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Biofilms typically exist as complex communities comprising multiple species with
the ability to adapt to a variety of harsh conditions. In clinical settings, antibiotic
treatments based on planktonic susceptibility tests are often ineffective against biofilm
infections. Using a CO2 evolution measurement system we delineated the real-time
metabolic response in continuous flow biofilms to streptomycin doses much greater than
their planktonic susceptibilities. Stable biofilms from a multispecies culture (containing
mainly Pseudomonas aeruginosa and Stenotrophomonas maltophilia), Gram-negative
environmental isolates, and biofilms formed by pure culture P. aeruginosa strains PAO1
and PAO1 �MexXY (minimum planktonic inhibitory concentrations between 1.5 and
3.5 mg/l), were exposed in separate experiments to 4000 mg/l streptomycin for 4 h after
which growth medium resumed. In complex medium, early steady state multispecies
biofilms were susceptible to streptomycin exposure, inferred by a cessation of CO2

production. However, multispecies biofilms survived high dose exposures when there
was extra carbon in the antibiotic medium, or when they were grown in defined
citrate medium. The environmental isolates and PAO1 biofilms showed similar metabolic
profiles in response to streptomycin; ceasing CO2 production after initial exposure, with
CO2 levels dropping toward baseline levels prior to recovery back to steady state levels,
while subsequent antibiotic exposure elicited increased CO2 output. Monitoring biofilm
metabolic response in real-time allowed exploration of conditions resulting in vulnerability
after antibiotic exposure compared to the resistance displayed following subsequent
exposures.

Keywords: biofilm, antibiotic, metabolism, high doses, recovery

Introduction

Most biofilms are formed by multispecies microbial communities (Lindsay and von Holy, 2006).
Though biofilms have many positive roles in nature, industry, and for human health, they pose
a pronounced risk to immunocompromised individuals. More than 65% of bacterial infections
in humans are caused due to bacteria forming biofilms and 10–20% of nosocomial infections
are caused by the formation of biofilms on medical devices (Nithya et al., 2010). Once a biofilm
has formed in a chronic wound it is difficult for the host’s immune system to eradicate (Fux
et al., 2005), and 1000s of deaths and billions of dollars in medical costs are incurred each year
from such infections (Dowd et al., 2008). A variety of bacterial species are often isolated from
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biofilm infections, with two common pathogens associated with
nosocomial infections being Stenotrophomonas maltophilia and
Pseudomonas aeruginosa (Pedersen et al., 1992; Dowd et al., 2008;
Tseng et al., 2009; Nithya et al., 2010). Stenotrophomonas and
Pseudomonas species are associated with a number of illnesses
and have been co-isolated in several wound types and infections
(Tseng et al., 2009; Araoka et al., 2010).

With a large proportion of infections caused by bacterial
biofilms, many efforts have been made to understand antibiotic
resistance, as antibiotics remain a main treatment of bacterial
infections (Martin and Ernst, 2003; Hanlon, 2007). Earlier
reports indicated that bacterial biofilms can resist concentrations
of antibiotics up to 1000 times greater than their planktonic
counterparts (Nickel et al., 1985; Gristina et al., 1987; Mah and
O’Toole, 2001; Nithya et al., 2010) though there are studies that
point out that this is a false impression (Spoering and Lewis,
2001). Biofilm antibiotic resistance has been linked to various
conditions and behaviors specific to the biofilm environment,
such as reduced antibiotic penetration due to adsorption to
matrix components or degradation by extracellular enzymes
(Stewart and Costerton, 2001), slower growth (Ashby et al., 1994),
expression of efflux pumps (Brooun et al., 2000), expression
and/or increased local concentrations of antibiotic-modifying
or -degrading enzymes (Giwercman et al., 1991; O’Toole et al.,
2000), alterations in antibiotic targets (O’Toole et al., 2000),
nutrient limitation (Dorrer and Teuber, 1977; Nguyen et al.,
2011), adaptive stress responses (Nguyen et al., 2011), and the
presence of persister cells (Spoering and Lewis, 2001; Stewart,
2002).

Although having antibiotic resistance genes is important for
bacterial resistance, the physiological state of bacteria can greatly
affect their susceptibility since antibiotics traditionally target
various forms of macromolecular synthesis (Hancock, 1981; Eng
et al., 1991; Hooper, 2001; Cotsonas King andWu, 2009). Thus, it
can be expected that nutrients and energy sources affect bacterial
susceptibility to antimicrobials. Earlier work with P. aeruginosa
demonstrated that the minimum inhibitory concentration (MIC)
of colistin and polymyxin B was dependent on carbon source
in which the bacteria were cultivated (Conrad, 1979). Another
study found that carbon sources entering in upper glycolysis
(such as glucose and mannitol) potentiate aminoglycoside killing
of bacterial persister cells as compared to carbon sources that
entered lower glycolysis (such as succinate or citrate; Allison
et al., 2011). Furthermore, efflux pump mediated resistance in
clinically relevant Gram-negative bacteria can be reduced by
substituting the culture medium with non-phosphotransferase
system sugars that cause changes in protein concentration in
the periplasmic space, which limit efflux pump activity (Villagra,
2012).

The preceding studies described how various carbon sources
affect antibiotic susceptibility by investigating how variations
in substrate can affect bacterial growth, antibiotic uptake, and
cellular composition in planktonic systems. Since bacterial
biofilms are highly resistant to antibiotics, we explored how
whole-biofilm metabolism and antibiotic susceptibility were
affected when grown in various carbon sources and when
additional carbon was added during antibiotic exposure. The

antibiotic streptomycin was used, which is an aminoglycoside
that targets protein synthesis, and can disrupt the integrity
of the bacterial outer membrane (Taber et al., 1987). Both
streptomycin uptake and efflux are energy-dependent processes
(Taber et al., 1987; Webber and Piddock, 2003) and certain
antibiotic modifying enzymes may require energy, which could
all be affected by nutritional status. Thus, energy dependent
processes and the net flux of the antibiotic could influence the
survival. Finding the mechanisms of antibiotic resistance was
not the primary objective of this study, though an efflux pump
mutant was subjected to the same conditions to determine if a
similar response would be observed. Through careful monitoring
of whole-biofilm metabolic response to high doses of antibiotics
in various nutrient conditions we hope to demonstrate important
aspects of biofilm behavior that can be further explored with gene,
protein, or cellular based methods.

To test how changes in medium and carbon content affect
biofilm susceptibility, the CO2 evolution measurement system
(CEMS) (Kroukamp and Wolfaardt, 2009) was used. The goal
was to delineate the real-time metabolic response of whole
biofilms of a S. maltophilia–P. aeruginosa containing multispecies
culture, as well as several environmental isolates when exposed
to high concentrations of streptomycin in complex and defined
growth media with varying carbon concentrations. Genomic
analyses of the starting cultures obtained from freezer stocks and
a bench culture revealed the presence of S. maltophilia, despite
the frequent subculturing of the bench culture on agar plates.
Further metagenomic analysis was performed on biofilm and
biofilm effluent (before and after antibiotic exposure), which
showed the presence of S. maltophilia in the cultures as well.
Streptomycin was applied at concentrations a 100 to a 1000
times greater than the planktonic MIC, in accordance with the
frequent reference to these high values in the literature (e.g., Mah
and O’Toole, 2001). We observed increases in metabolism upon
antibiotic addition. This led us to hypothesize that the addition of
carbon during antibiotic exposures may aid in biofilm recovery
from high dose streptomycin exposures, in contrast to the notion
that biofilms survive high concentration antibiotic exposures due
to inactivity. Keeping in mind that biofilms are spatially highly
heterogeneous, our aim was to elucidate trends in whole-biofilm
metabolic behavior.

Materials and Methods

Bacterial Cultures
Three Gram-negative environmental strains (Enterobacter
asburiae, Enterobacter sp., and P. putida) isolated from a
washroom sink drain (Ghadakapour et al., 2014), and a
multispecies culture containing P. aeruginosa and S. maltophilia
were used in this study to compare metabolic behavior among
Gram-negative isolates exposed to streptomycin. The bacteria
in the multispecies biofilm containing P. aeruginosa and
S. maltophilia were determined by full genome sequencing
and metagenomic analysis and the environmental strains were
identified by 16S rRNA. Further testing was done on single
species biofilms of P. aeruginosa strains PAO1 and PAO1
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�MexXY (Fraud and Poole, 2011) to observe how efflux pump
activity affects response to high dose streptomycin exposures.
Continuous flow systems (see below) were inoculated from
freezer stocks as well as bench cultures repeatedly sub-cultured
on agar plates. All pre-cultures were grown in either 3 g/l tryptic
soy broth (TSB, EMD Chemicals, Billerica, MA, USA; which
contains 1.4 mM glucose) or in a defined growth medium with
final concentrations of 1.51mM (NH4)2SO4, 3.37 mMNa2HPO4,
2.20 mMKH2PO4, 179mMNaCl, 0.1 mMMgCl2·H2O, 0.01mM
CaCl2·2H2O, and 0.001 mM FeCl3 with 5 mM glucose or sodium
citrate (Clark and Maaløe, 1967) at 37◦C, while agitated [300
rotations per minute (rpm)].

Antibiotic Minimum Inhibitory Concentration
(MIC)
A stock solution of streptomycin sulfate (Bio Basic Inc.Markham,
ON, CA) with a final concentration of 10,000 mg/l was prepared
following a protocol described earlier (Andrews, 2001). The
MIC of streptomycin for the multispecies culture containing
P. aeruginosa and S. maltophilia strains, E. asburiae, Enterobacter
sp., and P. putida were determined in 3 g/l TSB (Ghadakapour
et al., 2014). In addition, biofilm effluent MIC was obtained for
multispecies biofilms inoculated from bench cultures (see biofilm
effluent collection described below). MIC’s were determined at
25◦C for all isolates, as well as at 37◦C for the multispecies
culture. Although MIC’s are generally performed at 37◦C, testing
at 25◦C was performed in order to measure planktonic antibiotic
susceptibility at the same temperature used for biofilm antibiotic
testing. Approximately 107 cells (100 μl from a 108 cells/ml
suspension) of overnight culture were added to the 5ml antibiotic
dilutions and incubated overnight with shaking at 300 rpm, at
either 37◦C or 25◦C for 18–20 h. The antibiotic concentrations
tested ranged from 1.75 to 200 mg/l streptomycin and each
dilution tested was performed in triplicate. A positive control

(107 cells from the overnight culture added to sterile 3 g/l
TSB without antibiotic) and a negative control (sterile 3 g/l
TSB medium without any inoculum) were prepared for each
experiment. The MIC was determined at the concentration of
antibiotic that resulted in no growth of the culture (as determined
by no turbidity or cloudiness seen in the culture).

Biofilm Development
A carbon dioxide evolution measurement system (CEMS) was
used to grow biofilms. In this system, a continuous flow of
growth medium is fed into inner silicone tubing where the
biofilm grows. The silicone tubing is permeable to gas enabling
the CO2 produced by the biofilm to be collected by a CO2-
free sweeper gas and measured in real time through a CO2
analyzer (Kroukamp et al., 2010). Growth medium, with and
without added antibiotic, was fed into the CEMS at a flow rate
of 15 ml/h (hydraulic retention time of 8 min) using a peristaltic
pump (Figure 1). Planktonic cells were being washed away faster
than they can multiply within the tube because the dilution
rate exceeds planktonic bacterial specific growth rates by at least
10 times. The CEMS apparatus was immersed in a water bath
kept at 25◦C. Biofilms were fed continuously with 0.3 g/l TSB
medium until they reached metabolic levels that corresponded
with late exponential phase, early steady state, or late steady state
levels prior to the aminoglycoside exposures. For inoculation,
1 ml of the respective pre-cultures was introduced into the
CEMS without flow for up to 60 min before flow of media was
resumed. Batch-grown pre-cultures were always cultivated in the
same complex (TSB) or defined medium as the biofilm under
investigation.

For the purpose of the biofilm experiments, low and
high TSB concentrations were considered to be 0.3 g/l
(1% of manufacturer’s recommended concentration containing
0.14 mM glucose) and 3 g/l (1.4 mM glucose), respectively. In the

FIGURE 1 | Monitoring of biofilm metabolism through the capture of CO2 production in real-time. (A) The CEMS system was set-up with media being fed
into a gas-permeable inner silicone tube in the CEMS using a peristaltic pump. CO2 released by biofilms in the inner tube cross the silicon wall into the annular space
confined by a gas-impermeable outer tygon tube, from where it is collected and transferred by CO2-free sweeper gas to a CO2 analyzer. (B) A cross-section of the
CEMS showing flow of growth medium (liquid) and gas, separated by a gas-permeable silicone.
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case of the defined medium, high concentrations of carbon were
considered to be at 1 mM for citrate and glucose or 2 mM for
pyruvate, while citrate used at a concentration of 0.14 mM was
considered a low carbon medium.

Antibiotic Exposure
The CO2 profile produced by biofilms grown in the CEMS was
used to determine when the biofilms had reached ametabolically-
stable state between 24–48 h after inoculation (early steady state
biofilms). Streptomycin sulfate (Biobasic Inc., Markham, ON,
CA) was added directly to sterile medium and the biofilms
were exposed to streptomycin concentrations of 4000 mg/l up to
12000 mg/l for 4 h; the physiological half-life of streptomycin in
human plasma is 2–4 h, thus a 4-h exposure time was chosen
(Clarke, 1986). All of the antibiotic exposures were performed
at a minimum in duplicates, mostly numerous replicates except
for the antibiotic exposures on the two environmental isolates
E. asburiae and Enterobacter sp.

Viable Cell Counts in Biofilm Effluent
Effluent samples were collected to determine the viability and
numbers of planktonic cells being released from biofilms before,
during, and after antibiotic exposures. Biofilm effluent samples
collected from steady state biofilms fed with antibiotic-free
growth medium were serially diluted before plating. Biofilm
effluent samples collected during antibiotic treatment were
washed twice via centrifugation at 12000 × g for 150 s and
re-suspended in 0.9% saline solution to reduce the presence
of residual antibiotic before plating on 3 g/l TSA plates and
incubated at 37◦C.

pH Controls
The pH of the media used in this study ranged from 6.71 to 7.09
and the pH of the antibiotic containing media ranged between
6.14 and 6.36. The ratio of dissolved CO2 to bicarbonate ions
increases at lower pH. Since it is the dissolved CO2 that crosses
the silicone tube wall, it could be argued that sudden increases
in measured CO2 upon a decrease in pH could be attributed
to this pH (and dissolved CO2 ratio) shift alone. However, for
any pH where the bicarbonate ion to dissolved CO2 ratio may
increase, the entire reactor volume would still be replaced within
8 min, therefore any measured CO2 changes due to pH-induced
dissolved CO2 ratio would be transient.

Results

Antibiotic Susceptibility of Young Multispecies
Biofilms Grown in 0.3 g/l TSB Medium
To test the notion that biofilms can withstand antibiotic
concentrations 10 to a 1000 times their planktonic MIC,
multispecies-biofilms (inoculum planktonic MIC between 1.5–
3.5 mg/l) were exposed to 4000 mg/l of streptomycin. As
previously observed (Kroukamp et al., 2010), biofilms formed by
Pseudomonas strains may have notably different lengths in lag
phase that will cause the biofilm to stabilize CO2 production at
different times depending on the inoculum. Thus we considered

biofilm growth stage as criterion for when to introduce the
antibiotic – a factor deserving to be considered in biofilm
research. Biofilms grown until just before the onset of steady
state and early steady state CO2 production were susceptible to
4000 mg/l of streptomycin (Figures 2A1–A3 and Figure SM1 in
Supplementary Material). Even when provided with antibiotic-
free growth medium for up to 7 days following exposure, the
biofilms did not recover.

Effect of Added Carbon During Antibiotic
Exposure on Young Biofilms Grown in 0.3 g/l
TSB Medium (Containing 0.14 mM Glucose)
Biofilms exposed to high doses of streptomycin (Figures
2A1–A3) demonstrated a brief spike in CO2 production upon
addition of the antibiotic medium. This innate tendency to
increase metabolism at the onset of streptomycin addition
led us to hypothesize that added energy during an antibiotic
exposure, especially for early steady state biofilms, would
decrease susceptibility of biofilms grown in low concentration
(0.3 g/l) TSB. We attempted to demonstrate this (similar to
biofilms shown in Figures 2A2,A3) by providing additional
carbon during the antibiotic exposure. Indeed, when biofilms
grown in 0.3 g/l TSB were exposed to 4000 mg/l streptomycin
dissolved in high concentration (3 g/l) TSB, there was an
immediate spike in metabolism, followed by a drop in CO2
production to near baseline levels and subsequent recovery over a
period of more than 100 h to return to steady state (Figure 2B1).
Similarly, we were able to rescue the biofilms grown in 0.3 g/l TSB
when exposed to streptomycin with the addition of 1 mMglucose
or 2 mM pyruvate (Figures 2B2,B3). Unlike glucose or pyruvate
addition, addition of 1 mM citrate to the antibiotic medium
did not result in the rescue of the biofilm (Figure 2A4). When
comparing the graphs in column A to the graphs in column B
there are a few observations worth mentioning: in column B,
when additional carbon sources are added to the antibiotic media
(Figure 2) the initial increases in CO2 output are greater than
those in column A when no carbon is added along with the
antibiotic, or when citrate is added to the antibiotic medium.
Furthermore, the CO2 outputs of the biofilms in column B
(Figures 2B1,B2) do not drop completely to base line levels prior
to biofilm recovery toward steady state CO2 output.

Effect of Additional Carbon During Antibiotic
Exposures on Biofilms Grown in Low Carbon
(0.14 mM) Defined Medium
Bacteria behave differently when provided with various nutrient
sources, in either complex or minimal media (Rojo, 2010). In
addition, P. aeruginosa prefers organic acids (as carbon sources)
to glucose (Ng and Dawes, 1967). Thus, we were interested to
test if P. aeruginosa biofilms grown in a defined medium with
citrate as the sole carbon source [at a concentration equal to that
of the glucose (0.14 mM) in the 0.3 g/l TSBmedium] would show
similar sensitivity to the antibiotic as when grown in 0.3 g/l TSB
medium.

The metabolic profile of early steady state multispecies
biofilms grown in low concentration (0.14 mM) citrate medium
showed a slight increase in CO2 production upon antibiotic
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FIGURE 2 | CO2 production (µmol/h) of multispecies biofilms grown on 0.3 g/l TSB medium exposed to 4000 mg/l streptomycin with and without the
addition of carbon to the antibiotic medium. Column (A) shows late exponential phase (A1) and early steady state biofilms (A2–A4) exposed to streptomycin.
The biofilms were exposed to streptomycin in either 0.3 g/l TSB medium (A1–A3) or 0.3 g/l TSB medium with the addition of 1 mM citrate to the 0.3 g/l TSB
antibiotic medium (A4). Column (B) shows the metabolic response of biofilms that recovered following the high dose streptomycin exposures from the addition of
either 3 g/l TSB (B1), 1 mM glucose (B2), or 2 mM pyruvate (B3) to the antibiotic medium.

exposure before CO2 levels decreased toward baseline levels
(Figure 3A). However, unlike the susceptibility to the antibiotic
in 0.3 g/l TSB, the biofilms were able to recover from the
4000 mg/l streptomycin exposure even in the case of early
steady state biofilm. Furthermore, a second exposure to the same
concentration of streptomycin resulted in an increase in biofilm
metabolism that was maintained throughout the 4-h exposure.
When the biofilms grown in low citrate (0.14 mM) concentration
medium were exposed to antibiotic medium supplemented with
1 mM citrate, CO2 production rapidly increased and remained
above steady state values for the duration of the antibiotic
exposure. Following the resumption of antibiotic-free growth

medium after the first antibiotic exposure, there was a drop
in biofilm metabolism below steady state levels that rapidly
recovered, though subsequent exposures returned to steady state
metabolism immediately following the removal of the antibiotic
medium (Figure 3B).

Biofilm Metabolic Response while Switching
Carbon Sources with and without Antibiotic
Present
While biofilms grown from the start in defined medium with
citrate as carbon source were resistant to high streptomycin
concentrations, added citrate could not rescue TSB grown
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FIGURE 3 | CO2 production (µmol/h) of multispecies biofilms grown in 0.14 mM citrate defined medium and exposed to 4000 mg/l streptomycin for
4-h intervals; (A) 0.14 mM citrate medium (B) 0.14 mM citrate growth medium with the addition of 1 mM citrate during the first and second exposure,
and a third antibiotic exposure in 0.14 mM citrate medium.

biofilms from streptomycin. To explore citrate’s inability to rescue
biofilms exposed to streptomycin in TSB (glucose containing)
growth medium (Figure 2A4), we aimed to delineate biofilm
metabolic changes when switching from citrate to glucose
medium with and without antibiotics present. When biofilms
were grown in a defined medium containing 1 mM glucose
and exposed to antibiotic in 1 mM citrate, the metabolism
dropped by ∼80% at the end of the 4-h exposure, with
rapid recovery once switched back to antibiotic free 1 mM
glucose medium (Figure 4A). When biofilms were grown
in 1 mM citrate medium and exposed to the antibiotic in
1 mM glucose medium there was a similar initial drop in
metabolism when the carbon source was switched. Conversely,
the metabolism recovered before the end of exposure, while
further exposures resulted in an increase in metabolism for

the 4-h duration (Figure 4B). To demonstrate the effects of
switching the carbon source on biofilm metabolism without any
antibiotic present we switched from either 1 mM citrate or
glucose media to a 4 h 1 mM glucose or citrate exposure. The
CO2 production of biofilms shuts down instantaneously when
switching from either glucose medium to citrate and vice versa.
Without antibiotic present both glucose and citrate biofilms
started to increase their CO2 output levels again during mid
exposure. Interestingly, the return to steady state CO2 output
took longer when antibiotic was not present in the media
(Figures 4C,D).

Potential Role of Efflux Pump
The efflux pump MexXY is a known mechanism of increased
resistance to aminoglycoside antibiotics and requires energy
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FIGURE 4 | CO2 production (µmol/h) of multispecies biofilms grown in defined medium: (A) 1 mM glucose as the carbon source exposed two times
to 4000 mg/l streptomycin in 1 mM citrate, (B) 1 mM citrate exposed two times to 4000 mg/l streptomycin in 1 mM glucose, (C) 1 mM citrate grown
biofilms exposed to 1 mM antibiotic free glucose and (D) 1 mM glucose grown biofilms exposed to 1 mM antibiotic free citrate.

to function (Zhao et al., 1998; Webber and Piddock, 2003).
For that reason we were interested to determine how a single
species biofilm of PAO1 would behave in comparison to a PAO1
�MexXY mutant. We hypothesized that if the MexXY efflux
pump in our multispecies biofilms containing P. aeruginosa
played a role in the increased resistance to streptomycin
antibiotics and was aided when extra carbon was added to
the medium, that early steady state biofilms of the �MexXY
mutant would not be aided by additional carbon in the antibiotic
medium. Alternatively, we hypothesized that PAO1 would be
aided by additional carbon due to the ability of the biofilm to
utilize the excess energy toward antibiotic efflux. Our results
demonstrate that early steady state PAO1 biofilms were not
able to recover from the high dose streptomycin exposure with
and without the addition of glucose to the antibiotic medium
(Figures 5A1,A2). Similarly, the PAO1�MexXYmutant exposed
to 4000 mg/l of streptomycin with and without added carbon was
unable to recover from the antibiotic exposure (Figures 5B1,B2).

Each of the biofilms, regardless of whether they had the MexXY
efflux pump or not, had an initial increase in CO2 production
above steady state levels prior to a rapid decrease in CO2 output
toward baseline levels, and when additional carbon was added
to the antibiotic medium, the initial increase in CO2 production
upon antibiotic exposure was greater (Figure 5).

Conversely, when the pure culture PAO1 freezer cultures
were streak plated prior to growing overnight cultures for
biofilm inoculation, the behavior differed from what is shown
in Figures 5A1,A2. When early steady state biofilms of PAO1
originated from streak plates, as old as 2 weeks, they were
able to recover from the high dose streptomycin exposure with
and without the addition of carbon to the antibiotic medium
(Figures 6A1,A2). Unlike PAO1, the PAO1 �MexXY strain
was unable to recover from high dose streptomycin exposures
even when the freezer culture was inoculated onto agar plates
prior to growing overnight cultures used for biofilm inoculation
(Figures 6B1,B2).
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FIGURE 5 | CO2 production (µmol/h) of biofilms of P. aeruginosa PAO1 (A) and PAO1 �MexXY (B) grown in 0.3 g/l TSB. The biofilms were grown for less
than 48 h and had reached steady state CO2 output before they were exposed to 4000 mg/l streptomycin for 4 h. (A1) and (B1) biofilms were exposed to
streptomycin in 0.3 g/l TSB medium. (A2) and (B2) were exposed to streptomycin in 0.3 g/l TSB medium with the addition of 0.86 mM glucose (glu).

Adaptation and Comparison to other
Gram-Negative Strains
A culture originating from the same freezer stock culture used in
the preceding experiments, but repeatedly subcultured for several
years, showed the ability to recover after the first treatment
at 4000 mg/l (∼600x planktonic MIC under similar growth
conditions; Figure 7A) and without a drop in metabolism
following subsequent exposures, even when the streptomycin
concentration was increased to 12000 mg/l (Figure 7B). The
numbers of viable cells released from the biofilms into the effluent
reflected the biofilms’ response to antibiotic exposure: as the
biofilm CO2 production decreased, so did the number of viable
cells in the effluent. For example, the effluent cell numbers
decreased from 2.0 × 107 at steady state to 1.6 × 103 and
9.0 × 102 CFU/ml in the effluent mid exposure, and at the end of
the first 4 h, respectively. In contrast, the second exposure did not
result in a similar decrease in effluent cell number; effluent cell
numbers were 2.4 × 105 CFU/ml at the end of the 4 h exposure.

Tests were performed on the three Gram-negative
environmental isolates to demonstrate that the effects of
high doses of streptomycin on biofilm metabolism were not
unique to our multispecies biofilms. Biofilms formed by the
three environmental strains showed similar responses when
exposed to 4000 mg/l streptomycin in low concentration (0.3 g/l)
TSB medium. In each case, metabolic activity (as indicated

by CO2 production) dropped to near-baseline levels, and
took between 48 and 120 h to recover to pre-exposure levels
(Figures 7C–E). When subsequently exposed to the antibiotic,
the biofilms consistently increased their metabolism as an
immediate response to the exposure, typically restoring their
steady state metabolic rate to pre-exposure levels within 24 h.
When a 5 days old multispecies-biofilm (inoculated from freezer
stocks) was exposed to 4000 mg/l streptomycin the metabolic
response resembled that of the environmental isolates and bench
grown cultures (Figure 7F). Unlike the early steady multispecies
biofilms (Figures 2A1,A3) the older biofilm could recover
following high dose streptomycin exposures.

Minimum Inhibitory Concentration of
Streptomycin in Various Growth Medium Types
The MICs of multispecies cultures as well as the environmental
isolates in low and high TSB growth medium (0.3 g/l and 3 g/l
respectively) ranged between 0.5 and 3.5 mg/l. When grown
in defined medium with either high or low carbon content
(1 mM or 0.14 mM citrate or glucose, and 2 mM or 0.28 mM
pyruvate) the multispecies culture inoculum was able to grow in
higher streptomycin concentrations (from 14 mg/l up to 50 mg/l)
compared to when grown in 3 g/l TSB growth medium. Previous
exposure to streptomycin had an impact on the MIC of the cells
released from biofilms. For instance, the streptomycin MIC of the
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FIGURE 6 | Effect of inoculum – the experiments shown in Figure 5 were repeated, with the only exception that the cultures used for inoculation were
first streak plated prior to growing overnight cultures. All other information as described in Figure 5.

inoculum as well as effluent cells collected from biofilms grown
on 0.3 g/l TSB was 3.5 mg/l, compared to effluent cells collected
following high dose streptomycin exposure, which had anMIC of
200 mg/l (see asterisks in Figure 7A).

Discussion

Our data demonstrate that biofilm response to antibiotic
exposure is dependent upon the type of medium in which the
biofilm is grown, carbon availability during antibiotic exposure,
the carbon source, and the length of time the biofilm is at steady
state prior to exposure. In addition to nutrients and growth stage
other environmental factors such as temperature, pH, or oxygen
limitation will all affect biofilm response to antibiotics. In this
study, the experiments were performed at 25◦C that is relevant
to the environmental strains used (Kropinski et al., 1987; Denton
and Kerr, 1998; Hart, 2006). However, future work should
include similar experiments performed under physiologically
relevant temperatures of 37◦C to compliment the fundamental
responses of bacterial biofilms that were the main interest of
this study. Mechanisms responsible for the survival of bacterial
biofilms were not tested in this study, and are the focus of an
ongoing investigation. Various forms of resistance have been
reported in the literature, such as stable resistance and adaptive
resistance that are characterized by genetic changes and down

regulation of antibiotic uptake, respectively (Fernández and
Hancock, 2012). Another way bacteria can survive an antibiotic
exposure is through antibiotic tolerance. Antibiotic tolerance
occurs when bacteria survive an antibiotic exposure through
inactivity or dormancy rather than from genetic changes or active
resistance mechanisms (Lewis, 2007). Under these conditions,
antibiotics that normally target some form of macromolecular
synthesis have no targets to act on since dormant cells are
not growing and are mostly inactive (Rosenkranz, 1964; Lewis,
2007; Cotsonas King and Wu, 2009). For the purpose of this
discussion the term antibiotic resistance is not used to describe
biofilm behavioral changes in response to streptomycin. It has
been pointed out that cells within biofilms may not have more
intrinsic resistance compared to their planktonic counter parts
(Lewis, 2001). We cannot speak to the growth state of individual
cells from this study as we monitored whole-biofilm response.
Nevertheless, the data presented here show that carbon content
and growth conditions can affect microbial metabolic response
to antimicrobials. Using the CEMS for monitoring whole
biofilm metabolism was useful to guide experimental design
for further testing to delineate antibiotic resistance mechanisms
by providing cues for plausible mechanisms of tolerance and
resistance. Moreover, the CEMS may provide a better simulation
of real-world biofilms that typically show spatial variability.

Pre steady state and early steady state multispecies biofilms
were susceptible to high concentration streptomycin exposures
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FIGURE 7 | CO2 production (µmol/h) of biofilms inoculated from bench cultures exposed to streptomycin in 0.3 g/l TSB medium for 4-h intervals. (A)
Multispecies culture grown on 0.3 g/l TSB medium and exposed to 4000 mg/l streptomycin. The effluent cell numbers decreased from 2.0 × 107 CFU/ml at steady
state to 9.0 × 102 CFU/ml at the end of the first 4 h exposure. In contrast, the second exposure did not result in a similar decrease of effluent cell numbers; which
were 2.4 × 105 CFU/ml at the end of the 4 h exposure (B) P. aeruginosa on 0.3 g/l TSB medium and exposed to either 4000, 8000, or 12,000 mg/l streptomycin (C)
an Enterobacter species biofilm (D) Enterobacter asburiae biofilm, and (E) a Pseudomonas putida biofilm, and (F) a multispecies biofilm grown for 5 days prior to the
streptomycin exposure.

(Figures 2A1,A3), especially those younger than 48 h. This is in
contrast to experiments that we have performed (Figure 7F) in
which 4–5 days old biofilms were less susceptible to streptomycin
and recovered from the same 4000 mg/l streptomycin exposure
in 0.3 g/l TSBmedium. This suggests that biofilm growth stage or
age plays a role in biofilm susceptibility to streptomycin, which
is consistent with literature (Ito et al., 2009; Chopra et al., 2015).
The underlying reasons for increased survival of aged biofilms
may include increased thickness, population density, changes in
gene expression, and inactivation of lower layers of the biofilm
(Stewart, 1994, 2002), each of which can contribute to increased
antibiotic resistance and may be seen on the CO2 profiles as
a lower overall effect on whole biofilm metabolism. Increased
biofilm thickness may result in higher levels of extracellular
polymeric substances (EPS) being produced such as negatively
charged alginate in P. aeruginosa that binds to positively

charged aminoglycoside antibiotics (Gordon et al., 1988; Stewart
and Costerton, 2001). In addition, antimicrobials take longer
to diffuse through thicker biofilms allowing more time for
biofilms to upregulate adaptive stress responses, including
excretion of antimicrobial degrading enzymes or increasing EPS
production (Szomolay et al., 2005). Adaptive stress responses,
for example nutrient stressors or antibiotic stressors, can also
lead to enhanced ability to survive high concentration antibiotic
exposures (Stewart, 2002; de la Fuente-Núñez et al., 2013).
Furthermore, as biofilms age their cell density increases and
eDNA accumulates (Fux et al., 2005; Allesen-Holm et al., 2006).
Extracellular DNA can bind to cations such as Mg2+ and Ca2+
that help stabilize LPS molecules in the outer membrane. The
binding of eDNA to cations leads to changes in gene expression
resulting in an altered outermembrane structure more resistant
to cationic antimicrobial peptides and aminoglycoside antibiotics
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(Mulcahy et al., 2008). Ionic binding to the outer membrane is a
crucial stage in aminoglycoside uptake (Hancock, 1981).

An Alternative Behavior for Antibiotic Survival:
Increased Energy Output
Most antibiotics are effective against bacteria during their growth
phase since antibiotics affect metabolic processes such as protein
synthesis (aminoglycosides), DNA synthesis (fluoroquinolones),
and cell wall synthesis (β-lactams; Hancock, 1981; Eng et al.,
1991; Hooper, 2001; Cotsonas King andWu, 2009). Accordingly,
many studies have demonstrated the loss of antibiotic efficacy
when cells are in a non-growing or starved state (Nguyen et al.,
2011) and that the addition of certain nutrients can re-establish
bacterial susceptibility to antibiotics (Borriello et al., 2006; Allison
et al., 2011).

Contrasting the notion that the addition of nutrients increases
antimicrobial susceptibility, our data demonstrate that excess
nutrients provided along with the antibiotic media aided young
biofilms in recovering from antibiotic exposures. Our initial
hypothesis was that additional nutrients would aid biofilm
recovery from aminoglycoside addition since an initial spike in
metabolism upon antibiotic addition was observed. The results
presented here demonstrate that the addition of excess carbon to
the antibiotic medium in the form of TSB, glucose, or pyruvate
reduced the young biofilms’ susceptibility to streptomycin
(Figures 2B1,B3) compared to when no additional nutrients
were added (Figures 2A1,A3). The spike in metabolism that
occurs in the presence of the added-carbon antibiotic media
typically occurs in about 15 min compared to an increase in
CO2 output of 1 h at similar temperature as a result of bacterial
doubling time (in 3 g/l TSB medium; Ronan, 2011). The large
and rapid increase in metabolism (specifically Figures 2B1 and
1B2) when TSB or pyruvate was added to the antibiotic medium
suggests that the biofilms were able to utilize the excess nutrients
upon exposure, circumventing the detrimental effects of the
antibiotic. Further testing would need to be performed to test the
hypothesis that pyruvate or the nutrients in TSB can be utilized
during streptomycin uptake. One way to test nutrient utilization
would be to monitor the consumption of glucose and pyruvate
before, during, and after antibiotic exposure using enzymatic
assay kits. Studying how these nutrients impede negative effects
of high doses of streptomycin on young biofilms may be more
challenging. One would have to learn what physiological changes
occur during the uptake of the carbon or nutrients and how these
changes are affecting streptomycin uptake. A study performed
by Buchholz et al. (2010) monitored biofilm heat-production in
real-time and found that heat production spiked initially when
biofilms were exposed to antibiotics, before declining along with
ATP levels. Their work supports our hypothesis that metabolism
increases during the antibiotic exposure and that excess nutrients
can be utilized.

Previous work has shown a correlation between carbon
addition and changes in antibiotic susceptibility. For example,
studies performed on E. coli, whose preferred carbon source
is glucose, have demonstrated that additional glucose leads to
catabolite repression through repressing cAMP (Dalhoff, 1979)
and that glucose addition can impede the antimicrobial effects

of streptomycin (Zuroff et al., 2010). Furthermore, the addition
of glucose in the antibiotic medium can decrease susceptibility
to kanamycin in biofilms of E. coli; though no mechanism was
given, the authors alluded to the ability of glucose to repress
the uptake of other catabolites leading to antibiotic tolerance
(Palmer et al., 2007). A link to nutrient uptake or metabolism
and decreased susceptibility to antibiotics in P. aeruginosa is a
possibility as well; however, the mechanisms likely differ from
those in E. coli since even though P. aeruginosa does have
catabolite repression control, glucose is not the preferred carbon
source, but rather amino acids and organic acids (Ng and Dawes,
1967; Mukkada et al., 1973; Collier et al., 1996). The behavior of
the biofilm will also depend on how the carbon sources fed into
the biofilm affect other species present. We have not come across
studies that have considered the behavior of Stenotrophomonas sp
with aminoglycosides in the presence of various carbon sources.
Presumably, with the limited nutrient profile of S. maltophilia
(Stanier et al., 1966) its behavior in the presence of various
nutrients would largely depend on if it could metabolize the given
nutrient and/or how the other species present behave.

Only carbon sources that were readily metabolized by the
biofilm enhanced survival to streptomycin; as seen when glucose,
pyruvate, or TSB were added (but not citrate) to the antibiotic
medium (Figure 2A4; Figures 4A,D). The inability of excess
citrate in the medium to enhance survival might be explained
by the fact that the TSB grown biofilms were not adapted for
citrate utilization (Figure 1A4). TSB is a rich medium that
contains glucose as the carbon source. Therefore citrate’s inability
to rescue a TSB grown biofilm can potentially be explained by
catabolite repression, which may occur when glucose and citrate
are in the samemedium.Figures 4A–D demonstrates the concept
behind catabolite repression as the biofilms shut down their
metabolism when a different carbon source was supplied in the
medium. It has been shown that citrate-grown P. aeruginosa did
not up-regulate glucose metabolizing enzymes until a threshold
glucose concentration was reached, yet in glucosemedium, citrate
addition immediately resulted in the induction of the citrate
transport system (Whiting et al., 1976). In this study the glucose
and citrate were not administered at the same time thus the
metabolism reflects the ability of the biofilm to utilize the carbon
source administered at the time. Conversely, with addition of
pyruvate to the TSB medium, bacteria can be expected to grow
faster than with either a media containing glucose or pyruvate
alone (Ng and Dawes, 1973).

In addition to the effects of added carbon during streptomycin
exposure, the data demonstrate that the type of growth medium
affects whole-biofilm metabolic response to streptomycin.
Replicate experiments showed that when biofilms were grown
in a defined growth medium with low (0.14 mM) carbon
concentration (Figure 3A), biofilm susceptibility to streptomycin
was diminished compared to when grown in 0.3 g/l TSB medium
(containing 0.14 mM glucose). Furthermore, addition of carbon
to the antibiotic medium reduced the biofilm’s susceptibility to
streptomycin (Figure 3B). It is plausible that changes in medium
composition and carbon content alter the relative abundance
of the members in multispecies biofilms and their physiological
responses to the antibiotic exposures.
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Results of this study indicate that, in addition to the
growth stage of biofilms, the origin of the culture plays
a role in the metabolic recovery following a streptomycin
exposure (Figures 7A,B). Repeated sub-culturing on agar
plates might result in differential gene expression and can
select for mutants best adapted for growth under laboratory
conditions. It is known that decreased sensitivity to antibiotics
may develop at high population density and under stressful
environmental conditions that lead to rapid up-regulation of
stress response genes (Mah and O’Toole, 2001). Bench cultures
showed adaptation to the antibiotic by increasing their metabolic
output throughout the 4-h exposures once preconditioned to
the antibiotic. The increased CO2 output indicates that biofilms
can actively prevent the antibiotic from disrupting the overall
biofilm metabolism. Following a second streptomycin exposure
the biofilm metabolism rapidly returned to steady state levels
following the resumption of antibiotic-free growth medium.

Gram-negative environmental isolates had similar CO2
profiles when exposed to high concentrations of streptomycin in
low concentration (0.3 g/l) TSB. Changes in the biofilmmetabolic
profile of the bacterial isolates, from the first antibiotic exposure
to the second, demonstrate similar patterns in metabolic behavior
(Figures 7C–E). Upon analysis of each of the biofilms’ metabolic
responses to the antibiotic exposure, it was clear that the biofilms
respond initially to high concentrations of streptomycin by
increasing their energy output, and if primed for the exposure
they will maintain their high metabolic output levels throughout
the exposure. Biofilms formed by all of the environmental isolates
and the lab cultures in this study were able to survive antibiotic
concentrations that were higher than their planktonic MIC.
The MIC’s for Enterobacter isolates have been reported from
8 mg/l to as high as 256 mg/l (Chiew et al., 1998); one study
found streptomycin MIC of environmental strains of P. putida
to be >512 mg/l but considered levels >16 mg/l to be the
resistance breakpoint for streptomycin (Bezanson et al., 2008);
environmental isolates of S. maltophilia showed streptomycin
MIC’s from 64 mg/l even without any resistance genes detected
(Popowska et al., 2012); finally, another study demonstrated the
streptomycin MIC for P. aeruginosa was 64 mg/l in Mueller-
Hinton Broth (Morita et al., 2001).

In an attempt to further explore a potential mechanism
of antibiotic resistance and/or a reason for survival of young
biofilms following the addition of excess carbon to the media,
we tested single species biofilms of PAO1 and a PAO1 �MexXY
mutant deficient in the ability to efflux streptomycin. Our initial
hypothesis that the increased CO2 output may be linked to
an energy induced antibiotic resistance mechanism was not

supported based on the freezer culture inoculum. Our results
cannot clearly indicate that theMexXY efflux pump plays a role in
survival to the antibiotic as seen in Figure 5, since neither PAO1
nor PAO1 �MexXY strain could recover from the antibiotic
exposures even with the addition of carbon to the antibiotic
media. At this point it is not clear why the early steady state single
species biofilm of PAO1 would not be aided by the addition of
glucose to the antibiotic media, while the multispecies biofilms
were. Interestingly, if we include the bench culture results from
the pure PAO1 and �MexXY strains then it does appear that
there is an advantage to the PAO1 culture with efflux pumps. The
PAO1 strain had the ability to survive the antibiotic exposures
while the PAO1 �MexXY strain did not (Figure 6). Therefore,
there may be a link to the efflux pumps for the pure cultures
in particular. As for the multispecies biofilms, there seems to
be a link to energy requiring resistance mechanisms that can
be initiated by added energy in the form of a readily useable
carbon sources. This concept will need to be further explored
in relation to the multispecies cultures since P. aeruginosa and
S. maltophilia have different preference for carbon sources.
The difference in carbon source preferences could explain why
the freezer cultures from multispecies biofilms recovered upon
glucose addition but the pure PAO1 cultures inoculated from
freezer stocks did not. As previously stated, P. aeruginosa prefers
organic acids to glucose (Ng and Dawes, 1967). Most naturally-
occurring biofilms are formed by multispecies communities. The
ways in which members of a multispecies community interact
will determine biofilm physiology, structure, and behavior (Yang
et al., 2011). Considering the growing evidence of multispecies
infections, studies aimed at delineating interactions between
members of biofilm communities during exposure to antibiotics,
at physiological temperatures, merit recognition in future studies.
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