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Coxiella burnetii is a bacterium that thrives in an acidic parasitophorous vacuole (PV)
derived from lysosomes. Leishmania mexicana, a eukaryote, has also independently
evolved to live in a morphologically similar PV. As Coxiella and Leishmania are highly
divergent organisms that cause different diseases, we reasoned that their respective
infections would likely elicit distinct host responses despite producing phenotypically
similar parasite-containing vacuoles. The objective of this study was to investigate, at
the molecular level, the macrophage response to each pathogen. Infection of THP-1
(human monocyte/macrophage) cells with Coxiella and Leishmania elicited disparate
host responses. At 5 days post-infection, when compared to uninfected cells, 1057
genes were differentially expressed (746 genes up-regulated and 311 genes down-
regulated) in C. burnetii infected cells, whereas 698 genes (534 genes up-regulated
and 164 genes down-regulated) were differentially expressed in L. mexicana infected
cells. Interestingly, of the 1755 differentially expressed genes identified in this study,
only 126 genes (∼7%) are common to both infections. We also discovered that 1090
genes produced mRNA isoforms at significantly different levels under the two infection
conditions, suggesting that alternate proteins encoded by the same gene might have
important roles in host response to each infection. Additionally, we detected 257 micro
RNAs (miRNAs) that were expressed in THP-1 cells, and identified miRNAs that were
specifically expressed during Coxiella or Leishmania infections. Collectively, this study
identified host mRNAs and miRNAs that were influenced by Coxiella and/or Leishmania
infections, and our data indicate that although their PVs are morphologically similar,
Coxiella and Leishmania have evolved different strategies that perturb distinct host
processes to create and thrive within their respective intracellular niches.
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Introduction

Macrophages that phagocytize pathogens and recruit other immune cells are critical for the
elimination of potential infections. Within macrophages, engulfed pathogens are transported
inside phagosomes that later fuse with lysosomes to generate the phagolysosome. Most pathogens
are degraded within the phagolysosome, which has a very harsh environment (low pH,
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high concentration of lysosomal hydrolases, presence of cationic
peptides etc.; Kinchen and Ravichandran, 2008; Flannagan
et al., 2009). Several pathogens have evolved strategies to
survive and replicate within macrophages: Toxoplasma gondii
prevents the fusion of its vacuoles with the endosomal pathway;
Salmonella enterica Typhimurium, Mycobacterium tuberculosis,
and Legionella pneumophila block maturation of phagosomes
into phagolysosomes; Shigella flexneri and Listeria monocytogenes
escape into cytoplasm from phagosomes before lysosomal fusion;
Trypanosoma cruzi escapes from phagosomes after fusion with
lysosomes (Swanson and Fernandez-Moreia, 2002; Flannagan
et al., 2009).

Unlike most other pathogens, Coxiella (a bacterium) and
Leishmania (an eukaryote) have independently evolved the ability
to thrive in a parasitophorous vacuole (PV) that is derived from
the fusion of phagosomes with lysosomes (Voth and Heinzen,
2007; Alix et al., 2011). Coxiella burnetii (the only defined
species within this genus) causes human Q fever and chronic
endocarditis. The bacterium is shed in milk, urine, and birth
products of animals, and can survive in the environment via a
“spore-like” form called the small cell variant (SCV). C. burnetii
is usually acquired via inhalation, and initially infects alveolar
macrophages but then spreads to mononuclear phagocytes of
other tissues. Within the macrophage, SCV transforms into a
metabolically active form called the large cell variant (LCV), and
multiple Coxiella-containing vacuoles merge to form a single
large vacuole that fuses with endolysosomal vesicles to give rise
to the mature Coxiella PV (van Schaik et al., 2013).

Leishmania is a genus of trypanosomatid parasite that
comprises several species of medical and veterinary importance
that cause cutaneous, mucocutenous, or visceral diseases. It has
a dimorphic lifecycle that alternates between an extracellular
promastigote form in insect vectors and an intracellular
amastigote from in mammalian hosts (Herwaldt, 1999). The
primary host cells of Leishmania are macrophages, but it can
also infect neutrophils, fibroblasts, and dendritic cells (Contreras
et al., 2014). Similar to the biogenesis of Coxiella PV, the
Leishmania-containing vacuole also fuses with endolysosomal
vesicles to give rise to the mature Leishmania PV. However, the
morphology of PV varies among different Leishmania species.
In several species, including L. donovani, L. infantum, and
L. major, only one or two amastigotes reside within each PV,
which segregates into new vacuoles after parasite replication. In
contrast, as observed for CoxiellaPVs, parasites of the Leishmania
mexicana complex such as L. mexicana and L. amazonensis form
communal PVs that continuously enlarge as the parasites
replicate (Real et al., 2010). Interestingly, coinfection studies
have shown that PVs formed by L. amazonensis amastigotes
can fuse with C. burnetii PVs but not with PVs containing
L. major amastigotes, suggesting that the intracellular niches
generated by L. mexicana complex parasites and Coxiellamay be
compositionally rather similar (Veras et al., 1995; Rabinovitch
and Veras, 1996; Real et al., 2010; Beare et al., 2011; Newton and
Roy, 2011).

Both Coxiella and Leishmania actively participate in the
creation of their respective PVs, which are intracellular
compartments distinct from canonical phagolysosomes. To begin

to understand how the two distantly related pathogens generate
phenotypically similar PVs, we compared host gene expression in
humanmacrophage cells (THP-1) infected with either C. burnetii
or L. mexicana. Our data show that the bacterium and the
eukaryote elicit distinct host messenger RNA (mRNA) and
microRNA (miRNA) responses, indicating that despite their
superficial similarity, generation, andmaintenance of theCoxiella
PV and Leishmania PV involve distinct host processes.

Materials and Methods

C. burnetii and L. mexicana Infection of THP-1
cells, RNA Extraction, and RNA-seq
THP-1 cells (TIB-202; ATCC) were maintained in RPMI 1640
medium (Gibco) supplemented with 10% fetal calf serum
(Gibco) at 37◦C in 5% CO2. Cells were incubated in the
presence of 200 nM phorbol 12-myristate 13-acetate (PMA;
EMD Biosciences) for 24 h to induce differentiation into
adherent, macrophage-like cells. Prior to infection, PMA-
containing medium was replaced with fresh RPMI without PMA.
Cells were infected with either C. burnetii (Nine Mile phase II,
RSA 493) or promastigotes of L. mexicana (MNYZ/BZ/62/M379)
at an approximate multiplicity of infection of 25 and incubated
for 5 days. Growth medium was replaced every two days
and formation of Coxiella and Leishmania PVs was monitored
microscopically. At 5 days post-infection, growth medium was
replaced with 1 ml of TRI reagent (Life Technologies) and total
RNA was extracted, and genomic DNA was removed by DNase
(Life Technologies) treatment, as per instructions. RNA from two
samples each of uninfected, Coxiella-infected, and Leishmania-
infected THP-1 cells were used to prepare mRNA and small RNA
Illumina sequencing libraries. To analyze gene expression, the six
mRNA libraries were pooled into a single lane of an Illumina
HiSeq 2000 (2 × 75 cycles). For miRNA identification, the six
small RNA libraries were pooled into a single Illumina Miseq
lane (1 × 50 cycles). All RNA-seq reads are available at National
Center for Biotechnology Information Sequence Read Archive
(Accession SRP045986).

Mapping Sequencing Reads and Identification
of Differentially Expressed Genes
Reads were cleaned by removing adapters and were filtered
by quality (>Q20) and length (>50 bp) using Trimmomatic
v0.30 (Bolger et al., 2014). Homo sapiens reads were filtered
for possible contamination by mapping to C. burnetii genome
(NC_002971.3) using BWA MEM v0.7.5 (Li and Durbin, 2010)
and L. mexicana genome (NZ_CADB00000000.1) using Tophat
v2.0.11 (Kim et al., 2013). Final clean reads were mapped to
H. sapiens Genome Reference Consortium Human Build 37
(GCF_000001405.13) using CLC Genomic Workbench v6.5. To
identify differential gene expression, replicate data were pooled
for pairwise comparisons and quantile normalized using CLC
Genomic Workbench v6.5. Genes were filtered based on at least
10 raw reads mapping to each sample, and a log2 transformed
fold change of one SD above or below the mean. Differentially
expressed genes were chosen based on significance (P < 0.05,
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FDR-corrected beta-binomial distribution test). Raw read counts
mapped to each mRNA isoform were exported from CLC into
EBSeq (Leng et al., 2013) and differential expression of isoforms
was determined based on significant EBSeq values (P < 0.05,
FDR-corrected).

For quantitative PCR (qPCR) validation of gene expression,
1 μg of DNase-treated RNA, and oligo-dT primers were used to
prepare cDNA (Thermo Scientific). A subset of genes involved
in host cell death (TGFB2, RIPK2, CYR61, CYP1B1, NFKBIA)
was selected and qPCR was performed using SYBR green on an
Agilent Mx3000P System. Fold difference value for each gene
was calculated using the 2−��CT method with GAPDH as the
control. As shown previously (Raghavan et al., 2012), to assess
the correlation between expression estimates from RNA-seq and
qPCR, we calculated the Pearson correlation coefficient between
fold difference values calculated by each method for Coxiella –
and Leishmania-infected cells.

Gene Ontology (GO) Analysis and
Protein-Protein Interaction Networks
GO terms were found using Database for Annotation,
Visualization and Integrated Discovery (DAVID), and the
GO FAT filter. GO-term enrichment tests were also performed
with DAVID (Huang et al., 2009a,b). Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways over-represented among
differentially expressed genes were chosen based on the level of
statistical significance (P < 0.01). Protein–protein interaction
networks were visualized using STRING 9.1 (Franceschini et al.,
2013). Proteins unconnected to the main graph were removed.
Markov Clustering was performed on STRING confidence
scores using an inflation factor of two to visualize subgraphs
of interacting protein processes (Brohée and van Helden,
2006). GO-terms were overlaid onto the graphs using STRING
to identify what processes were represented in the separate
subgraphs.

Identification of miRNAs
Sequencing reads were cleaned by removing adapters and filtered
by quality (>Q20) and length (>15 bp) using Trimmomatic
(Bolger et al., 2014). Replicate data was pooled and miRNAs were
identified using CLC based on having an average of at least 10
reads mapped to mature 5′ or 3′ miRNAs annotated in mirBase
(Kozomara and Griffiths-Jones, 2014).

Results and Discussion

C. burnetii and L. mexicana Infections Induce
Robust but Non-Overlapping Host Responses
Human monocyte/macrophage cell line THP-1 was used to
evaluate host responses against C. burnetii and L. mexicana.
Previous studies have investigated host responses during early
stages (6–72 hpi) of infections by C. burnetii and by various
Leishmania species (Ren et al., 2003; Mahapatra et al., 2010;
De Muylder et al., 2011; Rabhi et al., 2012, 2013); however,
because the transformation from the infective form (SCV and
promastigote, respectively) to the replicative form (LCV and

FIGURE 1 | Identification of differentially expressed genes. Gene
expression in (A) Coxiella burnetii-infected and (B) Leishmania
mexicana-infected THP-1 cells in comparison to uninfected THP-1 cells are
shown. Differentially expressed genes are highlighted in red and green.
(C) Comparison of genes differentially expressed in C. burnetii-infected and
L. mexicana-infected cells. Arrows indicate up-regulation or down-regulation
of genes.

amastigote, respectively) occur at differing rates in the two
pathogens, we analyzed a later point during infection (5 days
pi) when both pathogens have generated large PVs that fill
most of the host cell volume. When compared to uninfected
THP-1 cells, 1057 genes (746 up-regulated and 311 down-
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TABLE 1 | KEGG pathways enriched in Coxiella-infected and Leishmania-infected THP-1 cells.

Sample KEGG
term

Description Genes Fold
enrichment

P-value

Coxiella-infected hsa04210 Apoptosis BID, IRAK2, TNF, XIAP, RELA, TP53, NFKBIA, ENDOD1, NFKB1,
BIRC3, TNFRSF10A, CASP10, PRKAR2B, IRAK3, TNFRSF10B,
PPP3CC, IL1B, PIK3R5, PIK3R3, IL1A

3.51 2.1E-06

hsa04621 NOD-like receptor signaling
pathway

CXCL1, TNF, XIAP, IL8, RELA, CXCL2, NFKBIA, NFKB1, BIRC3,
NOD2, RIPK2, IL1B, TNFAIP3

3.20 5.4E-04

hsa04060 Cytokine–cytokine receptor
interaction

CXCL1, TNFRSF21, CCL3, TNF, CXCL5, CXCL3, CXCL2,
TNFSF15, CXCL6, IL7R, CCL4, TGFB2, LIF, CCL22, IL23A, CCL20,
CCL3L1, IL4R, TNFRSF18, IL15RA, IL1B, IL1A, BMP2, IL8, CD40,
IL11RA, TNFRSF10A, INHBA, ACVR2B, TNFRSF10B, VEGFA

1.81 1.6E-03

hsa04062 Chemokine signaling
pathway

CXCL1, ADCY4, CCL3, LYN, CXCL5, IL8, HCK, CXCL3, RELA,
CXCL2, NFKBIA, ADRBK2, NFKB1, CXCL6, CCL4, CCL22,
CCL20, CCL3L1, GNG10, SOS2, PIK3R5, GNB4, PIK3R3, GNG7

1.96 2.2E-03

hsa05222 Small cell lung cancer E2F1, TRAF1, XIAP, PTGS2, RELA, TP53, ITGA2, NFKBIA, NFKB1,
BIRC3, LAMB3, PIK3R5, PIK3R3, TRAF3

2.55 2.8E-03

hsa05200 Pathways in cancer TRAF1, E2F1, BID, PTGS2, XIAP, STAT5A, MITF, NFKBIA, NFKB1,
NFKB2, TCF7L2, MMP1, TGFB2, LAMB3, SOS2, PIK3R5, CCNA1,
PIK3R3, FGF2, TRAF3, BMP2, IL8, VHL, RELA, TP53, ITGA2,
BIRC5, BIRC3, FZD4, DAPK3, CTNNA3, RAD51, SMO, ETS1,
VEGFA

1.63 4.2E-03

hsa04620 Toll-like receptor signaling
pathway

CCL3, TNF, IL8, RELA, NFKBIA, NFKB1, CD40, CCL4, CD86,
MAP3K8, IL1B, PIK3R5, PIK3R3, CD14, TRAF3

2.27 5.5E-03

Leishmania-infected hsa00230 Purine metabolism ADCY4, ADSSL1, ADCY8, POLA1, PDE4C, PDE6G, POLE4,
PDE2A, ADCY9, RRM2, PKLR, GUCY1A2, ADCY10, PRPS1

2.40 5.1E-03

FIGURE 2 | Protein-protein interaction analysis. Protein-protein interaction networks of up-regulated genes in (A) C. burnetii-infected and (B) L. mexicana-
infected THP1 cells visualized in STRING. Colors based on Markov Clustering with an inflation factor of 2. Highlighted clusters are labeled with their GO or KEGG
categories.

regulated) were differentially expressed in C. burnetii infected
THP-1 cells, whereas 698 genes (534 up-regulated and 164
down-regulated) were differentially expressed in L. mexicana
infected cells (Figure 1, Supplementary Tables S1 and S2).
Interestingly, the sets of genes affected by the two pathogens
are very different. Of the 1755 total genes identified in
this study, only 126 genes (∼7%) are differentially expressed
under both conditions, and no metabolic pathways were
significantly enriched within this common set of genes (Figure 1,
Supplementary Table S3). A previous study that compared
THP-1 cell response to infections by Coxiella and Chlamydia

trachomatis (an intracellular bacterium), reported an overlap of
∼25% of genes between the two infections (Ren et al., 2003).
The low overlap between the host responses to Coxiella and
Leishmania, and the higher magnitude of host response to
C. burnetii than that to L. mexicana possibly reflects the more
distant evolutionary relationship between the bacteria and the
eukaryotic parasite compared to the two bacterial pathogens
previously studied. Apoptosis and host cell immune response
pathways were the most significantly enriched KEGG pathways
in Coxiella infected cells (Table 1), as observed in previous
microarray-based studies (Ren et al., 2003; Mahapatra et al.,
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FIGURE 3 | Differential expression of mRNA isoforms. Differential isoform
expression of VPS8 in C. burnetii infected, L. mexicana infected, and
uninfected THP1 cells are shown as a representation of isoform analysis.
(A) The full-length VPS8 gene is depicted with colored bars representing
exons. Isoforms 1 (B) and 7 (C) of VPS8 that have significantly different
expression in the three samples are shown. Each gray line above an isoform
represents 10 mapped reads.

2010). Repression of host cell death by Coxiella has been
reported previously (Lührmann and Roy, 2007; Voth et al.,
2007), and is thought to promote intracellular growth of Coxiella
within large PVs; conversely, induction of Toll-like Receptor
signaling pathways and production of cytokines and chemokines
participate in the host response to Coxiella infection.

In Leishmania-infected cells, purine metabolism was the
only KEGG pathway that was significantly perturbed (Table 1).
Leishmania is dependent on host for its purine supply
(McConville et al., 2007), and three genes (ADSSL1, RRM2,
PRPS1) involved in purine biosynthesis or salvage pathways were
significantly overexpressed in infected THP-1 cells. Intriguingly,
a majority of “purine metabolism” genes listed in Table 1
regulate the levels of intracellular second messengers cAMP
and cGMP. Adenylate cyclases (ADCY4, ADCY8, ADCY9,

ADCY10) catalyze the formation of cAMP from ATP; guanylate
cyclase (GUCY1A2) catalyzes the conversion of GTP to cGMP;
phosphodiesterases (PDE4C, PDE6G, PDE2A) catalyze the
hydrolysis of cAMP and/or cGMP. Previous studies have
shown that Leishmania resists host antimicrobial activities by
modulating several host signaling pathways, including Ca2+-
and PKC-dependent pathways, JAK-STAT pathways, and MAP
kinases (Olivier et al., 2005). Similarly, Leishmania could be
subverting the host’s cAMP and cGMP signaling pathways
in order to suppress immune responses and to promote its
intracellular growth.

A protein–protein interaction network analysis using the
STRING database (Franceschini et al., 2013) confirmed that
Coxiella infection induced the expression of genes involved in
negative regulation of cell death (Figure 2A). In contrast, this
analysis identified that genes involved in positive regulation
of cell death were upregulated in Leishmania-infected cells
(Figure 2B). We confirmed this trend by analyzing the expression
of a subset of cell death-related genes using qPCR (Additional
File Supplementary Figure S1). The induction of host cell death
during later stages of infection probably aids in the cell-to-cell
transfer of Leishmania amastigotes within membrane blebs, as
shown recently (Real et al., 2014).

Differential Expression of mRNA Isoforms in
Infected and Uninfected Cells
In human cells, alternate splicing of pre-mRNA can give rise
to several isoforms of the mature mRNA, and proteins derived
from them may have distinct cellular roles (Lareau et al.,
2004). In addition to expanding the proteome, cells utilize
alternate splicing as a regulatory tool. For example, a short
splice variant of human tryptophan-tRNA synthase, but not
the full length protein, regulates angiogenesis (Wakasugi et al.,
2002). Isoform generation may also have a role in host cell
response against infections. Different isoforms of p53 (encoded
by TP53 gene) are involved in host defense against both bacterial
(Helicobacter pylori) and viral (Influenza and Simian virus 40)

TABLE 2 | MicroRNAs (miRNAs) perturbed by Coxiella and Leishmania infections.

Sample miRNA Fold change (log2) P-value Regulation Process

Coxiella-infected mir-148a-3p −0.58 0.024 Down Pro-apoptotica

mir-181d-5p 0.78 <0.001 Up Anti-apoptoticb

mir-193a-5p 0.81 <0.001 Up Pro-apoptoticc

mir-362-5p 0.89 0.015 Up Anti-apoptoticd

mir-361-5p 0.95 0.004 Up Anti-apoptotice

mir-194-2-5p 1.05 0.024 Up Anti-apoptoticf

mir-28-3p 1.12 0.024 Up Neitherg

mir-28-5p 1.35 <0.001 Up Pro-apoptoticg

Leishmania-infected mir-145-5p −1.00 0.002 Down Pro-apoptotich

mir-221-5p −0.62 <0.001 Down Anti-apoptotici

mir-15b-5p 0.56 0.035 Up Pro-apoptoticj

mir-29b-1-3p 1.09 0.002 Up Pro-apoptotick

mir-29b-2-3p 1.19 <0.001 Up Pro-apoptotick

aZhang et al. (2011), bWang et al. (2010), cNakano et al. (2013), dXia et al. (2014), eWu et al. (2013), fZhang et al. (2014), gAlmeida et al. (2012), hDavis-Dusenbery et al.
(2011), i le Sage et al. (2007), jCimmino et al. (2005), kGarzon et al. (2009).
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infections (Terrier et al., 2013). Similarly, Hepatitis C virus
activates the immunologic isoform of nitric oxide synthase (NOS)
gene, which induces NO production (Machida et al., 2004).

Transcriptome analysis (RNA-seq) is a powerful approach
to identify differential isoform expression under different
conditions at a genome-wide scale (Eswaran et al., 2013; Lo
et al., 2014). We used RNA-seq to investigate whether infection
by either Coxiella or Leishmania induced differential expression
of human gene isoforms. We identified 689 isoforms from 626
genes that were differentially expressed in C. burnetii-infected
cells, and 651 isoforms from 569 genes in Leishmania-infected
cells, when compared to uninfected THP-1 cells (Figure 3,
Supplementary Tables S4 and S5). As observed for full-length
mRNAs, there was minimal overlap between the sets of genes
with differential expression of isoforms under each infection
condition (only 105 common genes). Additionally, no KEGG
pathways were significantly enriched in either gene set, indicating
that differential isoform expression is a cell-wide phenomenon.
Cumulatively, our data revealed that in addition to differences
that are apparent at the gene level, the mostly unexplored
realm of isoform variation could contribute to host responses to
infections.

Coxiella and Leishmania Infections Perturb the
Expression of Apoptosis-Related miRNAs
Expression of various protein-coding genes in humans is
regulated by miRNAs. These small non-coding RNAs regulate
the expression of target genes by base-pairing with mRNAs,
thereby either blocking translation or causing target degradation
or destabilization (Fabian et al., 2010). They are involved inmany,
if not all, biological processes, including metabolic pathways,
cell proliferation, and apoptosis. Recently, miRNAs have been
shown to be an important part of host cell response to viral,
bacterial, and parasitic infections (Lagos et al., 2010; Schnitger
et al., 2011; Schulte et al., 2011). In addition, some viruses,
including Herpes viruses and Hepatitis C virus, have the ability to
interfere with the host miRNA network to promote viral growth
(Jopling et al., 2005; Cullen, 2011). Recent studies also showed
that eukaryotic intracellular pathogens such as Cryptosporidium
parvum and T. gondii promote intracellular replication by
altering host cell miRNA networks (Hakimi and Ménard, 2010;
Zeiner et al., 2010). To identify miRNAs that are potentially
perturbed by C. burnetii or L. mexicana infections, we sequenced
and enumerated miRNAs expressed by uninfected, Coxiella-
infected, and Leishmania-infected THP-1 cells. We identified 257
miRNAs that were expressed in THP-1 cells (Supplementary
Table S6), which includes 50 of the 64 miRNAs reported by
a recent study that examined miRNAs expressed in human
macrophages in response to Leishmaniamajor infection (Lemaire
et al., 2013). Among the 257 miRNAs, seven were upregulated
and one was down regulated in Coxiella-infected cells, and three
were upregulated and two were down regulated in Leishmania-
infected cells (Table 2). Intriguingly, several of the differentially
expressed miRNAs have been shown in previous studies to
regulate host cell death: miR-145 modulates the expression of
KLF4 (Davis-Dusenbery et al., 2011), a transcription factor for
TP53, which regulates apoptosis (Rowland et al., 2005); miR-15b

and miR-29b are known to be pro-apoptotic in leukemia cells
(Cimmino et al., 2005; Garzon et al., 2009); miR-148a promotes
apoptosis by targeting BCL2 in colorectal cancer cells (Zhang
et al., 2011); miR-181d also targets BCL-2 and promotes apoptosis
in glioma cells (Wang et al., 2012). These results complement
gene expression data (Figure 2), and indicate that miRNAs may
have important roles in inhibiting host cell death during Coxiella
infection, and promoting host cell death during Leishmania
infection.

Conclusion

The genome-wide gene, mRNA-isoform, and miRNA expression
patterns were distinct between macrophages infected with either
C. burnetii or L. mexicana, indicating that even though both
pathogens have converged on a similar intracellular niche,
they utilize distinct programs to generate and maintain their
respective PVs.
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TABLE S6 | All miRNAs detected in this study.
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