase in culture-based microbiological
studies of GIT methanogens, which are better suited for
mechanistic studies that require a controlled environment.
Due to the limited number of GIT methanogen species that
have successfully been isolated and grown in vitro (Creevey
et al., 2014), direct culturing of GIT samples represents
an attractive alternative which would yield valuable insights
not only about methanogens, but also of their interactions
with other members of the community. The importance of
such investigations can be emphasized by reports such as by
Popova et al. (2013), where differences in methane production
capacity were found between rumen and cecal contents from
lambs fed high grain content diets, despite Methanobrevibacter-
related methanogens being the most abundant archaea in both
environments.
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Investigation of Intra-Community Interactions
Involving Methanogens
The complexity of GIT microbial communities in herbivores
is not simply due to their high cellular density and diversity,
but is also a result of intricate networks of inter-species trophic
relationships. Methanogens depend on other microorganisms for
substrates such as H2 and CO2 to sustain their energy needs
through anaerobic respiration and methane synthesis. While
methanogens can acquire substrates from their surrounding
environment, some can associate intimately with protozoa or
fungi. For instance, it was reported that the free-living (FL)
and protozoa-associated methanogen (PAM) populations were
composed of the same major groups (Methanobrevibacter and
Methanomicrobium), but that their composition differed between
FL and PAM (Tymensen et al., 2012). In addition, the distribution
of species-level OTUs within the same subgroups was found to
differ as well. A study by Belanche et al. (2014) also reported
that PAMs represented a more variable population than FL
methanogens. If such interactions contribute to greater methane
production, then their disruption could potentially be used as a
mitigation strategy. It will also be of interest to investigate the
degree of specificity between partner species that is required for
these cell–cell interactions to occur.

The potential of specific trophic relationships between
methanogens and bacteria should also be further explored. In
studies conducted in sheep as a model ruminant (Morgavi et al.,
2012), it was reported that the liquid-associated bacterial and
methanogens fraction of animals kept without protozoa for more
than 2 years produced more methane than the corresponding
rumen fractions from faunated animals or animals defaunated
for only a few months. Accordingly, the same study found that
animals maintained without protozoa for more than 2 years were
higher methane emitters than animals that had been defaunated
for a few months.

Concluding Remarks

While great strides have been made in the study of rumen
methanogen populations in a variety of hosts and environmental
conditions, further investigations still are required in order
to gain sufficient insight to develop comprehensive methane
mitigation strategies targeting methanogens. It will only
be through a sustained effort in combining genomics and
cellular analyses that this goal may be reached in the near
future.
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