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In temperate seas, both bacterioplankton communities and invertebrate lifecycles follow
a seasonal pattern. To investigate whether the bacterial community associated with the
Mediterranean ascidian Didemnum fulgens exhibited similar variations, we monitored its
bacterial community structure monthly for over a year using terminal restriction fragment
length polymorphism and clone library analyses based on a nearly full length fragment
of the 16S rRNA gene. D. fulgens harbored a bacterial consortium typical of ascidians,
including numerous members of the phylum Proteobacteria, and a few members of the
phyla Cyanobacteria and Acidobacteria. The overall bacterial community in D. fulgens
had a distinct signature from the surrounding seawater and was stable over time and
across seasonal fluctuations in temperature. Bacterial symbionts were also observed
around animal cells in the tunic of adult individuals and in the inner tunic of D. fulgens
larvae by transmission electron microscopy. Our results suggest that, as seen for
sponges and corals, some species of ascidians host stable and unique bacterial
communities that are at least partially inherited by their progeny by vertical transmission.
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Introduction

Ascidians, or sea-squirts, are filter-feeding organisms with an abundance and diversity of species
and functions that render them critical to healthy ecosystem functioning (Lambert, 2005a,b;
Shenkar and Swalla, 2011). However, ascidians are often better known as important fouling
organisms, sometimes becoming invasive and disrupting the organization of native benthic
communities (Lambert, 2007; Bryon and Scavia, 2008; York et al., 2008). Besides their ecological
impact, ascidians also have substantial importance for biotechnology and drug discovery through
the production of unique and structurally diverse secondary metabolites (Anderson et al., 2010;
Paul et al., 2011; Blunt et al., 2014, 2015). In fact, although ascidians hold great potential for new
drug discovery (Anderson et al., 2010), this group has received relatively less attention compared
with other benthic invertebrates such as sponges and mollusks.

Ascidians have been reported to form symbiotic associations with a wide range of bacterial
phyla (Martínez-García et al., 2007; Erwin et al., 2013, 2014; Tianero et al., 2015), and in particular
with Proteobacteria and Bacteroidetes (Schuett et al., 2005; Martínez-García et al., 2007; Tait
et al., 2007; Erwin et al., 2013, 2014; Tianero et al., 2015). To date, the best-studied symbiotic
relationships among bacteria and ascidians are between the ascidian family Didemnidae and the
bacterial phylum Cyanobacteria (Yokobori et al., 2006; Münchhoff et al., 2007; López-Legentil
et al., 2011; Behrendt et al., 2012; Erwin et al., 2014; Tianero et al., 2015). These interactions
have received quite a bit of attention since the discovery of Prochloron, an ascidian-associated
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cyanobacterium that contains a photosynthetic pigment profile
more similar to green algae and plants (both chlorophyll a
and b) than cyanobacteria (Lewin, 1977, 1978; Hirose et al.,
2004, 2007; Oka and Hirose, 2008; Hirose and Nozawa, 2010).
Other cyanobacteria species have been reported in association
with ascidians, including Synechocystis (Lafargue and Duclaux,
1979; Hernández-Mariné et al., 1990; Shimada et al., 2003)
and Acaryochloris, the latter of which uses chlorophyll d
as its major photosynthetic pigment (Miyashita et al., 1996,
2003; López-Legentil et al., 2011; Martínez-García et al., 2011).
Associations between ascidians and Cyanobacteria are thought
to be evolutionarily ancient, widely distributed and host-specific
(Hirose et al., 1996, 2005; Hirose, 2000, 2013; Hirose and Fukuda,
2006; Kojima andHirose, 2010, 2012; López-Legentil et al., 2011).
Much less is known about the symbiotic association between
ascidians and bacteria other than Cyanobacteria. Evidence to date
points toward a high degree of host and species-specificity (Erwin
et al., 2014; Tianero et al., 2015), but much remains to be done
to assess their full diversity, temporal stability, and transmission
mode.

In temperate seas like the Mediterranean, the lifecycles of
ascidians follow a seasonal pattern (Turon and Becerro, 1992;
López-Legentil et al., 2005a,b, 2013). Temperature has often
been pinpointed as the main factor triggering reproduction
and growth in these animals (Millar, 1971; López-Legentil
et al., 2005b, 2013), but other parameters such as resource
availability, turbidity and wave exposure may also play significant
roles (Millar, 1971; Ribes et al., 1998; Valentine et al., 2007;
Shenkar and Loya, 2008; Ritzmann et al., 2009). In addition,
reproduction appeared to be a main energy sink and was
reported to significantly influence the temporal dynamics of
other biological cycles in ascidians, such as growth and the
production of secondary metabolites (López-Legentil et al.,
2005b, 2007, 2013). In fact, the production of some secondary
metabolites in temperate ascidians has also been shown to
follow a seasonal pattern (López-Legentil et al., 2006, 2007).
Since at least some secondary metabolites isolated from ascidians
are known to be totally or partially produced by symbiotic
bacteria (e.g., Aassila et al., 2003; Schmidt et al., 2005; Riesenfeld
et al., 2008; Schmidt and Donia, 2010), temporal fluctuations in
symbiont communities may also be predicted to exhibit seasonal
patterns.

The colonial ascidian Didemnum fulgens (Milne-Edwards,
1841) is commonly found in the western Mediterranean Sea
(Lafargue and Wahl, 1987; Koukouras et al., 1995) and observed
either as an epiphyte on the rhizomes of the seagrass Posidonia
oceanica (Balata et al., 2007) or attached to rocky substrates
in the infralittoral (López-Legentil et al., 2013). D. fulgens
broods its larvae and exhibits a seasonal life cycle characterized
by alternating periods of growth and reproduction (López-
Legentil et al., 2013). This species also lacks macroscopic
epibionts, is a good competitor for space, and only the flatworm
Thysanozoon brocchii has occasionally been observed grazing
on it (Velasco, 2012). Clean colony surfaces and a lack of
generalist predators are good indicators that colonial ascidians,
such as D. fulgens, are actively producing (themselves or their
microbial symbionts) bioactive secondary metabolites for their

defense. The goal of this study was to investigate whether
the bacterial community associated with the Mediterranean
ascidian D. fulgens was subjected to seasonal variations. To
address this issue, we monitored D. fulgens bacterial diversity
monthly for over a year using terminal restriction fragment
length polymorphism (T-RFLP) of bacterial 16S rRNA gene
sequences. Dominant bacterial symbionts were identified by
constructing clone libraries based on a fragment of the 16S rRNA
gene and performing phylogenetic analyses. Symbionts were also
visualized in both adults and larvae by transmission electron
microscopy (TEM). To the best of our knowledge, this is the
first study investigating temporal stability of bacterial symbiont
communities in ascidians, and the findings reported here should
provide much needed data on the intrinsic characteristics of
ascidian-bacteria symbioses.

Materials and Methods

Sample Collection
Samples were collected at L’Escala, Spain (‘La Depuradora’: 42◦
7′ 29′′ N, 3◦ 7′ 57′′ E; NW Mediterranean Sea) in August 2010
and monthly from February 2011 to May 2012 by SCUBA diving,
with the exception of February 2012 due to unfavorable diving
conditions (Supplementary Table S1). Sampled colonies were
separated by at least 5 m and collection depth ranged from 4
to 10 m. After collection, specimens were immediately fixed in
absolute ethanol and stored at −20◦C until analyzed. Seawater
temperature was recorded as described in López-Legentil et al.
(2013) and ranged from 12◦C (March 2012) to 22◦C (September
2011).

DNA Extraction and T-RFLP Analyses
A piece of tunic (<2 mm3) per colony was carefully dissected
under a stereomicroscope to remove the zooids and any debris
attached. DNA was extracted using the Animal Tissue Protocol,
DNeasy R© Blood and Tissue kit (Qiagen R©) and used as template for
PCR amplification of a fragment of the bacterial 16S rRNA gene
using the forward primer 8F (Turner et al., 1999) labeled with
a 5′-end 6-carboxyfluorescein (6-FAM) and the reverse primer
1509R (Martinez-Murcia et al., 1995). Total PCR reaction volume
was 25µL, including 5 pmol of each primer, 5 nmol of each dNTP,
1x reaction buffer (Ecogen), and 2.5 units of BIOTAQ polymerase
(Ecogen). The thermocycler program consisted of an initial
denaturing step at 94◦C for 2 min, 30–35 amplification cycles
(denaturing at 94◦C for 1 min, annealing at 50–55◦C for 30 s
and extension at 72◦C for 90 s), and a final extension at 72◦C for
6 min, performed on a PCR System 9700 (Applied Biosystems).
The number of amplification cycles and annealing temperature
were optimized for each sample (within the ranges above) to
amplify sufficient product yields for downstream analyses. PCR
products were gel-purified and cleaned using the QIAquick
Gel Extraction kit (Qiagen R©) and DNA concentration was
measured using a QubitTM flurometer and Quant-iTTM dsDNA
Assay kit (InvitrogenTM), following manufacturers’ instructions.
Approximately 40–100 ng of purified PCR products were
digested separately with the restriction endonucleases HaeIII
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and MspI (Promega) overnight at 37◦C. Following digestion,
samples were ethanol precipitated and resuspended with 10 µl
Hi-Di formamide and 0.5 µl of GeneScan 600-LIZ size standard
(Applied Biosystems). Fragments were loaded on an automated
sequencer ABI 3730 (Applied Biosystems) available at the
Genomics Unit of the Scientific and Technologic Center of the
University of Barcelona (Spain) and analyzed using Peak Scanner
v. 1.0 (Applied Biosystems). Fragment lengths in the range of 50–
600 bp were considered for further analysis and imported into
the program T-REX (Culman et al., 2009). For noise reduction
prior to terminal restriction fragment (T-RF) alignment, the
filtering algorithm of Abdo et al. (2006) was used to eliminate
background noise (standard deviation multiplier = 3) and
samples with low total fluorescence. T-RFs were then aligned
across samples using a 1-bp clustering threshold and peak profiles
were standardized using relative abundance (percentage total
fluorescence).

Comparison with Seawater Bacterial
Communities
To compare free-living, seawater bacterial composition with
bacterial profiles from D. fulgens, bacterioplankton data from a
previous study (Erwin et al., 2012a) were used. Due to logistical
constraints, seawater samples were unable to be collected with
ascidian samples for this study; however, these data from the
previous study were (1) collected during the same time period
(September and December 2010, and March and June 2011), (2)
collected at two nearby sites (<35 km apart; Tossa de Mar 41◦43′
13.62′′ N, 2◦56′ 26.90′′ E; and Blanes 41◦40′ 54.87′′ N, 2◦49′
0.01′′ E) located a similar distance offshore (<100 m) from the
same depth range (5–10 m) over comparable benthic habitat,
and (3) processed using the same PCR primer pair and T-RFLP
processing pipeline utilized herein. Further, our previous work
has shown similar surface bacterioplankton communities across
100s of km in the NW Mediterranean Sea (Pita et al., 2013).
Full details of sample collection and processing are found in
Erwin et al. (2012a); in short, triplicate samples seawater (500 ml
each) were concentrated on 0.2 µm filters, stored at −80◦C and
extracted using the same DNA extraction kit (DNeasy R© Blood
and Tissue kit) and protocol (Animal Tissue) utilized herein for
ascidian samples.

Statistical Analyses
To compare bacterial community structure among samples,
we constructed Bray–Curtis similarity matrices using square
root transformations of relative T-RF abundance data and
visualized the results in non-metric multi-dimensional scaling
(nMDS) plots. To determine whether the bacterial community
in D. fulgens was stable over time, similarity matrices were
analyzed with nested permutational multivariate analysis of
variance (PERMANOVA) with the factors season and month
(within season). In addition, PERMANOVAwith the single factor
month was performed to ensure that non-seasonal temporal
patterns were not missed by forcing monthly data into ‘seasonal’
categories. PERMANOVA pairwise comparisons were corrected
based on the Benjamini-Yekutieli (B-Y) false discovery rate
control (Benjamini and Yekutieli, 2001) and an experiment-wise

error rate of 0.05. Finally, permutational multivariate analyses of
dispersion (PERMDISP) were conducted to test for heterogeneity
of dispersion among seasons and months. PERMANOVA and
PERMDISP analyses were conducted using PERMANOVA+
implemented in Primer v. 6 (Plymouth Marine Laboratory,
UK).

To determine the putative identity of T-RFLP profile peaks,
in silico digestions of 16S rRNA gene sequences (see below) were
performed in Geneious v. 8 (Kearse et al., 2012). Cut sites at the
5′-end of each sequence were identified based on the recognition
sequence of the restriction endonucleases HaeIII (GG’CC) and
MspI (C’CGG) and utilized to predict the corresponding length
of sequences in T-RFLP profiles. In addition to T-RF peak
identification, comparing clone libraries and T-RFLP profiles
help to determine the specificity of individual T-RFs. Identical
or closely related sequences that match to a single T-RF provide
evidence for a phylotype-specific peak, while unrelated sequences
that match to a same T-RF indicate a multiple phylotype
peak.

16S rRNA Clone Libraries and Phylogenetic
Analyses
Clone libraries based on a fragment of the 16S rRNA gene
sequence were constructed for two colonies of D. fulgens,
collected in April 2011 (DF2) and May 2011 (DF7), to recover
near full-length 16S rRNA gene sequences. Clone libraries were
built with the same primer pair used for T-RFLP analysis (without
the 6-FAM label) as described previously (Erwin et al., 2012a).
All clones obtained were sent for purification and sequencing
to Macrogen, Inc. (Seoul, Korea). Raw sequence reads were
processed in Geneious v. 8 (Kearse et al., 2012) by aligning
forward and reverse reads to yield a final consensus sequence for
each clone. Quality-checked sequences are archived in GenBank
under accession numbers KR348488-KR348508.

Bacterial sequences were ascribed to operational taxonomic
units (OTUs) based on 99% sequence identity (nearest-neighbor
algorithm). Representative sequences from each 99% OTU were
analyzed using the Ribosomal Database Project II (Cole et al.,
2007) sequence classifier and the BLASTn tool from GenBank
to assess taxonomic affiliations and check for sequencing
artifacts (e.g., chimeras). Sampling coverage of clone libraries
was calculated using the bootstrap estimator (Smith and van
Belle, 1984). For phylogenetic analyses, all recovered sequences
herein and reference sequences from GenBank were aligned
using Clustal W v. 2 (Larkin et al., 2007) with a gap opening
penalty of 24 and a gap extension penalty of 4, values appropriate
for aligning gene sequences (e.g., 16S rRNA) with multiple
variable and conserved regions (Erwin and Thacker, 2007). To
build phylogenetic trees, neighbor-joining (NJ) and maximum
likelihood (ML) analyses were conducted in MEGA v. 5.2.2
(Tamura et al., 2007). For NJ analyses, the Jukes-Cantor
model of nucleotide substitution was used and data were re-
sampled using 1,000 bootstrap replicates (Felsenstein, 1985).
The ML tree was built based on the GTR+I+G (Tavaré, 1986)
model with substitution rates varying among sites according
to an invariant and gamma distribution and 100 bootstrap
replicates.
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Transmission Electron Microscopy Analyses
The ultrastructure of the most commonly occurring bacteria in
the tunic and the larva of D. fulgens were examined by TEM. In
May 2011, amature colony was transported alive to the laboratory
and a small piece of tunic (ca. 2 mm3) and a larva were carefully
isolated under a stereomicroscope and immediately were fixed
in 2.5% glutaraldehyde and 2% paraformaldehyde using filtered
seawater as buffer. Samples were incubated in the fixative mixture
overnight at 4◦C, washed several times in filtered seawater and
stored at 4◦C until processed. To construct resin blocks, samples
were dehydrated in a graded ethanol series and embedded in
Spurr’s resin at room temperature. Semi-thin (five microns) and
ultrathin sections (ca. 60 nm) were cut with a Reichert Ultracut
microtome. Ultrathin sections were stained with uranyl acetate
and lead citrate for ultrastructural observation (Reynolds, 1963).
TEM observations were conducted on a JEOL JEM-1010 (Tokyo,
Japan) electron microscope coupled with a Bioscan 972 camera
(Gatan, Germany). Resin blocks, ultrathin sections and TEM
observations were performed at the Microscopy Unit of the
Scientific and Technologic Center of the University of Barcelona.

Results

Bacterial Community Structure over Time and
Specificity
Symbiont communities within D. fulgens exhibited stability
throughout the monitoring period, averaging 62 and 62.2%
community similarity in T-RFLP profiles (HaeIII and MspI,
respectively) across all samples. nMDS plots showed a
lack of seasonal structure, with no consistent clustering
of bacterial communities by season or month for either
restriction enzyme dataset (Figure 1 and Supplementary
Figure S1 respectively). While statistical analyses of community
structure (PERMANOVA) revealed significant variability in
structure across all seasons (p < 0.023, Table 1), no significant
pairwise comparisons were detected between seasons. Similarly,
significant variability in structure were detected across all
months (PERMANOVA, p = 0.001 in both nested and single
factor analyses; Table 1), yet no pairwise comparisons were
significant between months nested within seasons. Further,
full pairwise comparisons between all months (single factor
analysis) revealed that after B-Y correction, only three pairwise
comparisons (of 120 total) were significant for HaeIII (October
2011 vs. April 2011, August 2011 vs. February 2011, and August
2011 vs. May 2011) and none was significant for MspI. For both
enzymes, less than 20% of the observed variation in bacterial
community structure was explained by season and less than
36% was explained by month (in both nested and single factor
analyses). The remaining variation was unexplained by these
factors and may result from the colonization (or loss) of transient
bacterial taxa unrelated to seasonal cycles and interspecific
variation in the relative abundance of symbionts across host
individuals. Statistical analyses of dispersion (PERMDISP)
revealed no significant differences for both factors (season
and months) and enzyme datasets (HaeIII and MspI; Table 1),
indicating that heterogeneity within our data was not the main

FIGURE 1 | Non-metric multi-dimensional scaling (nMDS) plots of
bacterial community similarity in Didemnum fulgens over the
16 months of study and for each season. nMDS ordination based on
Bray-Curtis similarity of T-RFLP profiles for HaeIII (A) and MspI (B) datasets.
Stress values (goodness-of-fit between two-dimensional ordination distances
and similarity matrix distances) are shown in parenthesis for each enzyme
(range = 0 to 1, lower values = better fit).

driver of structural differences retrieved for D. fulgens symbiont
community. Bacterial communities associated with D. fulgens
were significantly different from bacterioplankton communities
(Supplementary Figure S2; PERMANOVA, p < 0.001 for both
enzymes). Seawater bacterial communities exhibited spatially
segregated clusters in composition except for December 2010
and March 2011, which overlapped to some degree (nMDS
plot, Supplementary Figure S2). Overall, bacterioplankton
communities showed clear seasonal shifts in composition,
in contrast with our observations for ascidian-associated
bacteria.

Clone library analysis based on a near-full length fragment
of the 16S rRNA gene resulted in 10 bacterial OTUs (99%
sequence identity; Table 2) that represented a high coverage
estimate (80.4%) of total diversity. All of the recovered sequences,
except for two (OTUs 7 and 8), were affiliated to Proteobacteria
and closely matched previously reported sequences isolated
from either a sponge host or environmental/sediment samples
(Table 2). In particular, most sequences (66.7%) corresponded
to Alphaproteobacteria (OTUs 1, 2, 4, and 5), with the most
common OTU (OTU 1, 38.1% of all sequences) matching
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TABLE 1 | Permutational statistical (PERMANOVA) and dispersion
(PERMDISP) analyses of T-RFLP data to assess the bacterial community
structure in D. fulgens over time.

PERMANOVA PERMDISP

Factor Enzyme Pseudo-F1 P (perm)2 F P (perm)2

Season HaeIII 1.9406 0.009 1.5075 0.302

MspI 1.9176 0.023 1.499 0.311

Month (within
seasons)

HaeIII 1.8058 0.001 NA NA

MspI 1.6142 0.001 NA NA

Month HaeIII 2.171 0.001 2.071 0.433

MspI 1.8612 0.001 4.1679 0.066

Results are shown for the factors seasonal and month (within seasons), the single
factor month, and for both restriction enzymes (HaeIII and MspI). NA: not analyzed.
1Pseudo-F = multivariate analog of Fisher’s F statistic (i.e., ratio of variance).
2P(perm) = Permutational P value (i.e., proportion of permuted pseudo-F
statistics ≥ the original pseudo-F).

closely (99%) to a sponge-associated bacterium collected near
Monterey Harbor (CA, USA). OTUs 3 and 6 were affiliated to
Gammaproteobacteria and matched most closely to bacteria
described from environmental samples, specifically marine
biofilms and seafloor lava, respectively. In contrast, the
Gammaproteobacteria-affiliated OTU 9 was most similar
(95.4% identity) to a bacterial sequence retrieved from
the Mediterranean sponge Tethya aurantium. Finally, the
singleton OTU 10 matched to a deltaproteobacterium sequence
recovered from the Caribbean sponge Plakortis sp. (Table 2).
Cyanobacteria (OTU 7) and Acidobacteria (OTU 8) sequences
were also retrieved in our dataset. OTU 7 presented 97%
sequence identity with coral-associated Cyanobacteria, while
OTU 8 was identical to a sponge-associated bacterial sequence
(Table 2).

Phylogenetic analyses revealed that many of the sequences
retrieved in this study formed well-supported clades (>90
bootstrap value) with bacterial sequences obtained from other
ascidian species, in addition to the host-derived and environment
sequences mentioned above (Figure 2). In particular, sequences

forming OTUs 1 and 2 (the two most common clone library
OTUs) clustered together with sequences retrieved from the
Mediterranean colonial ascidian Cystodytes dellechiajei, also
collected off the coast of Spain (Figure 2). Other well-supported
clades (>95 bootstrap values) grouped sequences obtained in this
study with either sponge-associated (OTUs 8, 9, and 10) or coral-
associated bacteria (OTU 7), environmental samples (OTUs 3, 4,
5), or amix thereof (OTU 6). Sequences belonging to the bacterial
phyla Bacteroidetes and Firmicutes were also common in other
ascidian species but were not observed in D. fulgens (Figure 2).

Comparisons of clone library and T-RFLP data matched most
of the symbiont taxa identified through clone libraries (10 OTUs)
with particular T-RFLP peaks (Supplementary Table S2). OTUs
2, 3, and 4 were not detected with the restriction enzyme HaeIII
because the predicted peaks were out of range but were retrieved
with the MspI enzyme. OTUs 2, 4, and 5 were detected with the
restriction enzymeMspI and resulted in the same empirical T-RF
(446 bp), thus all three OTUs contribute to the relative abundance
of this peak (Supplementary Table S2). Neither OTU 8 nor
10 were detected in our T-RFLP profiles (Supplementary Table
S2). While a higher diversity of bacterial taxa was recovered by
T-RFLP (116 TRFs with HaeIII, 106 TRFs with MspI) compared
to clone libraries (10 OTUs), the majority of these taxa (74–82%)
were rare, transient peaks (occurring in less than 10% of samples).
In contrast, the empirical T-RFs of the eight clone library OTUs
were represented dominant symbiont taxa, accounting for 75.7%
(HaeIIII data) and 81.72% (MspI data) of total profile peak areas,
and were consistently retrieved over time (except for MspI peak
492 that was only retrieved in November and March 2011),
further confirming the stability of these symbionts.

Bacterial Distribution in the Tunic of Adults and
Larvae
Bacteria were abundant in the tunic of D. fulgens, especially
surrounding the ascidian cells (Figure 3A). The main
morphotype was a rod-shaped bacterium (up to 0.5 µm in
diameter and 2 µm in length) that was generally found docked
around animal cells and appeared to be actively phagocytosed
(Figure 3B). Occasionally, other types of bacteria were observed,

TABLE 2 | Bacterial OTUs obtained from clone library analyses, number of clones in each OTU, closest BLASTn match (identity percentage in
parenthesis) and source, class and lowest taxonomic classification (confidence percentages in parenthesis).

OTU Clones T-RF abundance HaeIII/MspI (±SE) BLASTn (acc. no., % match) Phylum or class Lowest taxon

1 8a 14.8/15.5 (±1.4/±1.7) Sponge-associated (EU236387, 99) Alphaproteobacteria (100) G. Hoeflea (96)

2 3a n.d./28.4d (n.d./±1.9) Sediment (GQ246350, 99.4) Alphaproteobacteria (100) G. Rhodobium (42)

3 2b n.d./0.92 (n.d./±0.2) Environmental (GQ274271, 98.1) Gammaproteobacteria (100) G. Spongiibacter (31)

4 2b n.d./28.4d (n.d./±1.9) Sediment (FM242451, 97.3) Alphaproteobacteria (100) G. Sneathiella (100)

5 1c 7.7/28.4d (±1.0/±1.9) Environmental (HM591412, 99) Alphaproteobacteria (100) G. Kordiimonas (100)

6 1b 16.2/1.9 (±1.0/±1.2) Environmental (EU491139, 93.4) Gammaproteobacteria (100) G. Ectothiorhodosinus (27)

7 1b 3.3/5.0 (±0.3/±0.8) Coral-associated (GU119659, 97.4) Cyanobacteria (97) F. Chlorarachniophyceae (36)

8 1b n.d./n.d. (n.d./n.d.) Sponge-associated (FJ269336, 99.4) Acidobacteria (99) O. Gp21 (99)

9 1b 33.7/30.0 (±1.9/±1.9) Sponge-associated (AM259846, 95.4) Gammaproteobacteria (100) G. Ectothiorhodosinus (42)

10 1b n.d./n.d. (n.d./n.d.) Sponge-associated (JX280383, 100) Deltaproteobacteria (84) G. Desulfocurvus (35)

G., genus; F., family; and O., order. aPresent in both clone libraries. bPresent in DF2 library. cPresent in DF7 library. dOTUs 2, 4, and 5 contribute to the same TRF (MspI
digest).
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FIGURE 2 | Phylogeny of partial bacterial 16S rRNA gene sequences in D. fulgens. Sequences obtained in this study are highlighted (bold lettering). Labels
on terminal nodes of reference sequences indicate host or bacterial species, sources (in parenthesis) and GenBank accession numbers. Labels on terminal nodes of
sequences from this study include sample name (DF2: April 2011 or DF7: May 2011), number of sequenced clones (in parenthesis) and ascribed OTU (as in
Table 2). Tree topology was obtained from neighbor-joining (NJ) analysis. Individual bootstrap values from NJ and maximum likelihood (ML) analyses are located on
the tree nodes or in the upper-left of the figure, corresponding to circle numbers on tree nodes. Dark gray bars indicate bacterial phylum: Proteobacteria, Acido.:
Acidobacteria, Bactero.: Bacteroidetes, Firmicu.: Firmicutes, Cyanobacteria. Clear gray bars indicate bacterial class for the Proteobacteria. Scale bar represents
0.05 substitutions per site.
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FIGURE 3 | Transmission electron microscopy images of bacterial cells observed in the adult tunic and in the larva of D. fulgens. (A) Rod-shaped
bacterial cells docked around ascidian cells and star-shaped bacterium (arrowhead); (B) detail of the bacterial docking; (C) bacterial distribution in the inner tunic of
the larva, and (D) bacterial concentration at the larval cuticle edge (C, cuticle; IT, inner tunic; OT, outer tunic). Scale bars represent 2 µm (A,C,D) and 1 µm (B).

including a bacterium exhibiting a star-shaped appearance in
transverse sections (Figure 3A). Rod-shaped bacteria were also
found inside the tunic of a larva isolated from a matureD. fulgens
colony. Contrary to observations of the adult tunic, the bacteria
in the larva were not located around the animal cells but rather
formed patches in the inner tunic (Figure 3C). A large number
of bacteria were found in close association with the cuticle that
separates the inner from the outer tunic of the larva (Figure 3D).

Discussion

Monthly monitoring of D. fulgens colonies for over a year
revealed high stability of ascidian-associated bacterial symbiont
communities. Across all seasons and months, D. fulgens
exhibited a bacterial symbiont community consisting mostly of
Proteobacteria, in particular Alpha- and Gamma-proteobacteria.
Clone library analysis resulted in 10 OTUs (99% sequence
identity) that accounted for the majority of bacteria (relative
abundance) represented in T-RFLP profiles. The empirical
T-RFs assigned to each OTU were consistently retrieved

over time, confirming the stability of these symbionts
across seasonal environmental conditions (e.g., temperature
fluctuations > 10◦C). Other T-RFs were not consistently
observed over time or among individual hosts and were
considered as rare symbiont taxa. Variability in the rare
microbiome occurred most prominently in warmer seasons
(May to September), similarly to what was reported for sponges
inhabiting the same region (Erwin et al., 2012b), and may
coincide with thermal and food shortage stressors during these
seasons. For example, a recent study of coral-associated bacteria
suggested that microbial assemblages in corals inhabiting less
preferred habitats exhibit higher diversity and less structure than
corals located in more favorable habitats (Roder et al., 2015).
Bacterial symbionts were abundant in the tunic of D. fulgens
and were more commonly observed around animal cells in adult
individuals and in the inner tunic of the larvae.

The NW Mediterranean Sea, including the Catalan coast
of the Iberian Peninsula where this study was conducted, is
characterized by clear seasonal trends in water temperature (e.g.,
López-Legentil et al., 2005b, 2013; Rius et al., 2009; Erwin et al.,
2012b; Pineda et al., 2013), irradiance (e.g., Erwin et al., 2012b),
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and food availability (e.g., Coma et al., 2000). Annual temperature
minima occur during the winter season and can fluctuate over
12◦C at shallow sites (<7 m depth; Erwin et al., 2012b; López-
Legentil et al., 2013). Irradiance conditions also exhibit a clear
seasonal trend, with higher light intensity (2–3.5 times higher
irradiance) and longer light duration periods in summer (up
to 6 h more of light exposure per day) than in the winter
(Erwin et al., 2012b). Food availability is generally low during
summer because high temperature brings water stratification,
which in turn results in a severe depletion of nutrients and
suspended materials (Coma et al., 2000). These environmental
factors, in particular temperature and food availability, have
been shown to directly or indirectly influence the seasonality
observed in the life cycle of many marine invertebrates (Becerro
and Turon, 1992; Ribes et al., 1998; Coma et al., 2000, 2002;
López-Legentil et al., 2005b, 2013). Moreover, resting stages
are common in ascidians living in temperate seas and in
the NW Mediterranean this phenomenon (called aestivation)
typically occurs in summer (Turon, 1992; Turon and Becerro,
1992; Coma et al., 2000; López-Legentil et al., 2005b, 2013).
Most D. fulgens colonies have been observed to enter a resting
state after reproduction during the warmer months of the
year (June to August; López-Legentil et al., 2013). However,
none of these many possible factors (changing environmental
conditions, different life cycle status of the animal) appeared
to influence the dominant symbiotic bacterial communities
inhabiting the ascidian tunic, a stark contrast to the seasonal
shifts observed in free-living bacterioplankton communities
(Schauer et al., 2003; Erwin et al., 2012b). Unique (Supplementary
Figure S2) and stable (Figure 1 and Supplementary Figure
S1) bacterial communities in D. fulgens support the hypothesis
of stable associations between bacteria and ascidian species
and suggest that the ascidian tunic provides the symbionts
with a unique and comparatively stable microbial habitat over
time.

A lack of overall seasonal variation in symbiotic microbiota
has also been reported in Mediterranean sponges (Thiel et al.,
2007a,b, Erwin et al., 2012b), indicating that the temporal stability
of bacterial symbiont communities may be widespread among
Mediterranean invertebrates. Moreover, several of the OTUs
retrieved in this study and in other ascidian-microbial symbiosis
studies, closely matched sponge-associated bacterial symbionts
(Martínez-García et al., 2007; Erwin et al., 2014). The existence
of closely related bacterial symbionts within ascidians and
sponges indicate that some bacterial lineages are adapted to host-
associated lifestyles and can establish symbiotic associations with
disparate host organisms. Since the dominant OTUs reported
here were consistently retrieved across months and seasons, our
data also suggest that these shared bacterial lineages among
different taxa are able to maintain stable symbiotic relationships
over time. Notably, the most dominant symbiont in D. fulgens
was classified to the genus Hoeflea, a taxon that includes several
symbiotic strains isolated from dinoflagellates (Biebl et al., 2006),
cyanobacteria (Stevenson et al., 2011), and halophytes (Chung
et al., 2013). In addition to the common trait of symbiotic
association, Hoeflea species exhibit a size and morphology
matching the dominant cell types visualized in D. fulgens adults

and larvae (see below) and has a diverse metabolic repertoire,
including photosynthesis (Biebl et al., 2006), iron-oxidation
(Sorokina et al., 2012), and antibiotic (bacteriocin) production
(Bentzon-Tilia et al., 2014). Additional studies targeting the
function of ascidian-associated bacteria are required to further
understand the metabolism of these symbionts and its potential
benefits for the host.

Transmission electron microscopy observations revealed
that most of the bacterial symbionts in the tunic of the
didemnidD. fulgenswere rod-shaped bacteria distributed around
the animal cells. Occasionally, star-shaped bacteria were also
observed in the tunic but were not associated with the animal
cells. Similar symbiont morphologies and interactions with host
cells have also been observed in the tunic of the Mediterranean
colonial ascidian C. dellechiajei (F. Polycitoridae; Turon et al.,
2005; Martínez-García et al., 2007). Thus, although most bacterial
species are not identifiable by TEM, our observations suggest
that rod- and star-shaped bacteria are common inhabitants
in the ascidian tunic and that the animal is able to control
bacterial population growth to some degree by phagocytosis.
Clearly, further studies are needed to validate this hypothesis
since few studies have paired microbial community descriptions
in ascidians with TEM imaging.

Bacterial cells were also observed inside the inner tunic of
D. fulgens larvae and in close association with the cuticle that
separates the inner from the outer tunic of the larva. Within
the larval tunic, bacterial cells were not located around the
animal cells and thus none was observed being phagocytized.
Rather, bacterial cells formed aggregates away from the animal
cells, similar to what has been observed for the didemnid
ascidian Lissoclinum aff. fragile (López-Legentil et al., 2011).
The presence of bacterial cells in the larval tunic indicated that
some of the bacterial symbionts described for the adult colonies
are being vertically transmitted to progeny since horizontal
transmission of these bacterial cells is unlikely (D. fulgens
larva are brooded within the ascidian and not in direct
exposure to ambient bacterioplankton). Vertical transmission
of cyanobacterial photosymbionts has often been reported in
ascidians and is assumed to be essential for host survival
(reviewed in Hirose, 2014). However, no previous study has
reported similar observations for bacterial symbionts other than
Cyanobacteria. The TEM images obtained here suggest that,
much like for the photosymbionts, other bacterial lineages are
vertically transmitted to the ascidian progeny. Further studies
utilizing taxa specific techniques such as fluorescence in situ
hybridization (FISH) or next generation sequencing should
cast some light on the identity of these symbionts. Combined
with the stability exhibited by the D. fulgens microbiota, these
results indicate that at least some bacterial symbionts may be
indispensable for the establishment and long-term survival of
ascidian colonies.
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