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Metagenomics and other meta-omics approaches (including metatranscriptomics)
provide insights into the composition and function of microbial communities living
in different environments or animal hosts. Metatranscriptomics research provides an
unprecedented opportunity to examine gene regulation for many microbial species
simultaneously, and more importantly, for the majority that are unculturable microbial
species, in their natural environments (or hosts). Current analyses of metatranscriptomic
datasets focus on the detection of gene expression levels and the study of the
relationship between changes of gene expression and changes of environment. As a
demonstration of utilizing metatranscriptomics beyond these common analyses, we
developed a computational and statistical procedure to analyze the antisense transcripts
in strand-specific metatranscriptomic datasets. Antisense RNAs encoded on the DNA
strand opposite a gene’s CDS have the potential to form extensive base-pairing
interactions with the corresponding sense RNA, and can have important regulatory
functions. Most studies of antisense RNAs in bacteria are rather recent, are mostly
based on transcriptome analysis, and have been applied mainly to single bacterial
species. Application of our approaches to human gut-associated metatranscriptomic
datasets allowed us to survey antisense transcription for a large number of bacterial
species associated with human beings. The ratio of protein coding genes with antisense
transcription ranges from 0 to 35.8% (median = 10.0%) among 47 species. Our
results show that antisense transcription is dynamic, varying between human individuals.
Functional enrichment analysis revealed a preference of certain gene functions for
antisense transcription, and transposase genes are among the most prominent ones
(but we also observed antisense transcription in bacterial house-keeping genes).

Keywords: metatranscriptome, metagenome, antisense RNA, human gut microbiota, transposases

Introduction

Advances in sequencing technology have catalyzed the development of metagenomics, which
has revolutionized many fields in the study of microbial organisms. Metagenomics has been
applied to study microbial communities sampled from various environments and animal hosts
(including humans). Several large-scale efforts worth mentioning are the early global ocean surveys
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(Nealson and Venter, 2007; Rusch et al., 2007), and more recent
MetaHit (Qin et al., 2010) and the NIH Human Microbiome
Project (HMP; Human Microbiome Project Consortium,
2012a,b; thanks to which the composition of the human
microbiome is now well-studied). The research emphasis
now has shifted toward elucidating the functionality and
regulatory mechanisms of the microbial communities using
other meta-omics approaches, including metatranscriptomics
and metaproteomics.

Metatranscriptomics research is creating an unprecedented
opportunity to gain knowledge about gene regulation for many
microbial species simultaneously, and more importantly, for the
vast majority of uncultured microbial species in their natural
environments (or hosts). In addition to elucidating functional
characteristics of microbial communities, metatranscriptomic
data provides information vital for accurate annotations of
genes and their regulation in their community—complementary
to metagenomic sequencing. Metatranscriptomic data indicate
which of the genes encoded in a metagenome are actually
transcribed, and which metabolic pathways are active (and the
level of their activities), on the basis of their transcripts within a
microbial community under various environmental conditions.

Current analyses of metatranscriptomic datasets have largely
been limited to the detection of gene expression levels and
the relationship between gene expression (and functions and
pathways involved) and changes in environmental conditions
(de Menezes et al., 2012; Leimena et al., 2013; Franzosa et al.,
2014; Jorth et al., 2014; Coolen and Orsi, 2015). However,
metatranscriptomics datasets contain rich information, which
can be utilized to address important questions, when powered
with appropriate computational and statistical approaches. For
example, antisense RNAs (asRNAs; Jens and Wolfgang, 2011),
which are encoded on the DNA strand opposite to a protein
coding (sense) gene transcript (so may play important regulatory
roles by forming extensive base-pairing interactions with the
corresponding sense RNA), can be revealed by strand-specific
metatranscriptomic sequences.

In a standard metatranscriptomic study (using the RNA-seq
protocol), total RNA is isolated from the sample, ribosomal
RNAs are removed to enrich for mRNA, which is then reverse
transcribed into cDNA and subjected to DNA sequencing,
using next generation sequencing (NGS) platforms (Giannoukos
et al., 2012). It is important to remove the ribosomal RNAs
during the process, otherwise the majority of reads from a
metatranscriptomic project are rRNA (He et al., 2010). Early
metatranscriptomic methods lacked strand specificity, limiting
the application of metagenomic datasets in elucidating some
regulatory mechanisms in bacteria. However, Giannoukos et al.
(2012) presented a protocol for metatranscriptomic analysis
of bacterial communities that accommodates both intact and
fragmented RNA and combines efficient rRNA removal with
strand-specific RNA-seq. Currently, only a handful of such
metatranscriptomic datasets are available (and metaproteomic
datasets are even scarcer), but we envision a flood of strand-
specific RNA-seq metatranscriptomic data in the near future,
as experimental techniques mature (Giannoukos et al., 2012;
Franzosa et al., 2014).

Antisense RNAs encoded on the DNA strand opposite a gene
have the potential to form extensive base-pairing interactions
with the corresponding sense RNA (Thomason and Storz,
2010). Unlike other—smaller—regulatory RNAs in bacteria,
antisense RNAs range in size from 10 to 1000s of nucleotides,
complementary to part of a gene, a complete gene or a group
of genes in an operon (Beiter et al., 2009). Although antisense
RNAs were first observed in bacteria in the early 1980s (Lacatena
and Cesareni, 1981) and their regulatory roles were defined in
model systems (Green et al., 1986), most studies of antisense
RNAs in bacteria are rather recent. Many antisense RNAs were
identified using genome-wide searches for sRNAs and from
transcriptome analysis, and have been studied mainly for single
bacterial species. The numbers of antisense RNAs reported for
different bacteria vary extensively, but 100s have been suggested
in some species (Thomason and Storz, 2010). For example, 1,005
antisense RNAs (22% of all genes) were reported for Escherichia
coli (Dornenburg et al., 2010). Massive antisense transcription
was observed for Synechocystis PCC6803, with 26.8% of its
genes reported to have antisense transcription (Mitschke et al.,
2011), and genome-wide antisense transcription was observed
in Helicobacter pylori (Sharma et al., 2010). Many species have
less antisense transcription: for example, only 1.3% of the
genes in Staphylococcus aureus were reported to have antisense
transcription (Beaume et al., 2010). Thomason and Storz (2010)
noted in their review that the existence of antisense RNAswas not
tested for in many studies.

The availability of human-associated strand-specific
metatranscriptomics datasets allows us to examine the antisense
transcriptions for a large number of microbial species growing
in their natural communities. In this paper we developed
computational and statistical approaches to identify antisense
transcripts from human gut-associated microbial species and
study their dynamics among different human individuals.

Materials and Methods

Dataset
We used the human gut-associated strand-specific
metatranscriptomic data from (Franzosa et al., 2014); the
datasets were downloaded from the SRA website (SRA
accession: SRR769395-SRR769540). In total, we analyzed
eight sets of metatranscriptomic datasets; each set contains three
metatranscriptomic datasets derived from the same human
individual, but prepared using three different methods of sample
preservation (frozen, ethanol-fixed, or RNAlater-fixed; Franzosa
et al., 2014). The eight individuals are X310763260 (abbreviated
as X1), X311245214 (X2), X316192082 (X3), X316701492 (X4),
X317690558 (X5), X317802115 (X6), X317822438 (X7), and
X319146421 (X8).

Bacterial reference genomes (including the genomic sequences
and gene annotations) were downloaded from the NCBI ftp
site (ftp://ftp.ncbi.nlm.nih.gov/genomes/bacteria/). We focused
on 116 reference genomes (covering 47 species), which were
reported as the main species found in stool samples (Franzosa
et al., 2014). For some analyses, including the function
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enrichment analysis, we selected a representative strain for each
species with multiple strains, to limit the biases that may be
introduced by the uneven sampling of the species. See Data
Sheet 1 for the list of 116 strains, and the list of 47 representative
strains and the basic information about the genome (e.g., the
number of genes found in each genome).

Identification of Sense and Antisense Reads
Raw reads were trimmed with Trimmomatic 0.33 (Bolger et al.,
2014) to remove adapter sequences and low quality reads and
the trimmed reads were mapped to the 116 bacterial genomes
with Bowtie 2 (Langmead and Salzberg, 2012). For simplicity,
we call a read that maps to the sense strand a sense read, and
a read mapped to the antisense strand of a gene an antisense
read. We used featureCounts twice on the same dataset with the
strand setting reversed (-s 1 and then -s 2) to annotate sense
and antisense reads (Liao et al., 2014): featureCounts counts
mapped reads for genomic features including genes, promoters,
gene bodies, and chromosomal locations (given in an input
annotation file) and outputs the number of reads assigned to each
feature.

We summarize the antisense transcription at both read and
gene levels. For each species, we computed two ratios: the ratio of
antisense reads (out of all reads that can be mapped to the protein
coding genes in this species), and the ratio of genes with antisense
transcription (see below for the detection of genes with antisense
transcription using sequencing data).

Detection of Antisense Expression by a
Binomial Test
Artifacts introduced by cDNA synthesis and amplification are
known problems for antisense RNA detection (Thomason and
Storz, 2010), so even for a gene with no actual antisense
transcription, we may find reads suggesting antisense transcripts
(i.e., the strandedness of RNA-seq data is <100%). To overcome
this problem, we use binomial testing to detect genes with
antisense transcripts that are unlikely to be the results of such
artifacts: let p be the probability of having reads from the
antisense strand of a gene, even though there is no real antisense
transcription from the gene. A total of c reads are sequenced
from the gene (c is approximated as the number of reads that
can be mapped to the gene), among which m reads represent
antisense transcript. The null hypothesis is that there is no
antisense transcription from this gene. We use the binomial
test in R (binom.test) to calculate the probability of having c
antisense reads (the number of successes) out of m trials (a
total of m reads) with a success rate of p. If the probability
is low (≤ 0.05 according to one-tailed binomial test), we
consider that the gene has antisense transcription (the alternative
hypothesis).

Since p (the success rate) is usually unknown for
metatranscriptomic datasets (but it was shown that most
library treatments in RNA-seq have a strandedness of >95%
Sigurgeirsson et al., 2014), we use the lowest ratio of antisense
reads from individual bacterial species present in the microbial
communities to approximate the p (considering that the
strandedness of the RNA-seq will be at least this good). For

the human-gut metatranscriptomics datasets we tested, p is
0.01. Using this probability of success, we identified significant
antisense transcription for different bacterial species using
binomial tests. We also checked which species recruited the most
RNA-seq reads (to their protein coding genes), as compared to
other species in the eight individuals; their ratios of antisense
reads are: 0.0233 and 0.0312, for Methanobrevibacter smithii
ATCC 35061 in X2 (individual 2) and X8, respectively; 0.0481,
0.0626, and 0.0347 for Parabacteroides distasonis ATCC 8503 in
X1, X4, and X7, respectively; 0.0296 for Ruminococcus bromii in
X3; and 0.0078 and 0.0167 for B. vulgatus ATCC 8482 in X5 and
X6, respectively. Seven out of these eight ratios are <5% (two are
close to 1%), consistent with the reported strandedness of most
stranded library methods in RNA-seq (>95%; Sigurgeirsson
et al., 2014). Thus, we believe that 5% (i.e., strandedness of 95%)
is a generous estimate of p for the data sets we used, and we
also used this p to provide a more conservative estimate of the
genes with antisense transcription in the data sets we analyzed
for comparison purposes.

Functional Enrichment Analysis of Genes with
Antisense Expression
Functional enrichment analysis was conducted using two
different tests for Clusters of Orthologous Groups (COG; Tatusov
et al., 1997). We used the representative set of strains (47 in total)
for this analysis, and gene annotations for their genomes were
downloaded from the NCBI ftp website.

A one-tailed binomial test with Benjamini-Hochberg (BH)
false discovery rate (FDR) correction (q ≤ 0.05) was first
used to determine if a COG was significantly enriched in the
set of genes with antisense expression. The frequency of a
COG among all the COGs for a bacterial genome was used
as the hypothesized probability of success for the test. In
the subset of genes detected to have antisense expression, the
number of occurrences of a COG is considered the number
of successes, and the total number of detected genes with
antisense expression was used as the number of trials. To
ensure the binomial test was conducted in a sufficiently large
sample, we only tested genomes with ≥ 30 genes with antisense
expression. For example, 71 out of 2,204 protein coding genes
from Bacteroides salanitronis DSM 18170 were detected to have
antisense transcription, and 10 out 33 genes that belong to
COG4974L were detected to have antisense transcription. Here
the number of successes, the number of trials, and the probability
of success are 10, 71, and 0.0032 (33/2204), respectively. By
the binomial test, the p-value was computed to be 1.14e-07,
which was then corrected for multiple testing. This resulted
in a q-value of 6.25e-06, indicating a significant enrichment
of COG4974L among genes with antisense expression in this
species.

For the enrichment analysis, we noted the binomial test
with FDR correction penalized heavily for COGs with few
genes. Therefore, we also investigated the association between
COG family and antisense expression by a one-tailed Fisher’s
exact test with BH FDR correction (q ≤ 0.05). For the
example above (B. salanitronis DSM 18170), the 2 by 2
contingency table is [(10, 23), (61, 2110)] and the q-value
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was calculated to be 1.78e-06, also indicating the enrichment
of COG4974L in genes with antisense transcription in the
genome.

Results

Sample Preservation Method Matters for the
Detection of Antisense Transcription from
Metatranscriptomic Sequences
Franzosa et al. (2014) used three different methods for
preserving samples (frozen, ethanol-fixed, or RNAlater-
fixed) for metatranscriptomics sequencing. They showed that
measurements of microbial species, gene, and gene transcript
composition within self-collected samples were consistent across
sampling methods (Franzosa et al., 2014). We first asked if this
consistency applied to antisense transcription.

We aligned the eight sets of stool metatranscriptome data
against the bacterial reference genomes reported as the main
species found in stool samples (Franzosa et al., 2014). For each
sample handling method, we computed a profile of antisense
transcription, in which a number represents the ratio of genes
with antisense transcription in one species in one human
individual. To limit the bias that may be introduced by uneven
sampling of the strains and species with few RNA-seq reads,
we only used one strain for each species, and only kept the
ratios calculated for species with at least 100 genes supported
by RNA-seq reads in an individual prepared by all three
experimental methods (see Human Gut-Associated Microbial

FIGURE 1 | Impacts of different experimental protocols on the profiling
of antisense transcription. The figure shows the correlation (and
differences) between the profile of antisense transcription (i.e., ratios of genes
with antisense transcription in different species across individuals) for frozen
samples and the profile of antisense transcription for ethanol-fixed samples
(Pearson’s r = 0.71; two tailed p-value < 2.2e-16). In this plot, the ratios of
genes with antisense transcription for the different species based on the
frozen samples (Frozen) and ethanol-fixed samples (ETOH) are plotted in the
x-axis and y-axis, respectively.

Organisms have a Wide Range of Antisense Transcription). In
total 196 ratios for each handling method were included for
the analysis. Our results show that all three sample-handling
approaches result in highly correlated profiles of antisense
transcription, with the frozen samples and the RNAlater-fixed
samples sharing the most similar profiles (Pearson’s r = 0.84;
two tailed p-value < 2.2e-16) and RNAlater-fixed samples and
ethanol-fixed samples sharing the least similarity (Pearson’s
r = 0.71; two tailed p-value < 2.2e-16). However, differences
in the profiles are also obvious, as shown in the comparison
between the profiles from ethanol-fixed samples and frozen
samples (Figure 1).

A two-way ANOVA test of antisense transcriptions of all
eight individuals by the three different experimental approaches
showed that the handling method has the strongest effect
on the antisense transcription (F = 7.05, p-value = 0.001),
followed by the individuals (F = 2.88, p-value = 0.007),
and the interaction between handling methods and individuals
(F = 1.89, p-value = 0.03). A Turkey HSD test further revealed
significant differences between frozen samples and ethanol-
fixed (p-value = 0.0043), and between RNAlater-fixed samples
and ethanol-fixed (p-value = 0.0068; but not between frozen
and ethanol-fixed samples). This result suggests that we be
cautious with results based on metatranscriptomic datasets

FIGURE 2 | Histograms of the ratios of genes with antisense
transcription (over all genes with detectable transcription). Binomial
tests were used to determine if a gene has antisense transcription or not,
with a success rate of 1% (A), and 5% (B), respectively. The red vertical
lines indicate the maximum ratios of genes with antisense transcription, for
the genomes in which at least 100 genes have detectable transcription
(with RNA-seq reads support).
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derived from differently preserved samples (although high
correlations were observed among these different approaches
as shown in Figure 1). In addition, the previous publication
reported that ethanol-fixed and RNAlater-fixed approaches can
cause some artifacts in some functional genes (Franzosa et al.,
2014). Considering both, we used the metatranscriptomics
datasets generated from frozen samples for all our below
analyses.

Human Gut-Associated Microbial Organisms
have a Wide Range of Antisense Transcription
We detected antisense transcription for most of the species we
tested. For each species, we computed the ratio of antisense
reads (over total reads mapped to the species) and the ratio of
genes with antisense transcript (over all genes with detectable
transcription; see Materials and Methods). We used datasets
derived from all eight individuals (and the ratios for the same
species are most likely different in different datasets). The ratios
of antisense reads and genes with antisense transcription for all
the 116 bacterial strains (covering 47 species) across the samples
(from eight individuals), along with other details (such as the total
number of mapped reads, antisense reads, etc.), are listed inData
Sheets 1 and 2 in the Supplementary Material.

For ratios of genes with antisense transcription, we noticed
that some species have extremely high ratios (see the long tails in
Figure 2; we only considered one strain for each species to reduce

the bias that may be introduced by multiple strains belonging
to the same species for the histograms), and without exception,
all these species have few expressed genes (e.g., with <100 of
their genes having detectable transcription). Considering that
species with few supporting RNA-seq reads tend to be influenced
heavily by potential artifacts (due to ambiguous reads mapping,
bad gene annotations, etc.), we only considered species with at
least 100 of their genes supported by RNA-seq reads, to infer the
range of genes with antisense transcription. The ratio of protein
coding genes with antisense transcription ranges from 0 to 35.8%
(median = 10.0%; Figure 2A), based on the binomial tests using
a success rate of 1%; the range drops, to between 0 and 24.0%
(median = 6.3%; Figure 2B) when the more generous estimate
of the success rate (5%, indicating a 95% strandedness of the
RNA-seq experiments) was used for the binomial testing. In the
following, results are based on binomial testing using p of 1%,
unless stated otherwise.

Ratios of antisense reads (over total reads mapped to protein
coding genes) are generally smaller than ratios of genes with
antisense transcription. Similar to the inference of ratios of genes,
only species with at least 100 of their genes supported by RNA-
seq reads in a dataset were used to infer the range of ratios of
antisense reads. Figure 3 shows the boxplot for the ratios of reads
mapped to the antisense strands of protein coding genes: the 95%
confidence interval is 0.35–16.3% and the median is 2.5%. The
boxplot revealed a few ratios that are significantly higher than the

FIGURE 3 | Boxplot of the ratios of antisense reads (left). The plots on the right show the contribution of individual genes to the total antisense reads for the
two outliers B. adolescentis and B. fragilis. Most of the antisense reads came from three and one genes (likely misannotations) for B. adolescentis and B. fragilis,
respectively.
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remaining: including the ratio for B. adolescentis in individual
X316192082, the ratio for B. fragilis in individual X316701492,
and the ratio for B. adolescentis in individual X317802115. As
shown in Figure 3, for these outliers, most of the “antisense”
reads are from a few putative genes (three genes in B. adolescentis;
and one in B. fragilis) that have recruited large numbers of RNA-
seq reads; all are hypothetical protein coding genes encoding
small proteins without detailed functional annotation (except for
gene gi| 119026115|ref| YP_909960.1 in B. adolescentis, which
was annotated as a DEAD helicase in NCBI annotation; however,
searching this protein against the Pfam database revealed no hits).

We suspect that these genes are likely ncRNA genes, instead
of protein coding genes, and therefore these few large ratios of
antisense reads need to be interpreted with caution.

Not surprisingly, most of the strains we tested recruited
many more sense than antisense reads, and tend to have
more genes with sense transcription than genes with antisense
transcription (such as B. vulgatus ATCC 8482, as shown in
Figures 4A,B, Parabacteroides distasonis ATCC 8503 as shown
in Figures 4C,D, and M. smithii ATCC 35061 as shown in
Figures 4E,F). Our results are consistent with a previous study
(Franzosa et al., 2014), showing that M. smithii is abundant and

FIGURE 4 | Example species with antisense transcription in different individuals. Three species are shown: Bacteroides vulgatus ATCC 8482 (A,B),
Parabacteroides distasonis ATCC 8503 (C,D) and Methanobrevibacter smithii ATCC 35061 (E,F). (A,C,E) Shows the numbers of sense and antisense reads
in these three species, and (B,D,F) show the number of genes with sense transcription only (Sense), antisense transcription only (Antisense), and both (Both).
X1–X8 indicate the eight individuals.
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highly transcriptionally active (supported by huge numbers of
RNA-seq reads) in five of the eight individuals (Figures 4E,F).
But for these species, individual genes may still have significant
antisense transcription or even have antisense transcription
only; for examples, Figure 5A shows the read coverage plot
for an operon in B. vulgatus (the operon information was
extracted from the Database of Prokaryotic Operons; Mao et al.,
2009), showing that all four genes in this operon have both
sense and antisense transcription; and Figure 5B shows that
gene BVU_3334 (which encodes for a putative transcriptional
regulator) only has antisense reads.

Different species of the same genus showed various ratios
of antisense transcripts. Figure 6 shows the ratio of genes with
antisense transcription in different species of Streptococcus (one
of the dominant genera in human gut microbiota) across the
eight human individuals. Overall, Streptococcus species have
relatively low antisense transcription: the median of the ratios
of antisense reads is 1.1% and the median of the ratios of
genes with antisense transcription is 4.4%. S. mutans and
S. parasanguinis have the lowest ratio of genes with antisense
transcription; other Staphylococcus species seem to have higher
antisense transcription, but the ratios vary greatly across different
individuals. Similar trends are observed in a plot that shows
the ratios of antisense reads for these species (Supplementary
Figure S1).

Genes with either Sense- or
Antisense-Dominating Transcription are
Typically Highly Expressed
We can roughly group genes into three categories: genes
with mostly sense transcripts, genes with mostly antisense
transcripts, and genes in between, based on their sense and
antisense transcription. We define d = (#sense reads – #antisense
reads)/(#sense + #antisense reads), so that genes with mostly
sense transcripts have d that is close to 1, while genes with
mostly antisense transcripts have d that is close to −1. Figure 7
shows the plot of gene expression levels versus the d ratios,
using expressed genes from 23 species (each having at least
100 genes with detectable expression), based on the RNA-
seq dataset of individual 1 (X310763260; see Supplementary
Figure S2 for the plot using all 47 strain; only one strain
was included for each species). We used FPKM (Fragments
Per Kilobase of transcript per Million mapped reads; Garber
et al., 2011) to quantify the gene expression levels, to normalize
read counts by the gene length and sequencing depth of the
RNA-seq experiments. The number of mapped reads for a
dataset was computed as the total number of reads that can
be mapped to one of the 116 strains. The plot reveals a “U”
shape, indicating that genes with either sense- or antisense-
dominated transcription are typically highly expressed, while
genes in between have relatively low gene expression. This

FIGURE 5 | Read coverage plots for example genes in B. vulgatus. Genes are represented as arrows in the plots, and the read coverage curves are shown
below the genes, with the coverage for sense and antisense reads shown in blue and purple, respectively. (A) Read coverage plot for an operon with four genes,
shown as cyan arrows on the top: BVU_0219 is a putative aldo/keto reductase, BVU_0220 is a hypothetical protein, BVU_0221 is a putative fucose permease, and
BVU_0222 is a putative sorbitol dehydrogenase. (B) Read coverage plot for BVU_3334 (and its neighboring genes): BVU_3334 is a putative transcriptional regulator,
BVU_3333 is similar to a fructose-6-phosphate aldolase from E. coli, BVU_3332 is a putative ABC transporter permease, BVU_3335 is a hypotentical protein, and
BVU_3336 is a putative glycosyl transferase.
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FIGURE 6 | Different Streptococcus species have different levels of
antisense transcripts. The y-axis shows the ratio of genes with antisense
transcription. The x-axis shows the different species; sang: S. anginosus
C1051, sanc: S. anginosus C238, sif: S. infantarius CJ18, smut: S. mutans
GS5, smj: S. mutans LJ23, smc: S. mutans NN2025, smu: S. mutans UA159,
scp: S. parasanguinis ATCC 15912, scf: S. parasanguinis FW213, stf: S.
salivarius 57 I, ssr: S. salivarius CCHSS3, stj: S. salivarius JIM8777, ssa: S.
sanguinis SK36, stc: S. thermophilus CNRZ1066, stu: S. thermophilus JIM
8232, ste: S. thermophilus LMD 9, stl: S. thermophilus LMG 18311, stw: S.
thermophilus MN ZLW 002, stn: S. thermophilus ND03. The boxplots for the
different strains of the same species are shown in the same color.

correlation is confirmed by a statistical test: the Spearman’s
correlation coefficient between log(FPKM) and |d| for the
genes (each recruited at least 20 RNA-seq reads) shown in
Figure 7 (excluding the genes with d ratios of 1 or −1)
is 0.57 (p-value < 2.2e-16). Similar results can be observed
using an unfiltered dataset from this individual (Spearman’s
r = 0.69, p-value < 2.2e-16), and RNA-seq datasets from other
individuals.

We note that a large fraction of genes have either sense
transcription only (which is not surprising), or antisense
transcription only. For example, for the dataset X310763260 used
in Figure 7 and Supplementary Figure S2, a total of 6,119 protein
coding genes (out of 30,493; 20.1%) have antisense transcription
according to the binomial testing (success rate = 1%); among
which, 1,877 genes only have antisense transcription. We
expect this large ratio (1,877/6,119 = 30.7%) of genes with
antisense transcription can be only partially contributed by
bad gene annotations (which, however, will be difficult to
quantitatively estimate without further experimental proofs).
But there are still 430 genes if we only included genes at
least 600 bp long (longer genes are more likely to be correctly
predicted), with at least three RNA-seq reads mapped to their
antisense strands (but no reads mapped to sense strands).
The gene BVU_3334 in B. vulgatus ATCC 8482 mentioned
above (Figure 5B) is one of such genes: a total of 257 reads

FIGURE 7 | Highly expressed genes tend to be dominated by sense
transcription or antisense transcription. Each circle represents a gene.
The y-axis shows the gene expression (log(FPKM)) and the x-axis shows d,
which is close to 1 for genes with mostly sense transcription, and −1 with
mostly antisense transcription. RNA-seq data from individual 1 (X310763260)
was used for this plot. To limit the bias that may be introduced by rare species
or genes with low expression levels, we only included the genes (3,689 in
total) each supported by at least 20 RNA-seq reads, and are from the species
(23 in total) each having at least 100 genes with RNA-seq reads support. See
Supplementary Figure S2 for the plot using the original gene expression data,
involving 30,493 genes from all 47 strains, one for each species.

were mapped to its antisense strand, but none to the sense
strand.

Dynamic Antisense Transcription in Human
Population
Antisense transcription varies between human individuals. For
example, as shown in Figure 6 (and Supplementary Figure
S1), the prevalence of antisense transcription in different
Streptococcus species varies across human individuals. In
addition, the actual genes that have antisense transcripts vary
greatly: most of the genes with antisense transcription are only
found to have antisense transcription in one or only a few
individuals (Figures 8A–C). For example, a total of 1,535 protein
coding genes (out of 4,067; 38%) in B. vulgatus ATCC 8482
are found to have antisense transcription in at least one of
the eight individuals; however, only two genes are common in
all individuals, while 666 genes are found in only one of the
individuals (Figure 8B). M. smithii ATCC 35061 is an exception
(Figure 8D): many of its genes with antisense transcription are
common among the individuals. A total of 792 protein coding
genes (out of 1,793 genes; 44%) are found to have antisense reads
in at least one of the eight individuals, and 236 of these genes
have antisense reads in five individuals (note that M. smithii was
found to be abundant only in five out of the eight individuals; see
Figures 4E,F).
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FIGURE 8 | Sharing of genes with antisense transcription among human individuals. Genes associated with Streptococcus anginosus C238 (A),
Bacteroides vulgatus ATCC 8482 (B) and Parabacteroides distasonis ATCC 8503 (C) tend to be unique to different individuals, while genes associated with
Methanobrevibacter smithii ATCC 35061 tend to be shared by individuals (D). The numbers below the bars indicate the number of individuals sharing the
genes with antisense transcription, with 1 indicating the number of genes unique to one individual, and 2–8 for genes shared by two individuals, and then
increasing numbers of individuals.

TABLE 1 | Clusters of Orthologous Groups (COG) functions that are enriched in the genes with antisense transcription in 47 strains (q-value < = 0.05 by
Fisher’s exact test with FDR correction).

COG ID Cat$ Strains# Function description q-value∗

COG3842 E 1 ABC-type Fe3+/spermidine/putrescine transport systems, ATPase components 0.032

COG0493 E, R 1 NADPH-dependent glutamate synthase beta chain or related oxidoreductase 0.032

COG2226 H 1 Ubiquinone/menaquinone biosynthesis C-methylase UbiE 0.029

COG0568 K 1 DNA-directed RNA polymerase 0.0099

COG0583 K 1 DNA-binding transcriptional regulator, LysR family 0.018

COG1961 L 1 Site-specific DNA recombinase related to the DNA invertase Pin 0.033

COG4974 L 2 Site-specific recombinase XerD 2.09e-06; 0.032

COG1178 P 1 ABC-type Fe3+ transport system, permease component 0.032

COG2059 P 1 Chromate transport protein ChrA 0.032

COG0628 R 1 Predicted PurR-regulated permease PerM 0.032

COG0534 V 2 Na+-driven multidrug efflux pump 0.014; 0.018

COG2801 X 1 Transposase InsO and inactivated derivatives 0.018

COG2826 X 2 Transposase and inactivated derivatives, IS30 family 7.57e-07; 0.012

COG3293 X 1 Transposase 0.0068

COG3328 X 1 Transposase (or an inactivated derivative) 0.012

COG3378 X 1 Phage- or plasmid-associated DNA primase 0.029

COG3415 X 1 Transposase 0.029

COG3464 X 1 Transposase 0.029

COG3666 X 1 Transposase 0.042

$Functional categories (check the caption in Figure 9 for the description of the categories); #Number of strains with detected antisense expression for the corresponding
function; ∗All q-values will be listed if a function is detected to be enriched in multiple species.

Functions Enriched in Genes with Antisense
Transcription
We used two different statistical tests to detect if genes encoding
certain functions tend to have antisense transcription: Table 1

lists the COG functions that are enriched in genes with antisense
transcription based on the Fisher’s exact test with BH FDR
correction. The binomial tests gave consistent results but with
fewer COGs detected to be enriched (see Supplementary Table S1
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FIGURE 9 | COG functional categories enriched in genes with
antisense transcription. The functional categories include E: Amino acid
transport and metabolism; H: Coenzyme transport and metabolism; K:
Transcription; L: Replication, recombination and repair; P: Inorganic ion
transport and metabolism; R: General function prediction only; V: Defense
mechanisms; and X: Mobilome, prophages, transposons.

for details). Figure 9 summarizes the COG functional categories
enriched in the genes (associated with the 47 species we tested;
only one strain was selected for each species) that have observed
antisense transcription. The most significant category is X
(mobilome, prophages, and transposons), which has eight COG
functions that are significantly enriched in genes with antisense
transcription. The next category L, replication, recombination
and repair, contains two enriched COG functions (COG1961
and COG4974). Transposases are among the genes frequently
identified to have antisense transcription in previous studies:
RNA-OUT of the transposon Tn10 (one of the first discovered
antisense RNAs), was found to repress transposition by reducing
transposase levels (Simons and Kleckner, 1983); and in a study of
non-coding RNAs in the archaeon Sulfolobus solfataricus (Tang
et al., 2005), the most prominent group of antisense RNAs
was found to be transcribed in the opposite orientation to the
transposase genes encoded by insertion elements (the authors
of the paper hypothesized that these antisense RNAs regulate
transposition of insertion elements by inhibiting expression of
the transposase mRNA). We also identified other functions that
are enriched in genes with antisense transcription, which may
provide clues to the regulation of these genes.

Discussion

Strand-specific RNA-seq is a powerful tool for transcript
discovery, genome annotation and expression profiling (Levin
et al., 2010). In eukaryotes, 1000s of RNAs antisense to
protein-coding genes have been revealed via high-throughput
sequencing analyses (Berretta and Morillon, 2009). In contrast,

few reports have identified antisense to protein-coding genes in
bacteria, but previous studies have demonstrated that antisense
RNAs can regulate expression of their corresponding genes in
bacteria (Brantl, 2007). Although several studies have shown that
antisense transcription may be widespread in bacteria, a global
analysis of antisense transcripts using strand-specific information
has only been reported for several model, cultured strains
(Passalacqua et al., 2012; Behrens et al., 2014; Siegel et al., 2014).
We describe a computational and statistical procedure to derive
antisense transcripts from metatranscriptome data of microbial
communities. With this method, we survey the antisense RNAs
on a much broader scale than conventional methods, which have
focused on single species.

Due to the fact that the strandedness is not 100% for RNA-
seq experiments, it is necessary to have a way to correct for the
artifacts. We proposed to use a binomial test to determine if a
gene is likely to have antisense transcriptions, or the antisense
reads are more likely artifacts. It helped to remove some of the
artifacts. However, we note that this approach will underestimate
the ratio of genes with antisense transcription for the species with
few RNA-seq reads. This also indicates that when we compare the
ratios of genes with antisense transcription for different species,
we need to be cautious about the interpretation in comparing the
results.

Mapping reads to bacterial genomes has been difficult due
to the existence of closely related species in a microbial
community and the limited availability of reference genomes
(so the actual species might not be presented by the reference
genomes; Wang et al., 2012). We acknowledge there is a
potential problem with the assignment of sequencing reads
to individual genomes due to the ambiguity of mapping.
However, the conclusion we drew based on genes should
be robust (the sense strand of a gene in one species is
likely to be the sense strand as well for its homologs in
related species). Also analysis at the pan-genome level or even
genus level may be worth pursuing in the future, which may
provide insights into the antisense transcription from different
angles.

We note that there are other artifacts that may also
have impacts on the analysis of antisense transcriptions and
the interpretation of the results. For examples, genomic-
DNA contamination may result in the detection of artificial
antisense transcriptions (Haas et al., 2012). The different
genome sizes for the species in a community, and different
gene lengths will complicate the analysis of gene expression
(Garber et al., 2011). Gene annotations for most of the
genomes contain mistakes, and there are complicated gene
structures (such as overlapping genes) that are difficult to
be considered for antisense transcription analysis. Finally,
for metatranscriptomic studies, the RNA-seq data reflects the
compound output of the gene expression and the species
abundance, making the interpretation of the results less
straightforward.

Antisense transcription can be important for the regulation
of some functions, such as transposase genes. One interesting
example is the Bacteroides uniformis mobilizable transposon
NBU1. All of its 10 genes have antisense expression in one
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individual, and in other individuals also have higher
antisense expression for this strain. This result suggests
that in most individuals, the inactivation of this transposon
by antisense RNAs serves an important regulatory role
for its transposition. A further observation is that for a
given bacterial species, the set of genes with antisense
transcripts varies between human host, suggesting that
environmental differences between hosts is leading to
antisense-dependent regulatory responses by the resident
bacteria.

Genes that have exclusively antisense transcripts are clearly
“off”; depending on the efficacy of antisense suppression of
sense translation, all genes with >50% antisense may be
turned off, for example. And it is not surprising that many
genes in a genome are turned off under a given set of
conditions. A gene that is repressed for sense expression will
naturally show a higher level of antisense expression, even
if this is background noise. The question then becomes: are
the antisense transcripts we observed actually a mechanism
to specifically suppress expression, especially for genes with
the highest levels of antisense expression. Strong antisense
transcription was detected for the opa genes coding for
adhesins and invasins, which may have regulatory functions
in pathogenic Neisseria (Remmele et al., 2014). In the
case of transposons, we know that antisense transcripts are
a specific mechanism to maintain very low, or episodic,
expression (Brantl, 2007). If at least some genes are being
regulated by their antisense transcripts, it is no surprise

that the levels will vary between different environments, i.e.,
individuals.
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