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Helicobacter pylori is a Gram-negative spiral-shaped bacterium that colonizes over half

of the world’s population. Chronic H. pylori infection is associated with increased risk for

numerous disease outcomes including gastritis, dysplasia, neoplasia, B-cell lymphoma of

mucosal-associated lymphoid tissue (MALT lymphoma), and invasive adenocarcinoma.

The complex interactions that occur between pathogen and host are dynamic and

exquisitely regulated, and the relationship between H. pylori and its human host are

no exception. To successfully colonize, and subsequently persist, within the human

stomach H. pylori must temporally regulate numerous genes to ensure localization to

the gastric lumen and coordinated expression of virulence factors to subvert the host’s

innate and adaptive immune response. H. pylori achieves this precise gene regulation

by sensing subtle environmental changes including host-mediated alterations in nutrient

availability and responding with dramatic global changes in gene expression. Recent

studies revealed that the presence or absence of numerous metal ions encountered in

the lumen of the stomach, or within host tissues, including nickel, iron, copper and zinc,

can influence regulatory networks to alter gene expression in H. pylori. These expression

changes modulate the deployment of bacterial virulence factors that can ultimately

influence disease outcome. In this reviewwewill discuss the environmental stimuli that are

detected byH. pylori as well as the trans regulatory elements, specifically the transcription

regulators and transcription factors, that allow for these significant transcriptional shifts.
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Introduction

Helicobacter pylori colonizes over half of the world’s population making it arguably the most
successful bacterial pathogen (Atherton and Blaser, 2009). H. pylori is uniquely adapted
to colonize the human stomach and is the dominant microorganism within the gastric
niche (Bik et al., 2006; Cover and Blaser, 2009). Nearly all individuals that are persistently
colonized with H. pylori will experience chronic gastritis, however, in a subset of individuals,
H. pylori infection results in more severe disease outcomes including peptic and duodenal
ulcers, neoplasia, dysplasia, B-cell lymphoma of mucosal-associated lymphoid tissue (MALT
lymphoma), and invasive gastric adenocarcinoma (Cover and Blaser, 2009). For successful
colonization of the host pathogenic bacteria must sense subtle changes in their environment,
and rapidly respond with alterations in their transcriptional profile and H. pylori is no
exception to this paradigm (Sharma et al., 2010). These environmental changes include
the low pH characteristic of the gastric niche, alterations in nutrient availability including
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divalent cations, fluctuations in osmolarity, and the presence of
the human immune system (Algood and Cover, 2006; de Bernard
and Josenhans, 2014; Haley and Gaddy, 2015).

Transition metals participate in a multitude of critical
biological processes, and are incorporated into numerous
metalloproteins; making them a vital nutrient for all living
organisms (Foster et al., 2014). The human host exploits this
requirement for metals by restricting bacterial access to them
in a dynamic process termed nutritional immunity (Hood and
Skaar, 2012; Diaz-Ochoa et al., 2014). It is postulated that access
to these nutrients within the gastric niche is incredibly variable,
and therefore H. pylori likely experiences periodic abundances
of critical metals followed by episodes of extreme depletion
mediated by alterations in environmental pH, which can
influence metal solubility, and expression of host derived metal-
binding proteins such as the calgranulin proteins (calprotectin
and S100A12) and iron-binding proteins like lactoferrin (Belzer
et al., 2007; Senkovich et al., 2010; Gaddy et al., 2014; Haley
et al., 2015). Much of the infectious potential of H. pylori is
dependent on detecting fluctuations in metal availability and
external ion concentrations, and responding with the expression
of virulence factors and metal acquisitions systems (Danielli and
Scarlato, 2010). For example, the cytotoxin-associated gene A
(CagA) and the vacuolating cytotoxin (VacA) are both implicated
in perturbing host cell iron trafficking, and both of these toxins
are critical for host persistence (Salama et al., 2000; Tan et al.,
2011). Detecting alterations in environmental metal quantities
allows H. pylori to appropriately respond to changes in the host
environment while simultaneously ensuring that its repertoire
of metalloenzymes, which are required for essential processes
within the cell, remain adequately metallated (Ge et al., 2013;
Diaz-Ochoa et al., 2014). Many prokaryotes sense and respond to
metals via two-component system (TCS) and signal-transduction
networks (Silver and Walderhaug, 1992; Groisman, 2001; Eguchi
and Utsumi, 2008). The typical H. pylori genome encodes
remarkably few TCS, indicating metal sensing and response is
likely done in novel ways (Panthel et al., 2003). Furthermore, it
is likely that there are redundant and overlapping mechanisms
that govern these regulons (Table 1). In this review we will
highlight the complex regulatory networks, mediated through
trans-regulatory elements including transcriptional regulators
(TRs) and transcription factors, utilized by H. pylori to sense
and react to subtle changes in extracellular metal concentrations
within the human stomach.

Iron

The use of iron in a number of critical metabolic pathways
including electron transport, DNA replication, and amino acid
synthesis, as well as its role as a cofactor within iron sulfur
clusters and heme, makes it a necessity for nearly every living
organism including H. pylori (Becker and Skaar, 2014). The
human body exploits this need for iron by limiting access to
this critical micronutrient through nutritional immunity (Cassat
and Skaar, 2013). Iron is bound within host molecules such
as lactoferrin, transferrin, heme, hemoglobin, and haptoglobin,
making it relatively unavailable to pathogens (Yen et al., 2011;

Haley and Skaar, 2012). Within the gastric niche H. pylori has
access to host dietary iron, however, it must compete with
the host for this limited nutrient (Figure 1). In conditions
of restricted iron availability, H. pylori can utilize alternate
sources of nutrient iron including hemoglobin, transferrin,
heme, and lactoferrin (Dhaenens et al., 1999; Senkovich et al.,
2010). Consequently, H. pylori responds to iron limitation by
upregulating an arsenal of molecular pathways devoted to diverse
iron acquisition functions; therefore, the ability to detect and
respond to environmental iron concentrations is critical to the
survival of H. pylori.

The number of TRs utilized by H. pylori is relatively small
for a genome of its size (∼1600 kb), and consequently the
TRs of H. pylori display a more diverse array of functions
than their counterparts in other bacteria (Pich et al., 2012;
Troxell and Hassan, 2013). The broad activity of H. pylori
TRs is best exemplified by the ferric uptake regulator, Fur.
Canonically Fur binds its ferrous iron cofactor to form holo-
Fur (Fe-Fur) which then mediates Fur binding to conserved
DNA sequences, specifically a 7-1-7 motif with dyad symmetry
(5′-TAATAATnATTATTA-3′) within the promoter region of
regulated genes resulting in the repression of their expression
(Pich et al., 2012). While holo-Fur repression is the best
characterized Fur mediated regulation, it is not the only way
in which Fur modifies transcriptional rates. Specifically, within
H. pylori, holo-Fur has been shown to function as an activator,
and apo-Fur, which is not bound to an iron cofactor, has
also been shown to regulate gene transcription (Gancz et al.,
2006; Carpenter et al., 2013). This unique flexible transcriptional
regulation facilitated by Fur indicates that Fur functions as a
global regulator within H. pylori; therefore, minute alterations
in iron availability can lead to significant changes in the
transcriptome of H. pylori.

Holo-fur
Many of the H. pylori genes which are regulated by Fur in the
traditional manner are involved in iron acquisition. This allows
H. pylori, upon experiencing iron starvation, to upregulate a
complex network of proteins that facilitate the acquisition and
trafficking of this vital nutrient. For example, upon experiencing
iron restriction Fur is no longer able to bind to the promoter
regions of the genes encoding the high affinity iron transporters
fecA1, fecA2, frpB1, and feoB, thus resulting in a dramatic increase
in transcriptional rates of these genes and subsequent iron import
into the cell (Delany et al., 2001; Ernst et al., 2005a; Danielli
et al., 2009). In iron replete conditions, Fe-Fur represses a
variety of iron transport genes including the exbB-exbD-tonB
operon, frpB4, and frpB2, which encode outer membrane iron
transporters, fecD, and yaeE, which encode inner membrane iron
permeases (Fassbinder et al., 2000; Danielli et al., 2006). The Fur-
regulon also includes genes which encode proteins involved in
nitrogen and hydrogen metabolism, including amiE, the gene
encoding pyruvate ferrodoxin oxidoreductase (porG), and genes
implicated in pyridoxal phosphate biosynthesis (pdxJ and pdxA)
(Gancz et al., 2006; Carpenter et al., 2013). Together, these
findings indicate thatH. pylori exploits Fur to regulate and enable
metabolic flexibility which helps the cell circumnavigate the stress
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TABLE 1 | Summary of genes regulated by metals and their corresponding regulatory mechanisms and references to the associated publication

demonstrating these interactions.

Gene Metal associated with regulation Regulation mechanism References

fecA1 Iron Fe-Fur (repression) Ernst et al., 2005a; Danielli et al., 2006, 2009;

Pich et al., 2012

fecA2 Iron Fe-Fur (repression) Fassbinder et al., 2000; Ernst et al., 2005a;

Danielli et al., 2006, 2009; Pich et al., 2012

frpB1 Iron Fe-Fur (repression) Delany et al., 2001; Ernst et al., 2005a; Danielli

et al., 2006; Pich et al., 2012

feoB Iron Fe-Fur (repression) Ernst et al., 2005a

flaB Iron Fe-Fur (activation) Danielli et al., 2006

fliY Iron Fe-Fur (activation) Danielli et al., 2006

flgK Iron Fe-Fur (activation) Danielli et al., 2006

cheA Iron Fe-Fur (activation) Danielli et al., 2006

exbBD-tonB Iron, Nickel, Copper Fe-Fur (repression), Ni-NikR (repression), Copper (induction) Contreras et al., 2003; Danielli et al., 2006

frpB4 Iron, Nickel Fe-Fur (repression), Nik-R (repression) Danielli et al., 2006; Ernst et al., 2006;

Romagnoli et al., 2011

frpB2 Iron, Nickel Fe-Fur (repression), Ni-NikR (repression) Danielli et al., 2006; Muller et al., 2011

fecD Iron Fe-Fur (repression) Danielli et al., 2006

yaeE Iron Fe-Fur (repression) Danielli et al., 2006

pdxJ Iron Fe-Fur (repression) Pich et al., 2012; Carpenter et al., 2013

pdxA Iron Fe-Fur (repression) Carpenter et al., 2013

amiE Iron Fe-Fur (repression) Pich et al., 2012

Hpn2 Iron, Nickel Fe-Fur (repression), Ni-NikR (activation) Contreras et al., 2003; Danielli et al., 2006

c553 Iron Apo-Fur (repression) Carpenter et al., 2013

hydAB* Iron, Nickel Apo-Fur (repression), Ni-NikR (repression) Contreras et al., 2003; Carpenter et al., 2013

serB Iron Apo-Fur (repression) Carpenter et al., 2013

pfr* Iron, Copper, Zinc, Nickel,

Manganese

Apo-Fur (repression), Fur-dependent (repression) Waidner et al., 2005; Danielli et al., 2006;

Carpenter et al., 2013; Zhao and Drlica, 2014

cagA Iron Fe-Fur (activation), apo-Fur (repression) Odenbreit et al., 2000; Pich et al., 2012

oorDABC* Iron Fe-Fur (activation) Gancz et al., 2006

ribBA Iron Fe-Fur (repression) Worst et al., 1998; Fassbinder et al., 2000

sodB Iron Apo-Fur (repression) Bereswill et al., 2000; Carpenter et al., 2013

fecA3 Nickel, Iron Ni-NikR (repression), Fe-Fur (repression) Ernst et al., 2006; Danielli et al., 2009

ceuA Nickel Ni-NikR (repression) Muller et al., 2011

nixA Nickel Ni-NikR (repression) Muller et al., 2011

nikR Nickel Ni-NikR (repression) Muller et al., 2011

hspA Nickel Ni-NikR (activation) Contreras et al., 2003

hpn Nickel Ni-NikR (activation) Contreras et al., 2003

ureA Nickel Ni-NikR (activation), Mua (repression) Benoit and Maier, 2011

fliS Copper Copper (activation) Waidner et al., 2002

rlmA Copper Copper (activation) Waidner et al., 2002

nadC Copper Copper (activation) Waidner et al., 2002

trpA Copper Copper (activation) Waidner et al., 2002

HP1255 Copper Copper (activation) Waidner et al., 2002

HP1516 Copper Copper (activation) Waidner et al., 2002

HP0733 Copper Copper (activation) Waidner et al., 2002

HP0994 Copper Copper (activation) Waidner et al., 2002

hpylM Copper Copper (activation) Waidner et al., 2002

nadC Copper Copper (activation) Waidner et al., 2002

proC Copper Copper (activation) Waidner et al., 2002

crdAB* Copper CrdRS (activation) Waidner et al., 2005

czcAB* Copper, Zinc CrdRS (activation), Zinc (activation) Waidner et al., 2005; Stähler et al., 2006

copAB Copper CopP (activation) Waidner et al., 2005

cznABC Zinc Zinc (activation) Stähler et al., 2006

*Indicates gene(s) located in an operon that are co-regulated.
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FIGURE 1 | Model of iron transport and iron-dependent gene regulation in H. pylori. H. pylori can use numerous sources of nutrient iron including

hemoglobin, holo-lactoferrin, holo-transferrin, and heme, which is degraded in the cytoplasm by the heme oxygenase HugZ. Host cell transferrin can be

trafficked to the apical cell surface by the cytotoxins VacA and CagA, produced by H. pylori. FecA1, FecA2, FrpB4, and FrpB2 are implicated as outer

membrane iron receptors which transport iron through the TonB-ExbB-ExbD complex. FeoB and YaeE are putative permeases which shuttle iron from the

periplasm, across the inner membrane to the cytoplasm. The FecD/FecE system also shuttles iron from the periplasm to the cytoplasm. Once in the

cytoplasm, iron binds to Fur and promotes expression of the fliY, flgK, flab, and cheA genes which encode flagellar and chemotactic components. Fe-Fur

also represses the expression of numerous genes involved in iron homeostasis (including exbB-exbD-tonB, fecD, yaeE, fecA1, fecA2, vacA, feoB, ribBA,

frpB1, frpB2, frpB4) and metabolism of hydrogen or nitrogen (including pdxA, pdxJ, amiE, and porG). Furthermore, apo-Fur represses pfr, sodB, hydAB,

and cagA expression. Iron is stored by bacterial ferritin (Pfr) and free cytoplasmic iron can repress elaboration of Cag-T4SS pili and activity of the T4SS.
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imposed by changes in iron availability. In addition to increasing
expression of iron transporters upon iron starvation H. pylori
also increases binding to the host chelating proteins lactoferrin,
and transferrin presumably by upregulating expression of the
receptors for these proteins (Senkovich et al., 2010). Thus, the
Fur-mediated iron regulation of these iron acquisition systems
enables H. pylori to rapidly respond to the host-imposed iron
limitation by increasing intracellular iron import.

An additional strategy employed by H. pylori to alleviate iron
starvation is to increase the biosynthesis of flavins, which are
used within ferric iron reductases to mediate the reduction of
extracellular iron within iron-containing compounds. Reduction
of iron to its more soluble ferrous form increases the
concentration of available iron while decreasing the affinity of the
iron for some host ligands (Worst et al., 1998). Expression of the
enzyme responsible for the initial rate limiting step in riboflavin
synthesis, RibBA, is repressed by holo-Fur. Consequently,
iron reductases are indirectly Fur-regulated, such that upon
encountering iron restriction,H. pylori increases transcription of
ribBA resulting in an increase in flavin production that can then
be used by the ferric iron reductases (Worst et al., 1998).

Iron-bound Fur has also been shown to directly activate gene
expression including fliY, flgK, flaB, and cheA which encode
flagellar and chemotactic components (Danielli et al., 2006).
Additionally, holo-Fur has been shown to activate the oorDABC
operon which encodes for a 2-oxoglutarate oxidoreductase, an
enzyme that catalyzes the formation of succinyl-CoA, a major
intermediate in carbon metabolism (Gilbreath et al., 2012). This
non-canonical activity of Fur, which is commonly thought to be
directly involved in gene repression, highlights the flexibility of
this molecule within H. pylori; a characteristic that likely aids in
persistence in the gastric niche.

Apo-fur
While iron acquisition is critical for H. pylori colonization,
excessive cellular levels of iron can be detrimental to the cell
as it can lead to the formation of reactive oxygen species
through the Fenton reaction. Reactive oxygen species can lead
to DNA, protein, and lipid membrane damage (Aguirre and
Culotta, 2012; Zhao and Drlica, 2014). To mitigate this damage,
H. pylori increases expression of the bacterial ferritin Pfr, an
iron storage protein, in response to high iron levels. Iron
regulation of pfr is facilitated by Fur, however, this regulation
occurs through non-canonical Fur regulation such that apo-Fur
represses pfr transcription (Bereswill et al., 2000; Carpenter et al.,
2013). An additional mechanism for coping with oxidative stress
induced by high iron levels is through the activity of superoxide
dismutases as it catalyzes the conversion of superoxide species
into oxygen and hydrogen peroxide (Ernst et al., 2005b).
Not surprisingly, the only identified superoxide dismutase in
H. pylori, SodB, is transcriptionally regulated by Fur, such that
apo-Fur binds to the promoter region of sodB, occluding RNA
polymerase binding (Ernst et al., 2005b). The combinatorial
result of apo-Fur regulation of both sodB and pfr is H. pylori
can appropriately respond to high iron levels with a set of
proteins designed to alleviate iron toxicity. Interestingly, apo-
Fur has been shown to repress hydABCDE, an operon which

encodes a Ni/Fe hydrogenase, indicating that apo-Fur is also
implicated in the regulation of hydrogen metabolism inH. pylori.
It is also postulated that apo-Fur-dependent repression of genes
(including sodB and those encoded in the hydABCDE operon)
evolved because their protein products utilize iron as a cofactor,
and repression by apo-Fur ensures these proteins are produced
only when sufficient levels of that cofactor are available (Ernst
et al., 2005b).

The iron restrictive nature of the host has led to many
bacterial pathogens coordinating the production of virulence
factors to the detection of low iron availability. H. pylori encodes
two important virulence factors, the VacA, and the cytotoxin-
associated gene A (CagA) toxin (Cover and Peek, 2013). VacA is
secreted via the Type V autotransporter pathway (Fischer et al.,
2001; Letley et al., 2006). VacA causes numerous changes in
host cells including vacuolation, depolarization of the membrane
potential, permeabilization of epithelial monolayers, disruption
of lysosomes, inhibition of T-cell activation and proliferation,
and ultimately leads to cell death via programmed necrosis (Satin
et al., 1997; Szabò et al., 1999; Sundrud et al., 2004; Torres
et al., 2007; Radin et al., 2011). CagA is secreted via a type
IV secretion system (T4SS), which is encoded within the cag
pathogenicity island (Tummuru et al., 1995). Upon translocation
into host cells, CagA is phosphorylated, and induces a cascade
of changes within the host cell ultimately leading to changes
in immune signaling and cell morphology (Odenbreit et al.,
2000). Interestingly, one effect of CagA translocation into host
cells is the marked alteration in host cell polarity, which results
in apical release of transferrin (Tan et al., 2011). VacA is
also implicated in perturbing transferrin trafficking in epithelial
monolayers to the apical cell surface (Tan et al., 2011). This
apically localized transferrin is believed to be used as an iron
source by H. pylori, thus allowing this bacterium to modify the
host environment and create a more hospitable replicative niche.
Given its role in immune modulation and iron acquisition, it
is not surprising that Fur has been implicated as a potential
regulator of cagA expression (Pich et al., 2012; Vannini et al.,
2014). Along with these observations, our work has shown that
conditions of low nutrient iron availability induce expression
of the Cag-T4SS pili at the host-pathogen interface, and also
enhance the activity of the Cag-T4SS (Noto et al., 2013, 2014;
Haley et al., 2014). Additionally, transcription of cagA has
shown to be upregulated in iron-replete conditions suggesting
Fe-Fur activation of cagA (Pich et al., 2012). These seemingly
contradictory findings suggest an additional, as yet unknown,
environmental signal modifies the Fur-mediated regulation of
cagA activity. Thus, these observations reveal that H. pylori toxin
secretion is regulated by iron and plays a role in iron homeostasis
as well as suggests a role for additional signals to influence
iron-mediated regulation of cagA.

Importance of Fur In vivo
The importance of sensing environmental iron levels, and
responding with global transcriptional changes, is underscored
by the colonization defect of the H. pylori 1fur strain within
a Mongolian gerbil animal model (Gancz et al., 2006; Miles
et al., 2010). Interestingly, the colonization defect of the 1fur
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strain as compared to the wild-type strain was most severe
early in infection with a >50 fold decrease in the number
of CFU/g stomach tissue recoverable at day 3 post infection
(Miles et al., 2010). Importantly, this initial decrease in bacterial
burden dissipates over time and by day 14 no discernable
differences between the wild-type and 1fur strain could be
detected, indicating that Fur-mediated transcriptional regulation
is most critical early in the infection process (Miles et al., 2010).
Furthermore, while H. pylori has been shown to localize to
both the corpus and antrum of the stomach the highest level of
bacterial burden is typically associated with the antral region.
This localization pattern is maintained within a gerbil infection
model where it has been shown that in the absence of Fur,
H. pylori preferentially colonizes the corpus as opposed to the
antrum (Miles et al., 2010). The precise mechanism for this
aberrant distribution within the 1fur strain may be due to

transcriptional changes of cheV2, a Fur-regulated gene shown to
be involved in chemotaxis (Miles et al., 2010).

Nickel

The transition metal nickel plays an important role in H. pylori
physiology and pathogenesis (Figure 2). Nickel is a cofactor for
two critical metalloenzymes, urease and [NiFe]-hydrogenase (de
Reuse et al., 2013; Sydor et al., 2014). The former catalyzes the
generation of ammonia and bicarbonate from urea, a process that
provides a protective increase in pH, enabling the bacterium to
withstand the acidic environment of the stomach (Evans et al.,
1991; Hawtin et al., 1991; Maier, 2005; Benoit and Maier, 2008).
The latter, enables the bacterium to utilize hydrogen gas as an
energy source within the gastric niche. Because nickel is required
for the activity of these important enzymes, nickel acquisition is

FIGURE 2 | Model of nickel transport and nickel-dependent gene regulation in H. pylori. FecA3, FrpB4, and FrpB2 are implicated as outer membrane nickel

receptors which transport nickel through the TonB-ExbB-ExbD complex. NixA is a nickel permease which shuttles nickel from the periplasm, across the inner

membrane to the cytoplasm. CeuE is a periplasmic nickel binding protein that is believed to shuttle nickel through the FecD/FecE system to the cytoplasm. Once in

the cytoplasm, nickel promotes expression of the cznABC operon which encodes a nickel efflux pump. Nickel binds to NikR which promotes expression of genes

involved in nickel storage and urea hydrolysis. Ni2+-NikR represses its own coding, as well as nickel transport genes and hydrogen utilization genes. Nickel also binds

to the Mua protein which represses transcription of genes encoding urease subunits.
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a nutritional requirement for H. pylori (de Reuse et al., 2013).
However, accumulation of high concentrations of intracellular
nickel can be toxic to the cells (Benoit and Maier, 2008). Thus,
nickel acquisition and distribution are tightly controlled by
multiple features including transport, storage, and efflux.

The master regulator for nickel homeostasis is a nickel-
responsive TR referred to as, NikR (Dosanjh and Michel, 2006).
H. pylori NikR can act as either a repressor or an activator,
although the precise mechanism by which nickel-sensing affects
the DNA-binding capacity of NikR remains largely unknown,
however a putative NikR- DNA-binding consensus sequence
has been identified (TATWATT-N11-AATWATA) (Ernst et al.,
2006). The NikR-regulon includes multiple genes involved in
metal homeostasis, hydrogen utilization, and acid response with
chronological hierarchy (Jones et al., 2014). NikR represses
transcription of HPG27_1499 (ceuE) and HP1077 (nixA), genes
which encode a periplasmic nickel transporter and an inner
membrane nickel permease, respectively, HPG27_866, a gene
encoding FrpB2, (Muller et al., 2011) which contributes to
the accumulation of cell-associated nickel, HP1339, the first
gene in the operon which encodes ExbB/ExbD/TonB energy
transport system, and the hydABC locus which encodes proteins
involved in hydrogen utilization (Contreras et al., 2003). NikR
also represses fecA3 and frpB4, which encode a putative outer
membrane receptors for nickel (Ernst et al., 2006; Romagnoli
et al., 2011). Furthermore, NikR is an autoregulator that binds
to its own intergenic region and represses expression of the
nikR locus in conditions of excess nickel (Contreras et al., 2003).
Interestingly, Ni2+-NikR also induces transcription of numerous
genes including hpn, hpn2, and hspA which are involved in
nickel storage, and the ureA locus (HP0073) in which the
first gene in the operon encodes the subunits of the urease
enzyme (Contreras et al., 2003). Urease is an important nickel-
containing dodecameric enzyme that buffers the cytoplasm and
the periplasm of H. pylori during colonization of the acidic
gastric niche (Khan et al., 2009). Urease is the most abundant
enzyme in H. pylori cells, accounting for almost 10% of the
total cellular protein content (Benoit and Maier, 2011). Urease
expression is critical for early colonization and virulence in
the vertebrate host (Eaton et al., 1991). The urease complex
is comprised of subunits organized into two transcriptional
units, ureAB and ureIEFGH, which produces three transcripts,
ureAB, ureIEFGH, and ureABIEFGH (Akada et al., 2000). These
transcripts are induced, as part of the acid stress response through
the phosphorylation of the ArsRS TCS (Pflock et al., 2005).
Conversely, these transcripts are repressed at neutral pH by
the unphosphorylated ArsRS system via a cis-encoded antisense
small RNA to ureB (Wen et al., 2011). In addition to the canonical
NikR-mediated activation of urease expression in response to
nickel availability, recent evidence suggests that the HP0868
(Mua) protein can repress expression of ureA under conditions
where nickel is abundant in the intracellular compartment
(Benoit and Maier, 2011).

Nickel transport into the cell is facilitated through FrpB4,
FrpB2, or FecA3, outer membrane receptors involved in nickel
uptake work in tandem with ExbB/ExbD/TonB machinery to
import nickel across the outer membrane (Schauer et al.,

2007). NixA, an inner membrane protein then facilitates nickel
transport from the periplasm to the cytoplasm. Alternatively,
nickel can be transported by the periplasmic transporter CeuE,
which likely works cooperatively with the inner membrane
FecD/E ABC transporter, (Figure 2) which has been implicated
inH.mustelae nickel and cobalt acquisition (Stoof et al., 2010). As
nickel concentration increases in the cytoplasm,H. pylori induces
expression of the cznABC loci, which encode components of a
putative cobalt, zinc, and nickel efflux pump. This efflux system
is critical for resistance to nickel stress and colonization of the
vertebrate host (Stähler et al., 2006). Although H. pylori does not
seem to have a strict nutritional requirement for nickel to survive
(Testerman et al., 2006), it is clear that nickel sensing and nickel
homeostasis are important forH. pylori persistence in the human
gastric niche as underscored by the significant colonization defect
ofH. pylori strains lacking a functional nikR gene as compared to
wildtype H. pylori strains (Bury-Mone et al., 2004).

Copper

In the gastric environment, dietary copper intake can exceed 1
mg, indicating copper is present in micromolar concentration
at the lumen of the stomach (Barceloux, 1999). Copper can
also be sequestered by S100A12 (Haley et al., 2015). Copper
is gaining increasing recognition as an important component
of macrophage-mediated antimicrobial activity (Wolschendorf
et al., 2011; Johnson et al., 2015; Neyrolles et al., 2015).
Macrophages exploit copper toxicity to poison bacteria within the
phagosome presumably by inducing Fenton-like reactions which
produce hydroxyl radicals (Pham et al., 2013; Neyrolles et al.,
2015). Conversely, bacteria also utilize copper as a cofactor for
oxidases, electron transport proteins, and hydroxylases. H. pylori
encodes both menaquinone-6 and a cbb3-type cytochrome-c
oxidase, which harbors a heme-copper binuclear center similar
to the cytochrome aa3-type oxidase (Nagata et al., 1996). This
is likely the terminal oxidase in the H. pylori respiratory chain,
and thus, copper is a critical cofactor for respiration. Copper
promotesH. pylori colonization of mucosal surfaces and also acts
as a chemotactic repellant for bacterial cell motility (Montefusco
et al., 2013; Sanders et al., 2013). Thus,H. pylorimust balance the
need for copper as a respiration cofactor and the importance of
protection against copper toxicity (Figure 3).

Exposure to copper alters the H. pylori transcriptional
profile in numerous ways. In the presence of copper and
other metals, the cytoplasmic levels of Pfr are reduced in a
Fur dependent manner, suggesting Fur-mediated repression of
pfr transcription in an undefined mechanism (Bereswill et al.,
2000). This is likely to facilitate survival under conditions of
metal stress. Copper is also associated with upregulation of
numerous genes involved in a variety of cellular responses
including motility, fliS- encoding a putative flagellin chaperone,
ion transport, exbD which encodes an energy transport protein
involved in iron and nickel acquisition, crcB, which encodes
camphor resistance protein involved in fluoride ion transport
(HP1225), a putative ABC-transporter (HP1516), and a GTPase
with putative ABC-transporter activity (HP0733); transferase
activity (rlmN- encoding methyltransferase), the nucleotidyl
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FIGURE 3 | Model of copper transport and copper-dependent gene regulation in H. pylori. H. pylori secretes CrdA, a copper-binding protein that facilitates

copper resistance. Extracellular copper is sensed by the CrdS sensor kinase which phosphorylates the cognate response regulator CrdR, an activator of copper efflux

and resistance expression. S100A12 is a host protein that can bind copper as well as zinc. It is hypothesized that cytoplasmic copper levels are sensed by

Cu2+-CopP which upregulates the copAP operon encoding the CopA copper resistance protein and the CopP regulator. In the presence of copper, cytoplasmic

levels of ferritin (Pfr) are reduced in a Fur dependent manner. Copper exposure promotes expression of the methyltransferase (rlmN), the nucleotidyl transferase

(HP0994), and the DNA-methyltransferase (hpylM). Copper induces transcription of nicotinate-nucleotide pyrophosphorylase (nadC), pyrroline-5-carboxylate

reductase (proC), and tryptophan synthase (trpA). Copper promotes transcription of genes involved in ion transport including exbD, crcB which encodes a camphor

resistance protein involved in fluoride ion transport (HP1225), a putative ABC-transporter (HP1516), and a GTPase with putative ABC-transporter activity (HP0733).

H. pylori encodes two Cu2+ efflux systems, the CrdB-CzcAB complex and the CopA system.

transferase (HP0994), and the DNA-methyltransferase (hpylM)
(Waidner et al., 2002). Copper upregulates transcription of genes
involved in several metabolic pathways including nicotinate-
nucleotide pyrophosphorylase (nadC), pyrroline-5-carboxylate
reductase (proC), and tryptophan synthase (trpA). H. pylori also
upregulates numerous genes involved in copper homeostasis
such as crdAB, czcAB, and the copAP operon in response to
copper stress (Waidner et al., 2002).

To evade copper toxicity, H. pylori has evolved elegant efflux
strategies governed by copper sensing mechanisms. H. pylori
employs a TCS crdRS encoding a sensor kinase (CrdS) which

phosphorylates a cognate response regulator (CrdR) in the
presence of copper (Waidner et al., 2005). CrdR induces
expression of crdAB and czcAB, which encode a secreted
copper resistance protein (CrdA) and a copper efflux complex
comprised of CrdB, CzcB, and CzcA. H. pylori also utilizes
the copAP operon, which encodes a cytoplasmic copper-binding
regulator homologous to CopZ from E. coli (CopP) that promotes
expression of CopA, a protein which promotes resistance to
copper (Beier et al., 1997). Taken together, these results reveal
that tight molecular mechanisms of gene regulation have evolved
in the human pathogen H. pylori in response to changes in
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copper availability, and that these regulatory events are critical
for adaptation to the gastric environment.

Zinc

Zinc is a micronutrient required for all forms of life, including
H. pylori (Testerman et al., 2006; Kehl-Fie and Skaar, 2010).
Zinc availability is controlled tightly at the host-pathogen
interface by host S100A-family proteins including calprotectin,
which participate in nutritional immunity via transition metal
sequestration (Kehl-Fie and Skaar, 2010). Coinciding with this,
increased severity of H. pylori-induced gastric inflammation is
inversely correlated with zinc concentrations within the gastric
mucosa (Sempértegui et al., 2007). Conversely, humans consume
large quantities of transition metals such as zinc, so it is
likely that H. pylori is exposed to micromolar concentrations
of zinc at the lumen of the stomach (Stähler et al., 2006).

To persist in the gastric environment, H. pylori must quickly
adapt to variations in zinc availability (Figure 4). One way
that H. pylori senses and responds to metal signals in the
gastric niche is through chemotaxis, the sensing of and response
to a chemical signal. Zinc is a chemotactic attractant for
H. pylori, whereas nickel is a repellent (Sanders et al., 2013).
H. pylori possesses four chemotactic receptors, TlpABCD, which
participate in environmental sensing (Lertsethtakarn et al.,
2011; Rader et al., 2011). TlpD is required for colonization
of the antrum of the stomach and is important for bacterial
motility (Rolig et al., 2012). In H. pylori, chemotaxis has been
shown to be important for the elicitation of an inflammation
response during infection (McGee et al., 2005; Williams et al.,
2007). Interestingly, TlpD has a zinc-binding domain which
could participate in its chemotactic activity and zinc-sensing
(Draper et al., 2011). A tlpD mutant elicited more IL-8
from epithelial cells and produced more CagA compared

FIGURE 4 | Model of zinc transport and zinc-dependent regulation of chemotaxis, metal storage, and virulence in H. pylori. Extracellular zinc is bound by

the S100A-family host antimicrobial proteins, calprotectin and S100A12, produced by innate immune cells. Cytoplasmic zinc binds the cytoplasmic chemotactic

receptor TlpD. High cytoplasmic levels of zinc results in a reduction in Pfr expression in a Fur dependent manner. TlpD putatively participates in metabolic-related

chemotaxis, CagA repression, and repression of the Cag-T4SS activity. Nutrient zinc is required for Cag-T4SS pilus deployment and activity. In the presence of excess

zinc, H. pylori utilizes zinc efflux pumps as a detoxification strategy. H. pylori encodes three Zn2+ efflux systems, the CrdB-CzcAB complex, the CadA transporter, and

the CznABC system. Question marks “?” indicate proteins involved in zinc-responsive changes in cell biology are influencing regulation in an undefined manner.
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to the WT parental strain, although the mechanism of this
regulation remains obscure (Behrens et al., 2013). Recent
work indicates that zinc sequestration by host antimicrobial
proteins such as calprotectin (S100A8/A9 heterodimer) or
calgranulin C (S100A12 homodimer) represses the elaboration
of the extracellular pilus associated with the H. pylori cag-
type IV secretion system (Cag-T4SS) and its associated activity
(Gaddy et al., 2014; Haley et al., 2015). The Cag-T4SS is a
macromolecular machine that is responsible for translocation
of the oncogenic effector cytotoxin CagA. Strains of H. pylori
that possess CagA are associated with increased risk of disease
outcomes including gastritis and gastric cancer (Blaser et al.,
1995). Zinc is required for Cag-T4SS pilus formation, CagA
translocation, activation of nuclear factor kappa-β, and IL-8
secretion by host cells (Gaddy et al., 2014). Together, these
results reveal that zinc is an important global signal that regulates
virulence.

In addition to being an important environmental signal, high
levels of zinc are toxic to bacterial cells (Braymer and Giedroc,
2014). There is growing evidence that the host innate immune
system exploits zinc and copper to poison bacteria trapped within
the macrophage phagosome (Neyrolles et al., 2013). To evade
zinc toxicity, bacterial pathogens have evolved efflux strategies to
transport zinc to the extracellular space (Braymer and Giedroc,
2014). H. pylori has three zinc transport systems that participate
in zinc resistance including CadA, the CrdB-CzcAB complex,
and the CznABC system (Waidner et al., 2002, 2005; Stähler et al.,
2006). H. pylori mutants harboring inactivation in the coding
region of the CadA transition metal ATPase exhibit increased
sensitivity to both cadmium and zinc (Herrmann et al., 1999).H.
pylori cznA, cznB, and cznCmutants have increased sensitivity to
zinc toxicity, and also exhibit elevated cytoplasmic levels of zinc,
indicating zinc ions are trapped within the cell (Stähler et al.,
2006). These mutants are defective for colonization of rodent
models, implicating the CznABC efflux pump as an important
virulence determinant (Stähler et al., 2006). Furthermore, the
H. pylori genome encodes a redundant CrdB-CzcAB complex
purported to be involved in zinc efflux (Stähler et al., 2006).
Interestingly, while it has been unequivocally demonstrated that
zinc is a vital nutrient for H. pylori survival no zinc import
system has been identified. One possible explanation for the
absence of a zinc uptake system is that many metal import
systems are promiscuous and facilitate the acquisition of multiple
metals. It is therefore feasible that the nickel import systems
also facilitate zinc acquisition. Additionally, the promiscuity of
metal influx structures may hinder traditional genetic screening
methods used to identify putative import proteins as the ablation
of any one single gene will not result in a significant growth
defect. These results indicate that H. pylori must maintain
zinc homeostasis as a prerequisite for colonization of the
host and persistence within the host to establish a chronic
infection.

Magnesium, Manganese, and Cobalt

While it is clear that magnesium, manganese, and cobalt are
important cofactors for various bacterial proteins, the current

depth of understanding regarding the role, regulation, and
acquisition of these metals is limited relative to iron, nickel, zinc,
and copper. Magnesium is required for the activity of several
biochemical pathways in central metabolism, which are essential
for bacterial growth and viability (Smith and Maguire, 1998).
For example, H. pylori heavily relies on Mg2+ for phosphate
metabolism, including the catabolism of phosphonates, which
can function as both a vital source of phosphorous and as
phosphorous storage (Ford et al., 2010). H. pylori is capable
of degrading the phosphonate, phenylphosphonate, to use as
a sole phosphate source. This catabolism was shown to be
enhanced by the presence of exogenous MgCl2+ and inhibited
upon the addition of the chelator EDTA (Ford et al., 2010).
Mg2+ also plays a critical role in H. pylori phosphate metabolism
as a metal cofactor within pyrophosphatase. Pyrophosphatases
are ubiquitious enzymes that catalyze the interconversion of
inorganic pyrophosphate and orthophosphate, and function as
a catalyst within cellular bioenergetics, making this group of
enzymes essential for life. The pyrophosphatases withinH. pylori
requires Mg2+ for enzymatic activity (Lee et al., 2007). In
addition to its role as a cofactor within H. pylori phosphate
metabolism, Mg2+ may also play an important role in H. pylori
transcriptional regulation through the binding of a lower affinity
site within the transcription factor NikR. Although NikR binds
nickel and has been shown to be nickel responsive, a second
binding site has been shown to require eitherMg2+ or calcium for
NikR promoter binding (Dosanjh et al., 2007). The importance
of Mg2+ is underscored by the strict requirement of magnesium
for H. pylori cell viability (Testerman et al., 2006). To satisfy this
Mg2+ requirementH. pylori has evolved systems to transport this
important metal. CorA, a distant homolog (15–20% sequence
identity) of the Salmonella enterica serovar Typhimurium ZntB
Zn2+ efflux transporter, is involved in manganese uptake in
H. pylori (Wan et al., 2011). Isogenic corA mutants have
diminished growth in the absence of an exogenous source
of nutrient magnesium compared to the parental strain, and
expression of the H. pylori corA locus in trans in an E. coli
corA mutant enhanced magnesium toxicity compared to the E.
coli corAmutant, demonstrating its role in magnesium transport
(Pfeiffer et al., 2002). CorA is also implicated in cobalt and nickel
transport, however, magnesium is the dominant substrate for this
protein (Pfeiffer et al., 2002; Wan et al., 2011).

Manganese is an important nutrient forH. pylori due to its use
as a cofactor within the pyrimidine metabolic pathway. Uridine
monophosphate (UMP) kinase is a necessary enzyme for the
synthesis of pyrimidine nucleotides. The UMP kinase inH. pylori
is unique in its use of manganese as a cofactor as opposed
to the canonical magnesium (Lee et al., 2010). Manganese
also functions as a critical cofactor within the H. pylori
phosphatidylserine synthase (PSS), an enzyme necessary for the
biosynthesis of phospholipids. Specifically, PSS is responsible for
the catalysis of the first committed step in the formation of
the phospholipid phosphatidylethanolamine, a major component
of the phospholipid membrane (Ge and Taylor, 1997). The
importance of PSS and therefore manganese is highlighted by the
inability to ablate the gene encoding PSS as it is essential for cell
viability (Ge and Taylor, 1997).
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Cobalt is gaining appreciation as an important micronutrient.
Cobalt, among several other transition metals, can serve as a
cofactor for HpyAV, a type II restriction-modification system
in H. pylori. Type II restriction-modification endonucleases are
highly conserved in prokaryotic organisms, but H. pylori
is particularly rich with these, likely due to acquisition
through natural competence. Type II restriction-modification
endonucleases are implicated in phage resistance and
transcriptional regulation of gene expression (Chan et al.,
2010). Additionally, cobalt is utilized as a cofactor within the
H. pylori arginase. Arginases are a group of enzymes that
are responsible for catalyzing the conversion of L-arginine to
L-ornithine. The ubiquitous use of arginases across multiple
kingdoms underscores the importance of this enzyme in
maintaining arginine homeostasis. The H. pylori arginase has
been shown to be critical for acid protection in vitro and to play
an important role during colonization. Many arginases utilize
Mn2+ as a metal cofactor; however, the H. pylori arginase is
unique in its use of Co2+ as a cofactor (Srivastava et al., 2011). To
fulfill its need for cobalt H. pylori transports cobalt into the cell
using the metal transporter CorA (Pfeiffer et al., 2002). Although,
cobalt is an invaluable micronutrient at high quantities cobalt
can exert cellular toxicity. To prevent metal toxicity H. pylori
utilizes the metal ion efflux pump CadA which has specificity for
Co (II), Cd (II), and Zn (II) (Herrmann et al., 1999).

Conclusions

The human stomach is an incredibly dynamic and seemingly
inhospitable environment for an invading prokaryote. Yet, it is
within this environment that H. pylori establishes its replicative
niche. To thrive in an environment of oscillating extremes
including pH, immune assault and nutrient availability H. pylori
alters its transcriptional profile through the intricate interplay
of multiple transcriptional regulators. Transcriptional changes
mediated through the sensing of metals enables H. pylori to

detect changes in nutrient availability and deploy an impressive
array of metal acquisition systems, store the corresponding influx
of metals, avoid metal toxicity and circumnavigate the host
immune assault. Many bacteria use metal sensing as a way to
precisely coordinate virulence factor expression as changes in
metal abundance can be associated with important bacterial
life cycle events such as host entry or the arrival of recruited
immune cells, and H. pylori is no exception. It is no surprise that
several genes are regulated bymore than onemetal condition and
concomitant regulators (Table 1). While two major regulators
including Fur and NikR participate in H. pylori metal response
and have been characterized in some depth, it is very likely that
additional, as yet unknown, regulators exist and additional roles
for the two major regulators have yet to be defined.
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