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We evaluated effects of 9-year simulated nitrogen (N) deposition on microbial

composition and diversity in the rhizosphere of two dominant temperate grassland

species: grass Stipa krylovii and forb Artemisia frigida. Microbiomes in S. krylovii and

A. frigida rhizosphere differed, but changed consistently along the N gradient. These

changes were correlated to N-induced shifts to plant community. Hence, as plant

biomass changed, so did bacterial rhizosphere communities, a result consistent with the

role that N fertilizer has been shown to play in altering plant-microbial mutualisms. A total

of 23 bacterial phyla were detected in the two rhizospheric soils by pyrosequencing,

with Proteobacteria, Acidobacteria, and Bacteroidetes dominating the sequences of

all samples. Bacterioidetes and Proteobacteria tended to increase, while Acidobacteria

declined with increase in N addition rates. TM7 increased >5-fold in the high N addition

rates, especially in S. krylovii rhizosphere. Nitrogen addition also decreased diversity

of OTUs (operational taxonomic units), Shannon and Chao1 indices of rhizospheric

microbes regardless of plant species. These results suggest that there were both similar

but also specific changes in microbial communities of temperate steppes due to N

deposition. These findings would contribute to our mechanistic understanding of impacts

of N deposition on grassland ecosystem by linking changes in plant traits to their

rhizospheric microbes-mediated processes.

Keywords: nitrogen deposition, microbial diversity, rhizosphere, Illumina Miseq, temperate steppe, Artemisia

frigida, Stipa kerlovii

Introduction

Nitrogen (N), an essential mineral nutrient to plant growth, is one of the most limiting factors
in many terrestrial ecosystems (Vitousek et al., 2002; Scheible et al., 2004; Asakawa and Kimura,
2008). However, elevated levels of N deposition are changing N inputs and impacting many
ecological processes (Sala et al., 2000; Gilliam, 2006). Many ecosystems have developed under tight
nutrient cycling and low amounts of available nutrients. In these systems, elaborate plant-microbial
mutualisms have developed and are the foundation of ecosystem function (Reynolds et al., 2003).
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Nitrogen deposition can disrupt these plant-microbial
interactions, which may feedback to alter microbial communities
and ecosystem function (Sala et al., 2000; Gilliam, 2006;
Martinelli et al., 2006).

Human industrial activities have led to a doubling, on average,
of N deposition into terrestrial ecosystems and these inputs are
expected to increase in the future (Galloway et al., 2004, 2008;
Bodirsky et al., 2014). In China, N deposition has significantly
increased over the last three decades, and in some regions are 5X
greater than previous decades (Liu et al., 2013). Consequently,
the impacts of N input due to deposition of atmospheric N
on terrestrial ecosystems warrant further study (Galloway et al.,
2004, 2008).

Grassland ecosystems are highly sensitive to N deposition,
where long-term N addition has been shown to significantly
reduce plant species richness (Stevens et al., 2004; Clark and
Tilman, 2008). The semi-arid grasslands in northern China,
which are a part of the Eurasian steppe, are exposed to enhanced
N deposition rates (Zhang et al., 2008; Liu et al., 2013), and
experienced reductions in plant species richness (Bai et al.,
2010; Song et al., 2011; Fang et al., 2012; Tian et al., 2015).
Several mechanisms have been proposed to explain the decline
in species richness by N deposition (Suding et al., 2005; Harpole
and Tilman, 2007; Bobbink et al., 2010), and among them are
changes in soil microbial activity and biodiversity (Chen et al.,
2014; Dean et al., 2014). Nitrogen deposition to a variety of
terrestrial ecosystems has also been shown to profoundly affect
soil microbial communities (Ramirez et al., 2010, 2012; He
et al., 2013; Liu et al., 2014b; Zhang et al., 2014), however,
these studies have not emphasized the involvement of root-zone
and rhizosphere microbes; rather they have mainly focused on
microbes in soils generally. The rhizosphere niche is an important
interface for plant-microbes interactions and key to the success
of both plants and microbes (Bakker et al., 2013). Microbe
communities in the rhizosphere soils differ from those in bulk
soils (Berg and Smalla, 2009), thus deserving specific attention
for understanding ecosystem responses to N deposition. It is
conceivable that microbial communities in the rhizosphere of
different plant species may respond more strongly and perhaps,
differently, to N deposition. Recently, Dean et al. (2014) found
that N deposition affected host-associated plant root-associated
fungi, however, there was no broader description of fungal or
rhizosphere bacterial communities.

In the present study, we found that plant community shifted
from co-dominance by a monocot grass, Stipa krylovii, and
a dicot forb, Artemisia frigida, to exclusive dominance by
a monocot grass in an Inner Mongolia steppe after 9-year
of N addition. To test whether the microbial communities
colonizing S. krylovii and A. frigida rhizosphere niche respond,
and respond in similar or different ways to N addition, we
used the high-throughput Illumina Miseq sequencing platform
to characterize the rhizosphere microbial communities of
the two dominant plant species under varying simulated
N deposition rates. The following question was specifically
addressed: Whether the rhizosphere microbial communities
would be associated with plant host and its response to N
deposition rate?

Materials and Methods

Study Site
The experiment was conducted in Duolun county (42◦02′N,
116◦17′E, 1324m a.s.l.), Inner Mongolia, China. The area is
located in a semiarid temperate steppe where the mean annual
temperature is 2.1◦C and long-term annual precipitation is
382.2mm (Yang et al., 2011; Fang et al., 2012). The soil in the
area is chestnut (Chinese classification) and Haplic Calcisols
(FAO classification). The soil bulk density is 1.31 g cm−3 and
pH is about 6.84 (Fang et al., 2012). The dominant species
in this typical temperature steppe are A. frigida, S. krylovii,
Cleistogenes squarrosa, Allium bidentatum, Potentilla acaulis,
Leymus chinensiss, Salsola collina, Carex korshinskyi,Melilotoides
ruthenica, and Agropyron cristatum (Niu et al., 2008; Fang et al.,
2012).

Experimental Design
In the experimental area, 64 plots of 15 × 10 m separated
by 4-m-wide buffer strips were established in an 8 × 8 Latin
square experimental design. Nitrogen was added as urea (N,
46%) at the midpoint of the growing season (July) every year
since 2003. There were eight levels of N fertilization including
a control, 0 (N0), 1 (N1), 2 (N2), 4 (N4), 8 (N8), 16 (N16),
32 (N32), and 64 (N64) g N m−2 year−1 with ambient N
deposition of 1.6 g N m−2 year−1 (Zhang et al., 2008). In the
present study, the rhizosphere soil samples were collected from
32 plots with four levels of N fertilization, ambient (N0), 2 (N2),
8 (N8), and 16 (N16) g N m−2 year−1. The rhizospheric soils
from at least two individual plant roots of the two dominant
species (S. krylovii, A. frigida) in each plot were sampled in
August 2012 by collecting soils that were adhered to roots
after vigorously shaking roots removed from field by a spade
as described by Smalla et al. (2001). The rhizospheric soils
were sampled from the eight plots under the four N addition
levels, and the final three soil samples used for sequencing
were obtained by randomly mixing the samples from 3, 3, and
2 plots, respectively. These ensure that the rhizospheric soil
samples covered the eight replicates for N addition. Aboveground
biomass in one quadrat (1 × 1 m) at each plot was clipped
and determined since August 2004 as described by Fang et al.
(2012).

Sequencing and Data Analysis
The total genomic DNA was extracted from 0.5 g rhizosphere
soils using the SoilGen DNA Kit (CWbiotech Corporation,
China) according to the manufacturer’s instructions. PCR
amplifications were conducted with the 515f/806r (GTG
CCAGCMGCCGCGGTAA/GGACTACHVGGGTWTCTAAT)
primer set that amplified the V4 region of the 16S rRNA gene
(Peiffer et al., 2013). The primer set was selected as it exhibits
few biases and should yield accurate taxonomic information.
The reverse primer contained a 6-bp error-correcting barcode
unique to each sample. The PCR reaction was carried out in
30µL reactions with 15µL of Phusion R© High-Fidelity PCR
Master Mix (New England Biolabs); 0.2µM of forward and
reverse primers, and about 10 ng template DNA. Thermal cycling
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was consisted of initial denaturation at 98◦C for 1min, then
30 cycles of denaturation at 98◦C for 10 s, annealing at 50◦C
for 30 s, elongation at 72◦C for 60 s and finally 72◦C for 5min.
PCR products were mixed in equal density ratios. Then, mixture
PCR products were purified with GeneJET Gel Extraction
Kit (Thermo Scientific). Sequencing libraries were generated
using NEB Next R© Ultra™ DNA Library Prep Kit for Illumina
(NEB, USA) following manufacturer’s recommendations and
index codes were added. The library quality was assessed on
the Qubit @ 2.0 Fluorometer (Thermo Scientific) and Agilent
Bioanalyzer 2100 system. At last, the library was sequenced on
an Illumina MiSeq platform and 300 bp paired-end reads were
generated.

Pairs of reads from the original DNA fragments were merged
by using FLASH-a very fast and accurate software tool which
was designed to merge pairs of reads when the original DNA
fragments were shorter than twice the length of reads (Magoc
and Salzberg, 2011). Sequencing reads were assigned to each
sample according to the unique barcode of each sample.
Sequences were analyzed with the QIIME software package
(Quantitative Insights Into Microbial Ecology) and UPARSE
pipeline (Caporaso et al., 2010; Edgar, 2013). First, the reads were
filtered by QIIME quality filters. Default settings for Illumina
processing in QIIME were used. Then we used UPARSE pipeline
to pick operational taxonomic units (OTUs) by making OTU
table. After removal of chimera, sequences were assigned to
OTUs at 97% similarity. We picked a representative sequence
for each OTU and used the version 2.2 RDP classifier to assign
taxonomic data to each representative sequence with default 0.8
as confidence threshold (Wang et al., 2007). Singleton OTUs
that appeared in only one sample were removed because they
could be potential sequencing errors. In order to compute
alpha diversity, we rarified the OTU table and calculated
three metrics: Chao1 metric estimated the species richness, the
observed species metric was simply the count of unique OTUs
found in the sample, and Shannon index. Rarefaction curves
were generated based on these three metrics. QIIME calculated
unweighted unifrac, which was used to do Principal Coordinate
Analysis (PCA).

Sequence Accession Number
The data were deposited in theNational Center for Biotechnology
Information Sequence Reads Archive with accession number
SRS977347.

Statistical Analysis
Considering that the N addition and plant host in the same plot
may not be completely independent, we used the linear mixed
models to analyze the effects of N addition on the rhizoshpere
microbes at four levels with N treatment as the fixed effect and
plant host as random effects. For each species, we conducted
separate ANOVAs (Dunnett’s test) to determine the difference
in the aboveground biomass (AGB), microbial diversity and
relative abundance of phyla between N0 and different levels of
N addition (SPSS 16.0). It was regarded as significant differences
when P-value was less than 0.05. Square root transformation
of the OTUs data and arcsine square root transformation of

relative abundance of phyla were done before proceeding with
ANOVA and post-hoc test. The assumptions of normality and
homogeneity of variance were checked prior to conducting the
statistical tests.

Results

Nitrogen Addition Reduced and Enhanced
Aboveground Biomass (AGB) of Forbs and
Grasses
Nitrogen addition for 9 years had contrasting effects on AGB
of grasses and forbs, such that AGB of grasses and forbs
was significantly (P < 0.05) increased and reduced by N
addition, respectively (Figure 1A). The steppe community was
co-dominated by grass S. krylovii and forb A. frigida in the
control plot without N addition. The AGB of S. krylovii was
enhanced by the N addition, while the same treatment led to a
decrease in AGB of A. frigida (P < 0.05) (Figure 1B).

A

B

FIGURE 1 | Effect of N addition on aboveground biomass of grasses

and forbs (A), and S. krylovii and A. frigida (B). Aboveground biomass was

determined in quadrats (1× 1 m). N0, N2, N8, and N16 represent N addition

rate of 0, 2, 8, 16 g ha−1 yr−1. Data are means ± s.e. (n = 8). Asterisks on

the top of columns indicate significant difference at P < 0.05 between N0 and

different rates of N addition for each species.
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Sequencing and Analysis of Rhizospheric
Microbial Diversity
We obtained a total of 1,931,731 clean reads after filtered
by QIIME quality filters with default settings (Table A1). One
sample from N0 plots was later excluded from analysis because
of the low quality of the sequence reads. Rarefaction analysis was
performed on each soil sample and none of the rarefaction curves
reached the plateau phase, suggesting that soils were not sampled
to saturation (Figure 2).

Linear mixed model analysis indicated that OTU number,
Chao1, and Shannon indices of rhizosphere microbes of both
S. krylovii and A. frigida were significantly affected by the N
addition (Figure 3 and Table 1). In control plot without N
addition, the number of OTUs in the rhizosphere of S. krylovii
and A. frigida was 6036 and 5957, respectively (Figure 3A).
Nitrogen addition led to similar effects on microbial diversity
in the rhizosphere of the two species. As N addition rate
increased, the OTU number in both the S. krylovii and A.
frigida rhizospheric niche decreased (Figure 3A). For example,
the OTU number in the S. krylovii rhizosphere was decreased
from 6036 to 5698, 5282, and 4583 in response to N addition
rate of 2, 8, and 16 g N m−2 yr−1. Similarly, the OTU number
in the A. frigida rhizosphere niche decreased from 5957 to
5700, 5010, and 4567 in response to the same N addition rates
(Figure 3A). In addition to the number of OTUs, changes in
microbial diversity using the Shannon index and the total species
richness estimated by the Chao1 index in the two rhizospheric
soil samples were also compared among plots treated with
different rates of N addition. Shannon and Chao1 indices in the
two rhizospheric soils also showed similar trends with increases
in N addition rates, such that N addition reduced Shannon and
Chao1 indices in the rhizosphere of S. krylovii and A. frigida
(Figures 3B,C).

Principal component analysis was used to detect variation
in the community composition. As shown in Figure 4, the
two principal components accounted for 16.62% of the
total microbial community variations among the individual

FIGURE 2 | Rarefaction curves of all samples were generated for

microbial OTUs which contained unique sequences and were defined

at 97% sequence similarities.

samples. The two-dimensional figure showed that the microbial
community compositions in both S. krylovii and A. frigida
rhizosphere niche with different N addition rates were distributed
separately among each other, exhibiting differences in the
microbial community structure. These results suggest that the
S. krylovii and A. frigida rhizosphere microbiome had different
composition and that the composition changed along the N-
gradient.

A

B

C

FIGURE 3 | Estimated number of observed (A) OTU counts,

(B) Shannon index, (C) Chao1 index of S. krylovii and A. frigida

rhizosphere microbiome across all the N-supplied plots. Data are means

± s.e. (n = 3). Asterisks on the top of columns indicate significant difference at

P < 0.05 between N0 and different rates of N addition for each species.
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TABLE 1 | F-value and P-value of analysis of variance for the effects of

nitrogen addition, species and their interaction (nitrogen × species) on

OTU, Shannon, Chao1 indices and the relative abundance of the phyla.

Fixed factors Nitrogen Species Nitrogen × Species

d.f. 3 1 3

OTU F 252.74 7.99 3.18

P <0.0001 0.0143 0.06

Shannon F 75.03 0 1.22

P <0.0001 0.9624 0.3424

Chao1 F 49.09 5.20 4.41

P <0.0001 0.0400 0.0239

Acidobacteria F 146.93 13.67 11.94

P <0.0001 0.0027 0.0005

Proteobacteria F 19.53 9.94 1.04

P <0.0001 0.0076 0.4057

Bacteroidetes F 30.34 0.09 9.87

P <0.0001 0.7733 0.0012

Crenarchaeota F 72.80 0.01 11.96

P <0.0001 0.9247 0.0005

Verrucomicrobia F 4.03 10.84 0.37

P 0.0314 0.0058 0.7754

Planctomycetes F 6.24 1.42 3.27

P 0.0074 0.2555 0.0559

Actinobacteria F 4.71 5.65 4.62

P 0.0194 0.0335 0.0207

Cyanobacteria F 0.62 0 0.41

P 0.6168 0.9601 0.7504

Gemmatimonadetes F 12.42 7.81 5.34

P 0.0004 0.0152 0.0129

Chloroflexi F 16.22 15.54 6.55

P 0.0001 0.0017 0.0062

Firmicutes F 39.78 21.00 0.28

P <0.0001 0.0005 0.8384

WYO F 1.75 24.18 11.48

P 0.2057 0.0003 0.0006

TM7 F 195.38 5.60 7.16

P <0.0001 0.0341 0.0044

Effect of N Addition on Relative Abundance of
Rhizospheric Microbe
Analysis of the taxonomic groups detected in the soil samples
showed that there were a total of 23 phyla in the rhizosphere of
both S. krylovii and A. frigida. The most dominant phyla across
all samples were Proteobacteria, Acidobacteria, and Bacteroidetes,
accounting for about 60% of the bacterial sequences (Figure 5).
In addition, Verrucomicrobia, Crenarchaeota, Planctomycetes,
Actinobacteria, Cyanobateria, Gemmatimonadetes, Chloroflexi,
TM7, Firmicutes, and WYO were detected in all the samples
with low abundance, while the unclassified and rare phyla
accounted for about 6.3% in the samples. In the control plots
without N addition, the relative abundance of Bacteroidetes
and Crenarchaeota in the rhizosphere of S. krylovii was
higher than that in the rhizosphere of A. frigida (P <

0.05). In contrast, the relative abundance of Acidobacteria,

FIGURE 4 | Principle component analysis (PCA) of microbial

communities based on OTUs for all samples from S. krylovii and A.

frigida rhizosphere. The first two components were 10.68% and 5.46%,

respectively.

Verrucomicrobia, Chloroflexi, and WYO in the rhizosphere of
S. krylovii was lower than that in the rhizosphere of A. frigida
(P < 0.05) (Figure 5). These results suggest that difference
existed between the microbial communities in the rhizosphere of
both S. krylovii and A. frigida in the control plot.

Nitrogen addition had significant impacts on the relative
abundance of the phyla (Figures 5, 6). With the increases
in N addition rates, the relative abundance of Bacteroidetes,
Proteobacteria, Gemmatimonadetes, TM7, Firmicutes,
and WYO was enhanced in the S. krylovii rhizosphere
(Figures 6B,C,G,K–M). A decrease in the relative abundance of
Acidobacteria, Actinobacteria, Chloroflexi, and Crenarchaeota in
the S. krylovii rhizosphere niche was detected (Figures 6A,F,H,J),
while the relative abundance ofVerrucomicrobia, Planctomycetes,
and Cyanobacteria in the S. krylovii rhizosphere niche remained
relatively unchanged (Figures 6D,E,I). With the increases
in N addition rates, the relative abundance of Bacteroidetes,
Proteobacteria, TM7, and Firmicutes in the A. frigida rhizosphere
niche was increased (Figures 6B,C,K,L). Nitrogen addition
had little effects on the relative abundance of Verrucomicrobia,
Actinobacteria, Gemmatimonadetes, and Cyanobacteria in the
A. frigida rhizosphere niche (Figures 6D,F,G,I). By contrast, the
relative abundance of Acidobacteria, Planctomycetes, Chloroflexi,
Crenarchaeota, andWYO in the A. frigida rhizosphere niche was
reduced by N addition (Figures 6A,E,H,J,M).

Discussion

In this study, we found that 9-year N addition shifted plant
community structure from co-dominance by a monocot grass,
S. krylovii, and a dicot forb, A. frigida, to exclusive dominance
by a monocot grass in an Inner Mongolia steppe (Figure 1).
These results concurred with other studies which showed that N
enrichment favors more for grass growth than for forb growth
(Song et al., 2011; Fang et al., 2012; Zhang et al., 2014). The
differential growth responses of the two plants to N addition
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FIGURE 5 | The relative abundance of phyla of S. krylovii and A. frigida rhizosphere microbiome across all the N-supplied plots (% of total sequence).

prompted us to test whether N addition may also have different
impacts on the microbial communities in the rhizosphere of the
two species. We thus characterized microbial communities in
the rhizosphere of the two dominant species, S. krylovii and A.
frigida, under varying rates of N addition by high-throughput
sequencing technique. Our results showed that the relative
abundance of most microbial phyla in the rhizosphere of S.
krylovii differed from that of A. frigida under control, ambient N
conditions, suggesting that the microbiomes in the rhizosphere
of the two species differ intrinsically. Bakker et al. (2013)
have suggested that root exudates can explain the differences
in the rhizospheric microbiomes of various plant species. In
this context, our previous studies showed that S. krylovii and
A. frigida differed in their rhizospheric processes, such that S.
krylovii roots can exude greater amount of organic anions (malate
and citrate) than A. frigida roots under ambient N conditions
(Liu et al., 2014a). In addition, Acidobacteria, Bacteroidetes,
and Proteobacteria were dominant microbial species in the two
rhizosphere microbiomes, accounting for about 60% of the total
microbiomes, implying that the three phyla may play important
roles in the rhizosphere of the two species.

Several studies have reported that elevated N deposition
profoundly impacts the soil microbial communities across
different terrestrial ecosystems (Ramirez et al., 2010, 2012; He
et al., 2013; Zhang et al., 2014). The microbes in the bulk
soils have often been used to evaluate the effect of N addition
on composition and biodiversity of bacterial community.
However, in contrast to our studies, few studies have specifically
investigated the effect of N addition on rhizospheric microbial
communities. In a recent study, Zhu et al. (2015) reported that
short-term N addition has minimal influence on rhizosphere
effect of smooth crabgrass and bermudagrass by T-RFLP and

analysis of enzyme activities. In the present study, we examined
the rhizosphere microbiomes of S. krylovii and A. frigida across
different N addition rates. We found that the OTU number,
Shannon and Chao1 indices in the rhizospheric soils of the
two dominant species showed a similar trend in response
to N addition. Nitrogen addition reduced Shannon index in
the rhizosphere of S. krylovii and A. frigida, indicating that
the rhizospheric microbiomes of the two species became less
diverse with increases in N-addition rates. In a similar study,
Zhang et al. (2014) reported that long-term N addition had no
effects on the overall OTU number of bulk soils in the Inner
Mongolia steppe. Given the high heterogeneity of soils and
co-existence of multiple plant species in a natural ecosystem,
results obtained from monitoring microbes in the bulk soils
may not truly reflect the changes in rhizospheric microbial
communities. Roots are high in C, so the microbial community
closer to the root may be copiotrophic relative to those in bulk
soils (Nguyen, 2003; Badri et al., 2009; Gottel et al., 2011).
We also found that the relative abundance of most phyla was
altered in response to the long-term N addition. The relative
abundance of all phyla except Verrucomicrobia, Planctomycetes,
and Cyanobacteria in the rhizospheric microbiomes of S. krylovii
was altered in response to the N addition. In the rhizospheric
microbiomes of A. frigida, we found that the relative abundance
of Verrucomicrobia, Actinobacteria, Gemmatimonadetes, and
Cyanobacteria remained relatively unchanged by the same N
addition. Furthermore, our results showed that the direction of
the response of individual phyla to N addition was dependent
upon host identity. These findings are in contrast to those
previously reported results, where no comparable increases and
decreases in response to N addition were observed in the same
bacterial phylum of grasslands (Ramirez et al., 2010, 2012; He
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A B C D

E F G H

I

M

J K L

FIGURE 6 | Effect of N addition on the relative abundance of phyla A,

of S. krylovii and A. frigida rhizosphere microbiome across all the

N-supplied plots. (A) Acidobacteria, (B) Bacteroidetes, (C) Proteobacteria,

(D) Verrucomicrobia, (E) Planctomycetes, (F) Actinobacteria, (G)

Gemmatimonadetes, (H) Chloroflexi, (I) Cyanobacteria, (J) Crenarchaeota,

(K) TM7, (L) Firmicutes, (M) WYO. Data are means ± s.e. (n = 3). Asterisks

on the top of columns indicate significant difference at P < 0.05 between N0

and different rates of N addition for each species.

et al., 2013; Liu et al., 2014b). The differences in soil sampling
methods (rhizospheric soils vs. bulk soils) between our studies
and others may partly account for the different results. It is more
likely that microbes in the rhizosphere simply behave differently
from those in bulk soils.

It has been established that interaction can occur between
plant communities and soil microbial communities (Zak et al.,
2003; Dean et al., 2014). Many studies have attempted to link the
above-ground plant diversity and productivity to below-ground
bacterial diversities by characterizing soil bacterial communities
(Zak et al., 2003; Dean et al., 2014). Rooney et al. (2006) showed
that in agricultural grasslands the response of plants and bacterial
communities to sheep urine deposition is dependent on both
the concentration of synthetic sheep urine applied and the
grass species. The rhizospheric microbial community associated
with plant roots is highly diverse, and it is conceivable that
the complex plant-associated microbial community is important
for plant health (Kyselková et al., 2009; Berendsen et al.,
2012). The rhizospheric microbial community may contribute
to maintaining plant health directly by releasing pathogen
inhibitors, or indirectly by promoting plant growth (Kyselková

et al., 2009; Berendsen et al., 2012). More specifically, the phylum
Proteobacteria is involved in cycling of essential mineral nutrients
(Lesaulnier et al., 2008; Chaudhry et al., 2012). For example,
Chaudhry et al. (2012) showed that the higher abundance of
Proteobacteriamay contribute to improved soil fertility and plant
growth. It has been reported that the phylum Verrucomicrobia
acts as inhabitants of paddy soil (Asakawa and Kimura, 2008;
Do Thi et al., 2012). However, little is known about the function
of Verrucomicrobia in the semi-arid grasslands. Although its
specific physiological functions in the soil remain to be clarified,
the wide occurrence of this predominant phylum Acidobacteria
across all samples may indicate a key role in soil ecosystem
functioning. Firmicutes is related to plant health and the high
abundance of Firmicutes can threaten plant fitness (Berendsen
et al., 2012; Zhang et al., 2014). These results may indicate that
these phyla in rhizosphere soil may be associated with the shift
of plant community structure from co-dominance by a grass, S.
krylovii, and a forb species, A. frigida, to exclusive dominance by
the grass.

The arbuscular mycorrhiza (AM) is the mutualistic symbiosis
between terrestrial plants and fungi. Fungimay play an important
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role in driving changes in plant biomass. Goomaral et al.
(2013) reported that that S. krylovii increased in biomass as
soil N availability increased, and this was associated with
increased mycorrhizal colonization. Furthermore, altered fungal
communities in response to environmental stressors in other
systems have been linked to changing plant communities
(Deslippe et al., 2012; Semenova et al., 2015). Therefore, further
studies to investigate the involvement of fungi diversity and
composition in N-induced shifts in species composition in the
temperate steppe are warranted.

In the present study, to simulate the effects of N deposition
on temperate grassland ecosystems, long-term N addition
experiment was conducted in Inner Mongolia steppes by
application of urea. The applied urea is first hydrolyzed to
ammonia/ammonium by the enzyme urease in soils, and
ammonium is further converted into nitrate by ammonia
oxidizing bacteria and ammonia oxidizing archaea, leading to
increases in inorganic N in soils (Zhang et al., 2012). Previous
studies showed that application of urea in the Inner Mongolia
steppes led to significant increases in soil nitrate concentrations
(Fang et al., 2012). In addition, a similar reduction in plant species
richness by addition of inorganic NH4NO3 in the InnerMongolia

steppes has been observed (Lan and Bai, 2012; Yang et al., 2012).
Therefore, our N addition experiments with urea can simulate
the natural N deposition.

In summary, our results demonstrated that long-term N
addition had a profound influence on productivity of the steppe
and composition of the rhizospheric microbial community
of S. krylovii and A. frigida. These results highlight the
importance of rhizospheric microbial communities in control
and/or feedback of N addition-invoked steppe communities in
response to N deposition. Our findings would contribute to
our mechanistic understanding of impacts of N deposition on
grassland ecosystem by linking changes in plant traits to their
rhizospheric microbes-mediated processes.
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Appendix

TABLE A1 | The number of reads before and after quality filtering.

Sample Before quality filtering After quality filtering

N0 S. krylovii 1 151330 147221

2 62531 60743

N2 S. krylovii 1 37876 36842

2 88768 86471

3 71252 69278

N8 S. krylovii 1 68660 66952

2 51083 49787

3 122252 118084

N16 S. krylovii 1 100960 97848

2 118645 115232

3 54686 53313

N0 A. frigida 1 83187 80841

2 159845 155362

3 80904 78636

N2 A. frigida 1 102194 99208

2 77534 75623

3 80417 78241

N8 A. frigida 1 72041 70274

2 72393 70461

3 72187 70604

N16 A. frigida 1 91416 89042

2 81153 79019

3 84889 82649
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