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Soil communities dominated by lichens and mosses (biocrusts) play key roles in
maintaining ecosystem structure and functioning in drylands worldwide. However, few
studies have explicitly evaluated how climate change-induced impacts on biocrusts
affect associated soil microbial communities. We report results from a field experiment
conducted in a semiarid Pinus halepensis plantation, where we setup an experiment
with two factors: cover of biocrusts (low [<15%] versus high [>50%]), and warming
(control versus a ∼2◦C temperature increase). Warming reduced the richness and cover
(∼45%) of high biocrust cover areas 53 months after the onset of the experiment. This
treatment did not change the ratios between the major microbial groups, as measured
by phospholipid fatty acid analysis. Warming increased the physiological stress of the
Gram negative bacterial community, as indicated by the cy17:0/16:1ω7 ratio. This
response was modulated by the initial biocrust cover, as the increase in this ratio with
warming was higher in areas with low cover. Our findings suggest that biocrusts can
slow down the negative effects of warming on the physiological status of the Gram
negative bacterial community. However, as warming will likely reduce the cover and
diversity of biocrusts, these positive effects will be reduced under climate change.
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Introduction

Climate change is fostering major shifts in the composition and diversity of biota in terrestrial
ecosystems worldwide (Visser and Both, 2005; Rosenzweig et al., 2007; Peñuelas et al., 2013;
Buitenwerf et al., 2015). However, large uncertainties exist about how climate change-induced
alterations in the composition and diversity of biotic communities will directly impact ecosystem
functioning (Hartley et al., 2012; Zhou et al., 2012; Maestre et al., 2013; Delgado-Baquerizo
et al., 2014). This is particularly true for terrestrial microbial communities in arid, semi-arid
and dry-subhumid environments (drylands), as we are only starting to understand the role that
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environmental factors such as climate play in determining their
abundance, distribution and diversity (e.g., Fierer and Jackson,
2006; Garcia-Pichel et al., 2013; Pasternak et al., 2013; Serna-
Chavez et al., 2013). Drylands harbor highly diverse and unique
soil microbial communities (Housman et al., 2007; Bates et al.,
2010; Steven et al., 2013; Ramirez et al., 2014), which drive
ecosystem processes essential for the provision of ecosystem
services in these areas, such as nutrient cycling and carbon
sequestration (Barrios, 2007; Brussaard, 2012). Understanding
how the structure and composition of soil microbial communities
will respond to climate change is thus crucial to comprehend
the ecological consequences of such change for drylands
(Makhalanyane et al., 2015).

Communities composed of eukaryotic algae, cyanobacteria,
mosses, liverworts, fungi and lichens (biocrusts) live in the
uppermost soil surface in drylands worldwide, where they
constitute up to 70% of the living cover (Belnap, 2003).
Biocrust constituents exert a strong influence on soil microbial
communities beneath them, such as fungi (Bates et al., 2010)
and bacteria (Yeager et al., 2004; Castillo-Monroy et al., 2011a),
which regulate multiple ecosystem processes (Fitter et al., 2005).
Biocrusts fix substantial amounts of atmospheric CO2 (>2.6 Pg
C/year globally; Elbert et al., 2012), regulate the temporal
dynamics of soil CO2 efflux and net CO2 uptake (Wilske et al.,
2008; Castillo-Monroy et al., 2011b), affect the activity of soil
enzymes involved in C and N cycling (Bowker et al., 2011;
Miralles et al., 2013), and regulate other N cycle processes
with clear implications for global biogeochemical cycles, such
as N fixation (Elbert et al., 2012), nitrification (Castillo-Monroy
et al., 2010), and denitrification (Barger et al., 2013). Recent
studies suggest that ongoing global warming will negatively
impact the photosynthetic activity of soil lichens (Maphangwa
et al., 2012) and mosses (Grote et al., 2010), ultimately reducing
their growth and dominance within biocrusts (Escolar et al.,
2012; Reed et al., 2012; Maestre et al., 2013). Reductions in
the abundance of other biocrust-associated cyanobacteria with
changes in rainfall patterns have also been reported (Johnson
et al., 2012).

While the value of biocrusts for maintaining ecosystem
structure and functioning in drylands worldwide is widely
recognized (Eldridge and Greene, 1994; Belnap and Lange, 2001;
Maestre et al., 2011), the impacts of climate change on biocrust-
associated microbial communities have only recently started to
receive attention (Johnson et al., 2012; Reed et al., 2012; Yeager
et al., 2012; Zelikova et al., 2012; Garcia-Pichel et al., 2013;
Maestre et al., 2013; Delgado-Baquerizo et al., 2014). Here we
report results from a 53-months field experiment conducted
in a semiarid Pinus halepensis plantation in south east Spain,
where we increased temperature ∼2◦C using open top chambers
(OTCs) in areas with and without a well-developed biocrust
community dominated by lichens. We assessed the effects of
warming on the abundance and richness of biocrust-forming
mosses and lichens, and tested how these organisms modulated
the responses to warming of surface soil (0–1 cm) microbial
communities. We hypothesized that warming reduces the cover
and diversity of biocrust-forming mosses and lichens (Escolar
et al., 2012), and this reduction will increase the impacts of

warming on major microbial groups in the soil immediately
beneath the crust (Concostrina-Zubiri et al., 2013; Delgado-
Baquerizo et al., 2014).

Materials and Methods

Study Site
This study was carried out in a Pinus halepensis plantation located
in the surroundings of Sax, in south east Spain (38◦ 32′ 15′′
N, 0◦ 49′ 5′′ W, 550 m a.s.l.). The climate is Mediterranean
semiarid, with average annual temperature and precipitation of
14.6◦C and 315 mm respectively (Maestre, 2000). The soil is
derived from gypsum, has pH values ∼7, and is classified as
a Gypsiric Leptosol (IUSS Working Group WRB, 2006). The
vegetation is dominated by P. halepensis, which was planted in
the 1950s, and also contains grasses and shrubs such as Stipa
tenacissima, Anthyllis cytisoides, and Helianthemum squamatum.
The open spaces between plants are colonized by a well-
developed biocrust community dominated by lichens such as
Diploschistes diacapsis, Squamarina lentigera, S. cartilaginea,
Fulgensia subbracteata, Toninia sedifolia, and Psora decipiens, and
by mosses such as Tortula revolvens var. obtusata (Maestre et al.,
2005).

Experimental Design
In 15 February 2009, we setup an experiment with two factors and
two levels each: biocrust cover (areas with cover of visible biocrust
components [mosses and lichens] <15% versus areas with cover
of mosses and lichens >50%; hereafter low [LC] and high
[HC] biocrust cover plots, respectively, Supplementary Figures
S1A,B), and warming (control versus a∼2◦C annual temperature
increase). Ten replicates per combination of treatments were
set up, resulting in a total of 40 experimental plots. Field plots
were established allowing a buffer distance of 1 m to minimize
the risk of sampling no independent areas (Supplementary
Figure S1C). The warming treatment aimed to simulate the
average of predictions derived from six Atmosphere-Ocean
General Circulation Models for the second half of the 21st
century (2040–2070) in central and south–eastern Spain (De
Castro et al., 2005). For this, we built OTCs using a hexagonal
design with the following dimensions (Supplementary Figure
S1D): 40 cm × 50 cm × 32 cm. The OTCs were built
using methacrylate sheets, which transmit ∼92% of visible
light, reflect 4% of incoming radiation and pass on ∼85% of
incoming energy (information provided by the manufacturer;
Decorplax S. L., Humanes, Spain). These chambers are open on
the top to allow entrance of rainfall and air, and are located
5 cm above the surface to allow air flow and avoid excessive
temperatures within the chamber (Supplementary Figure S1D).
The design of the OTCs is similar to that employed in
warming experiments carried out in arctic (Arft et al., 1999)
and dryland (Maphangwa et al., 2012) areas, and we have
successfully used them in previous studies conducted with lichen-
dominated biocrusts (Maestre et al., 2013; Ladrón de Guevara
et al., 2014). Air and soil temperatures, and soil moisture were
continuously monitored inside and outside the OTCs using
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automated sensors (HOBO U23 Pro v2 Temp/RH and TMC20-
HD sensors, Onset Corp., Pocasset, MA, USA, and EC-5 soil
moisture sensors, Decagon Devices Inc., Pullman, WA, USA
respectively).

Biocrust Monitoring and Microbial Analyses
Within each plot, we inserted a PVC collar 5 cm into the soil
(20 cm diameter, 8 cm height) for monitoring temporal changes
in the total cover and richness of the visible components of
the biocrust community (mosses and lichens, Supplementary
Figure S1A). The number of moss and lichen species in
each collar was recorded in situ at the beginning of the
experiment and 16 and 53 months after. We also took high
resolution photographs during these surveys to estimate total
biocrust cover. From these photographs, we estimated the
proportion of each PVC collar covered by lichens and mosses
by mapping their area with the software GIMP1 and ImageJ2.
Cover estimates obtained with these photographs correlate
well with those gathered directly in the field (Maestre et al.,
2013).

We collected soil samples (0–1 cm depth), at the beginning
of the experiment in all the plots, and 16 and 53 months after
in five randomly selected plots per combination of treatments.
A composite sample per plot was obtained from four soil samples
separated at least 10 cm; these samples were collected outside the
PVC collars to avoid perturbing the biocrust community there.
We carefully removed visible biocrust components from the soil
samples and sieved them (2 mm mesh). After that, samples
were immediately frozen at −80◦C until phospholipid fatty acid
(PLFA) analyses (Frostegård et al., 1991). This technique is useful
to evaluate how environmental factors, such as temperature,
affect the composition of soil microbial communities (Ramsey
et al., 2006; Frostegård et al., 2011), and has been widely used
in Mediterranean dryland areas (e.g., Steinberger et al., 1999;
Zaady et al., 2010; Ben-David et al., 2011; Bárcenas-Moreno
et al., 2014). For these analyses, subsamples of 1.5 g of soil were
used. A total of 23 individual PLFAs (i14:0, 14:0, i15:0, a15:0,
15:0, 16:0, 16:1ω7, 10Me16:0, i17:0, a17:0, i17:1ω6; nMe17:0,
17:0, cy17:0, 10Me17:0, 14:0 3OH, 18:0, 18:1, 18:1ω9t, 18:1ω9c,
18:3, cy19:0, 20:0) were extracted and quantified according to
Bardgett et al. (1996). We used i14:0, i15:0, a15:0, 10Me16:0,
i17:0, a17:0, 10Me17:0 and 10Me18:0 to represent Gram positive
bacteria (Zogg et al., 1997; Zelles, 1999); cy17:0, cy19:0 and
16:1ω7 to represent Gram negative bacteria (Ratledge and
Wilkinson, 1988; Frostegård and Bååth, 1996); 18:2ω6 and
16:1ω7 as indicators of fungal and cyanobacterial biomass,
respectively (Federle, 1986; Bodelier et al., 2009; Mortillaro et al.,
2012); and 10Me16:0, 10Me17:0 and 10Me18:0 to represent
actinobacteria (White et al., 1997). i14:0, i15:0, a15:0, 10Me16:0,
i17:0, a17:0, 10Me17:0, 10Me18:0, 16:1ω7, 18:1ω7, cy17:0 and
cy19:0 represented total bacterial PLFA (Frostegård et al., 1993).
The ratio of 18:2ω6: total bacterial PLFAs represented the ratio
of fungal: bacterial biomass (Frostegård et al., 1993; Bardgett
et al., 1996). The cy17:0/16:1ω7 ratio was used as an indicator

1http://www.gimp.org/
2http://rsb.info.nih.gov/ij/

of the physiological stress status of microbial communities
(Guckert et al., 1986; Kaur et al., 2005; Ben-David et al.,
2011).

Statistical Analyses
To assess the changes in biocrust cover and richness through
time, we estimated a difference index (Dif) as Rfinal – Rinitial ,
where R is the value of the variable of interest in 18 July
2013 (final) and 15 February 2009 (initial). Changes in these
variables between these surveys, as measured with Dif, followed a
normal distribution but did not show homogeneity of variances.
Thus, we evaluated the effects of warming (WA) and biocrust
cover (CO), and their interaction, on Dif data using the
semi-parametric permutational multivariate analysis of variance
(PERMANOVA, Anderson, 2001). This method is based on
the use of permutation tests to obtain p values, does not
rely on the normality assumption of ANOVA, and can handle
experimental designs such as those used here. If we assume
that the sampling units (experimental plots) are exchangeable
among the different treatments, the null hypothesis tested by
PERMANOVA is H0: “the centroids of the groups, as defined
in the space of the chosen resemblance measure, are equivalent
for all treatments” (Anderson and Walsh, 2013). Thus, if this
null hypothesis holds true, any observed differences among
the centroids in a given dataset will be comparable in size to
what would be obtained under random allocation of individual
experimental plots to the different treatments (i.e., under
permutation; Anderson and Walsh, 2013). For these analyses,
the Euclidean distance and 10,000 permutations (permutation of
raw data, Anderson and Ter Braak, 2003) were used to analyze
our data. Both WA and CO were considered as fixed factors
in PERMANOVA analyses. In addition, we evaluated whether
median Dif values obtained for each treatment and variable
were different from zero using the non-parametric Wilcoxon
signed-rank test.

Microbial community composition data (PLFA matrix
containing the 23 individual fatty acids measured) obtained
at the beginning of the experiment and 16 and 53 months
after were analyzed using the PERMANOVA model described
above, but based on the Bray–Curtis distance. To aid in the
interpretation of these analyses, we created a non-metric multi-
dimensional scaling (NMDS) ordination of the PLFA data using
this distance. Analyses of the whole PLFA matrix were followed
up by analyses of the major microbial groups (Gram positive
bacteria, Gram negative bacteria, fungi, actinobacteria, total
bacteria, cyanobacteria and the fungi: bacteria ratio) and of
the cy17:0/16:1ω7 ratio. These were done separately for each
sampling period by using a two-way (WA and CO) ANOVA,
with both factors being fixed.

Permutational multivariate analysis of variance analyses were
carried out with the PERMANOVA+ for PRIMER statistical
package (PRIMER-E Ltd., Plymounth Marine Laboratory, UK).
NMDS analyses were performed using the PRIMER package.
ANOVA and ANCOVA analyses were carried out using SPSS
v. 15.0 statistical software (SPSS Inc., Chicago, IL, USA). Raw
biocrust cover and PLFAdata are available from figshare (Maestre
et al., 2015).
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Results

Throughout the experiment, the warming treatment increased
average air and soil temperature by 1.9◦C and 1.3◦C, respectively
(Supplementary Figure S2). Warming effects were maximized
during summer (June–September), where air temperatures where
increased by warming up to 5◦C in some days (Supplementary
Figure S2). On average, warming reduced surface soil moisture by
1.3% (Supplementary Figure S3), and the length of periods with
relative air humidity of 100% by 44% (Supplementary Figure S4).

Changes in Biocrust Cover and Richness
At the end of our experiment, the biocrust cover in the LC
and HC plots was 10.5/4.9 and 52.1/31.1% for the control
and warming treatments, respectively. Across all treatments, we
observed a 5% increase and 37% decrease of biocrust cover in
LC and HC plots, respectively, at the end of our experiment
(Figure 1A; PERMANOVA, pseudo-FCO = 74.04, P < 0.001).
This response was not modified by WA (pseudo-FWA = 2.78,
P = 0.102; pseudo-FCO × WA = 2.54, P = 0.126). The increase
in moss and lichen cover observed in the LC control plots,
and the decrease observed in the HC plots, was significant
(Figure 1A). The analysis of the changes in cover for lichens alone
yielded similar results to those described for the whole biocrust

community, albeit a significant decrease in lichen cover was also
observed with WA in the LC plots (Figure 1B; PERMANOVA,
pseudo-FCO = 79.08, P < 0.001). In this case, plots subjected
to warming showed a significant decrease in lichen cover as
compared to control plots (PERMANOVA, pseudo-FWA = 7.83,
P = 0.006). The analysis of variations in the cover of mosses
showed a different picture, as these were not affected by WA
(Figure 1C; PERMANOVA, pseudo-FWA = 2.22, P = 0.144;
pseudo-FCO × WA = 0.07, P = 0.790). However, this cover
increased in LC, but not in HC, plots (PERMANOVA, pseudo-
FCO = 5.57, P = 0.019).

At the beginning of the experiment, a total of 12 species
of lichens and mosses were identified (Supplementary Table
S1). After 53 months, biocrust species richness significantly
decreased with WA, regardless of the initial biocrust cover
(Figure 1D; PERMANOVA, pseudo-FWA = 6.10, P = 0.016;
pseudo-FCO × WA = 0.06, P= 0.847). Significant differences were
observed between LC and HC plots (PERMANOVA, pseudo-
FCO = 13.73, P = 0.009), with declines in biocrust richness
observed particularly in the latter.

Changes in the Microbial PLFA Composition
Permutational multivariate analysis of variance analyses did not
reveal significant differences among treatments in microbial

FIGURE 1 | Differences (Dif) in the total cover of the whole biocrust
community (mosses + lichens, A), lichens (B) and mosses (C), and in
biocrust richness (D) in areas with initial low and high biocrust cover
between February 2009 and June 2013. Data represent means + SE

(n = 10). CLC, control low biocrust cover, WLC, warming low biocrust cover,
CHC, control high biocrust cover, WHC, warming high biocrust cover. *indicate
results deviating from 0 (non-parametric Wilcoxon signed-rank test; *P < 0.05,
**P < 0.01).
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PLFA composition in any of the sampling periods evaluated
(P > 0.130 in all cases, Supplementary Table S2). This was
reflected in the NMDS ordination, which showed a substantial
overlap among treatments (Figure 2). We found a trend
of increasing abundance of fatty acids associated with most
microbial groups (Gram positive bacteria, Gram negative
bacteria, fungi, total bacteria and actinobacteria) over the
experimental period (Figure 3). However, no significant effects
of CO andWA were found on any of the fatty acid biomarkers of
these microbial groups at any of the sampling times (ANOVA,
P > 0.134 in all cases, Supplementary Table S3), except for
the cy17:0/16:1ω7 ratio, which increased with warming 16 and
53 months after the beginning of the experiment (ANOVA,
P < 0.039 in both cases; Supplementary Table S3). To further
evaluate whether biocrusts affected the responses of this ratio to

warming during the course of the experiment, we obtained the
Dif for the cy17:0/16:1ω7 ratio, which was analyzed with a two-
way ANOVA, with WA and CO as fixed factors. These analyses
revealed a marginally significant WA×CO interaction (Figure 4;
ANOVA, F1,16 = 4.14, P = 0.059). Separate one-way ANOVAs
showed that the increase in the cy17:0/16:1ω7 ratio with time
was significant only in LC plots (LC plots, FWA = 8.36, df = 1,8,
P = 0.020; HC plots, FWA = 0.07, df = 1,8, P = 0.794).

Discussion

Temporal changes in the cover and richness of biocrusts were
dependent on their degree of development at the beginning of
the experiment. In the absence of warming, significant declines

FIGURE 2 | Non-metric multi-dimensional scaling (NMDS) ordination of
the PLFA data at the beginning (A), and 16 (B) and 53 (C) months after
the beginning of the experiment. CLC, control low biocrust cover, WLC,

warming low biocrust cover, CHC, control high biocrust cover, WHC, warming
high biocrust cover. The degree of similarity among the different samples is
indicated by the contour lines.
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FIGURE 3 | Abundance of Gram + (A) and Gram — (B) bacteria, fungi (C),
actinobacteria (D), total bacteria (E), fungi: bacteria ratio (F),
cy17:0/16:1ω7 ratio (G) and abundance of cyanobacteria (H) in areas
with initial low and high biocrust cover at 0, 16, and 53 months after the

beginning of the experiment. CLC, control low biocrust cover, WLC, warming
low biocrust cover, CHC, control high biocrust cover, WHC, warming high
biocrust cover. Data represent means and SEs (n = 10, 5, and 5 for 0, 16, and
53 months after the beginning of the experiment, respectively).

in the cover and richness of biocrusts were observed in the high
cover plots over the course of the experiment, which mimics what
has been reported in other biocrust-dominated ecosystems. For
example, Dettweiler-Robinson et al. (2013a) found that the total

cover of visible biocrust components was reduced by ∼30% over
a period of 10 years in south–central Washington (USA). These
results likely reflect the successional dynamics of the biocrusts
studied, which are driven by both abiotic (such as fluctuations
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FIGURE 4 | Differences in the cy17:0/16:1ω7 ratio in plots with initial
low and high biocrust cover between February 2009 and June 2013.
CLC, control low biocrust cover, WLC, warming low biocrust cover, CHC,
control high biocrust cover, WHC, warming high biocrust cover. Data
represent means + SE (n = 5).

in climate; Belnap et al., 2006) and biotic (such as competition
for space; Maestre et al., 2008; Bowker et al., 2010; Dettweiler-
Robinson et al., 2013b) factors. The decline in the cover and
richness of biocrusts observed was exacerbated by warming,
which promoted a significant reduction in the cover and richness
of well-developed biocrust communities, an effect that was
mainly due to the response of their constituent lichens. This
finding is consistent with other investigations of warming effects
on biocrust-dominated grasslands and shrublands (Escolar et al.,
2012; Maestre et al., 2013), and with those of Belnap et al.
(2006), who reported that a 6◦C increase in maximum summer
temperatures over 8 years substantially reduced the cover of
biocrust-forming lichens in the Colorado Plateau. Declines in
biocrust cover with warming were paralleled by reductions in
species richness, as also found in other studies in central Spain
(Escolar et al., 2012) and the Arctic (Wahren et al., 2005; Lang
et al., 2012). The main species that decreased their frequency
with warming were the lichens Diploschistes diacapsis, Fulgensia
subbracteata, Toninia sedifolia and Placidium squamulosum
(Supplementary Table S1). Although our measurements cannot
be used to identify the mechanisms underlying the observed
reductions in the cover and richness of lichens, we speculate
that they are promoted by the negative effects of warming on
their photosynthetic activity, a response already observed with
warming experiments in South Africa (Maphangwa et al., 2012)
and Spain (Maestre et al., 2013; Ladrón de Guevara et al., 2014).
We suggest that these effects of warming are not caused by the
increase of temperature per se induced by this treatment, but
rather by the negative effects of warming on the duration and
intensity of dew events, i.e., periods with relative air humidity
of 100% (Maphangwa et al., 2012; Maestre et al., 2013; Ladrón
de Guevara et al., 2014). In our study area, dew events occurred
in 85% of the days, and our warming treatment reduced their
duration by 44% on average (Supplementary Figure S4). Moisture

inputs by dew are critical for maintaining the hydration status
andmetabolic activity of biocrust-forming lichens such as studied
(Veste et al., 2001; del Prado and Sancho, 2007; Rao et al.,
2009; Maphangwa et al., 2012). Thus, it is likely that the effects
of warming on these water inputs drove the reductions in the
cover and richness of biocrust-forming lichens observed in our
experiment. It is important to note that in the future, increased
temperatures, such as those simulated in our experiment, will
be combined with higher CO2 concentrations, which have been
found to enhance the photosynthetic activity of lichens, including
those studied here (Lane et al., 2013). Whether this enhancement
of photosynthesis can compensate the reduced moisture inputs
that are expected in a warmer climate is a topic of great interest
that needs to be addressed in future studies.

The strong negative effects of warming on the cover of lichens
were not found for mosses. These findings are similar to those
found in a semi-arid Stipa tenacissima steppe in central Spain
(Escolar et al., 2012), and to those reported by Reed et al. (2012)
and Zelikova et al. (2012), who found very limited effects of a
2/4◦C warming on these organisms. Mosses usually break their
dormancy during the favorable season in terms of humidity and
soil moisture (Kappen and Valladares, 2007; Bjerke et al., 2011).
This could occur inside the warming plots during autumn and
early winter, when temperature andmoisture are adequate for the
development of new stems and the reactivation of the activity of
mosses. It is also likely that the responses observed with mosses
are due to their high plasticity to adapt to changes in temperature
and desiccation regimes (Green et al., 2011).

Phospholipid fatty acid concentrations in soils are function of
the accumulated microbial response to environmental change,
which may cause a change in the number of microbial cells
expressing specific PLFA that are indicative of specific groups
(Andresen et al., 2014). Our warming treatment had no
detectable effect on the abundance or composition of major
microbial groups under biocrusts determined using biomarker
PLFA, regardless of the degree of development of the biocrust
community. Previous climate change studies conducted with
biocrust-associated microbial communities in drylands have so
far reported contrasting results. For instance, Zelikova et al.
(2012) found that a 2◦C warming reduced both bacterial and
fungal biomass after one growing season in the Colorado Plateau
(USA), and Maestre et al. (2013) and Delgado-Baquerizo et al.
(2014) reported increases in the fungal: bacterial ratio with
warming under biocrusts in central Spain. However, Johnson
et al. (2012) did not observe any effect of a 2◦C soil warming
on the composition of the bacterial community after 2 years.
Similarly, Yeager et al. (2012) reported that a 2–3◦C increase
in soil temperature did not modify the diazotroph community
structure over the same period. The overall lack of responses of
the soil microbial communities to warming in our experiment
suggests that the temperature increase induced by this treatment
did not alter the normal temperature range experienced by
these organisms (sensu Pereira-Silva et al., 2011). Furthermore,
if we consider that the temperature is expected to increase
gradually over time in response to increases in atmospheric
concentrations of CO2 and other greenhouse gasses, it is likely
that the studied microbes will have enough time for adapt to
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the future temperatures (Bradford, 2013). However, we may
not discard the possibility that the resolution of analysis using
PLFA is insufficient to detect any possible taxonomic changes
in the different microbial groups studied with warming in the
study area. Due to the lack of phylogenetic resolution of PLFA,
we cannot discard the possibility that microbial taxa will have
been affected by warming, as has been reported in previous
experiments (Liang et al., 2015).

The physiological stress ratio of PLFA, cy17:0/16:1ω7, is an
example of howmicrobial responses to changes in environmental
factors such as water, nutrient and temperature may also modify
the biochemistry of the microbial membranes of individual
bacteria (Petersen and Klug, 1994; Bossio and Scow, 1998; Kaur
et al., 2005; Andresen et al., 2014). As 16:1ω7 and cy17:0 are
Gram negative biomarkers, this ratio indicates the degree of
physiological stress experience by the Gram negative bacterial
community; increases in this index typically indicate a starvation
response or a shift to stationary phase growth in Gram negative
bacteria (Ramos et al., 2001). We observed that warming
increased the cy17:0/16:1ω7 ratio 16 and 53 months after the
beginning of the experiment, suggesting an alteration of the
physiological status of the soil microbial communities. Ben-
David et al. (2011) also reported that the cy17:0/16:1ω7 ratio was
higher in the open areas dominated by biocrust communities
than under the canopy of shrubs, as well as in an arid site
relative to a semi-arid site in Israel. These differences were
likely due to the relative increases in evapotranspiration and
radiation experienced by soil microorganisms under biocrust
versus vegetation (as well as in the arid versus semi-arid sites; Ben-
David et al., 2011). In our experiment, warming reduced both
soil moisture and the duration of dew events particularly under
periods of high ambient moisture conditions (Supplementary
Figures S3 and S4), which correspond to those where semi-arid
Mediterranean biocrust-forming lichens are most active (Pintado
et al., 2010; Ladrón de Guevara et al., 2014). The reduction in
biocrust activity and declines in cover with warming probably
reduced the inputs of labile carbon and nutrient inputs to the soil
over the course of our experiment, as well as the formation of a
matrix of extracellular exopolysaccharides produced by biocrust-
forming cyanobacteria (Colica et al., 2014). This, together with
the microclimatic changes associated to the losses in biocrust
cover, may have the increased degree of stress experienced
by the Gram negative bacteria (e.g., Bossio and Scow, 1998;
Lundquist et al., 1999; Ramos et al., 2001; Fierer et al., 2003;
Brant et al., 2006). However, we did not observe a coincident
change in the composition and abundance of the major microbial
groups, i.e., a shift to a stress-tolerator community dominated
by K-strategists (actinobacteria and fungi; Dungait et al., 2011;
Dungait et al., 2013). As noted above, it is plausible that the
resolution of PLFA did not capture changes in the phylogenetic
and functional diversity of soil microbial communities with
warming. Alternatively, drying and rewetting is an example of
a major stress which challenges soil microorganisms in dryland
systems (Placella et al., 2012), so the microbial groups studied
may have already been stress-tolerant and therefore slow to
respond to relatively minor temperature changes. In the longer
term a change may have been observed. A chronosequence (5,

8, and 20 years) of soil warming (5◦C) experiments in the
Harvard Forest (USA) detected only shifts in the composition
of soil microbial communities 20 years after commencing
treatment (DeAngelis et al., 2015). Regardless of the mechanism,
our findings indicate that warming increased the degree of
stress experienced by the Gram negative bacterial community
associated with biocrusts during the first years.

While the effects of warming on the cy17:0/16:1ω7 ratio
were evident when analyzing the samples collected at particular
time points, an evaluation of the differences in this ratio
over the course of the experiment revealed a significant
biocrust ×warming interaction, as increases in this ratio through
time were significant only in LC, but not in HC plots (Figure 4).
These results suggest that biocrusts provide resistance, defined
as “the amount of change caused by a disturbance” (Orwin
and Wardle, 2004), against the effects of warming on the
degree of physiological stress experienced by the soil microbial
communities. Similarly to what we found with the cy17:0/16:1ω7
ratio, Delgado-Baquerizo et al. (2014) reported that lichen-
dominated biocrusts increased the resistance to warming of
multiple variables linked to soil nitrogen availability in an
experiment conducted in central Spain. Although we cannot
provide a mechanistic explanation for our findings, they may
be driven by the effects of biocrusts on the availability of
resources for microorganisms, and on the way biocrusts affect the
response to these resources to warming. As found in other studies
conducted with biocrusts elsewhere (Maestre et al., 2013; Miralles
et al., 2013), HC plots had higher organic carbon contents than
LC plots (Cristina Escolar, unpublished data), a response likely
driven by the carbon inputs derived from the photosynthetic
activity of biocrust constituents (Li et al., 2012; Huang et al.,
2014). A recent study conducted with biocrust communities
similar to that we studied revealed those HC plots showed
higher water gains and slower water loses than LC plots after
rainfall events, which led to constituently higher soil moisture
values in the former over a six–year (Berdugo et al., 2014). In
our experiment, reductions in soil moisture with warming were
more evident in the LC than in the HC plots over the course
of our experiment (Supplementary Figure S5). Thus, increased
carbon and water availability under biocrusts could have reduced
the degree of stress experienced by the microbial communities
with warming (Bossio and Scow, 1998; Lundquist et al., 1999;
Brant et al., 2006). Our findings complement those from recent
climate change studies conducted with biocrusts (Reed et al.,
2012; Maestre et al., 2013; Delgado-Baquerizo et al., 2014),
and highlight the importance of these organisms to understand
microbial responses to climate change drivers in drylands.

In summary, we found that 53 months of experimental
warming significantly reduced both the richness and cover
of lichen-dominated biocrusts in the semi-arid plantation
studied, but had only limited impacts on associated soil
microbial communities, as measured by PLFA analysis. The
observed increase in the cy17:0/16:1ω7 ratio, an indicator of
the physiological stress of Gram negative bacteria, through
time induced by warming was only detected in the absence of
biocrusts. Our findings suggest that amelioration of soil and
microclimatic conditions provided by biocrusts can slow down
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the negative effects of warming on the physiological status of
Gram negative soil bacteria. However, the negative impacts of
warming on the cover and richness of biocrusts will limit their
positive impacts on the physiological status of these soil bacterial
communities under a warmer climate.
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