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Although phosphate and carbonate are important constituents in ancient and modern

environments, it is not yet clear their biogeochemical relationships and their mechanisms

of formation. Microbially mediated carbonate formation has been widely studied whereas

little is known about the formation of phosphate minerals. Here we report that a

new bacterial strain, Tessarococcus lapidicaptus, isolated from the subsurface of

Rio Tinto basin (Huelva, SW Spain), is capable of precipitating Fe-rich phosphate

and carbonate minerals. We observed morphological differences between phosphate

and carbonate, which may help us to recognize these minerals in terrestrial and

extraterrestrial environments. Finally, considering the scarcity and the unequal distribution

and preservation patterns of phosphate and carbonates, respectively, in the geological

record and the biomineralization process that produces those minerals, we propose a

hypothesis for the lack of Fe-phosphates in natural environments and ancient rocks.

Keywords: microbial, bacterial precipitates, nanoglobules, Tessarococcus, vivianite, siderite

Introduction

Authigenic ferrous iron-rich minerals like vivianite [Fe3(PO4)2 × 8H2O] and siderite (Fe2CO3)
are used as indicators of paleoenvironmental conditions, diagenetic evolution of sedimentary
sequences (Last and De Deckker, 1990; Manning et al., 1999; Sapota et al., 2006) and biosignatures
(Vuillemin et al., 2013; Sánchez-Román et al., 2014). They are usually found associated in organic
rich environments like lacustrine (Lemos et al., 2007; Rothe et al., 2014) and deep-sea sediments
(Dijkstra et al., 2014), swamps, sewage, and wastewater treatment plants (Postma, 1981; Lovley
et al., 1991). Vivianite is considered the most important sink of phosphorus in reducing natural
systems, being a significant parameter controlling the trophic status of lakes (Nriagu andDell, 1974;
Manning et al., 1991). Therefore, it can exert significant controls over the geochemical cycles of P
and Fe (Veeramani et al., 2011) in reducing sediments in which iron and phosphorous are highly
mobile and the sulfide ion is not produced in high concentration (Manning et al., 1991). On the
other hand, the majority of the carbonate minerals on Earth surface are of biogenic origin (Moore,
1989; Riding, 2006) and the process of carbonate precipitation can be the most important factor
controlling the global carbon cycling (Ridgwell and Zeebe, 2005; Dupraz et al., 2009). Vivianite
and siderite usually occur associated with pyrite (FeS2) in veins of copper, tin, iron, and gold ores
(Craig and Vaughan, 1994; Wiberg et al., 2001). Furthermore, these two iron-rich minerals are
used as iron fertilizer (Eynard et al., 1992; Rakshit et al., 2008; Sánchez-Alcalá et al., 2012) and

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2015.01024
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2015.01024&domain=pdf&date_stamp=2015-09-22
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:sanchezromanmonica@gmail.com
http://dx.doi.org/10.3389/fmicb.2015.01024
http://journal.frontiersin.org/article/10.3389/fmicb.2015.01024/abstract
http://loop.frontiersin.org/people/233494/overview
http://loop.frontiersin.org/people/246355/overview
http://loop.frontiersin.org/people/169059/overview
http://loop.frontiersin.org/people/261213/overview


Sánchez-Román et al. Microbial nucleation of Fe-rich phosphates and carbonates

more rarely vivianite has been used as phosphorous fertilizer
(Mikhailov, 1940; Nelipa, 1961). In addition, vivianite is also
found in decaying plants and animal tissues, bones, shells,
anthropogenic compounds, human wastes, and archeological
settings (Jakobsen, 1988; McGowan and Prangnell, 2006; Nutt
and Swihart, 2012).

Vivianite is a significant mineral because links forensic
medicine (Thali et al., 2011), physical anthropology (McGowan
and Prangnell, 2006), biology and climate geology (Sapota et al.,
2006). On the other hand, siderite is also an important carbonate
mineral that provides information about past climatic events
on Earth and Mars (Ellwood et al., 1998; Fairen et al., 2004;
Tomkinson et al., 2013). Actually, siderite and vivianite are
significant constituents of martian meteorites and Mars surface
(Valley et al., 1997; Dyar et al., 2014). In contrast to vivianite,
siderite is found in much greater abundance in ancient rocks
than in modern environments (Ohmoto et al., 2004; Kholodov
and Butuzova, 2008). The formation of these two iron rich
minerals is generally attributed to the activity of iron reducing
bacteria (Mortimer and Coleman, 1997; Orange et al., 2009; Lee
et al., 2010), and they have significant implications for microbial
metabolism in sediments (Fredrickson et al., 1998). It is known
that siderite can be formed within the sub-oxic, sulfate-reducion
and methanogenic biogeochemical zones within the sediment
column (Wilkinson et al., 2000).

Recently, Fe-rich sulfide (pyrite), sulfate [jarosite,
KFe3(OH)6(SO4)2], and carbonate (siderite) minerals have
been found in Rio Tinto basin (Fernández-Remolar et al., 2012)
and their formation have been also related to iron-reducing fungi
and bacteria (Oggerin et al., 2013; Sánchez-Román et al., 2014).
Those minerals together with vivianite are known as important
minerals in the iron biogeochemical cycle (Raiswell and Canfield,
2012). Rio Tinto is an acidic system in which microorganisms
play an important role by determining the speciation of iron
and can also cause considerable iron accumulation through
biomineralization (Fernández-Remolar et al., 2012; Oggerin
et al., 2013; Sánchez-Román et al., 2014). Furthermore, this acid-
sulfate system enriched in iron is considered one of the potential
analogs for early life on Earth and Mars (Fernández-Remolar
et al., 2012). In order to better understand the nucleation
and formation processes of iron carbonate and phosphate
minerals, here, we present for the first time microbially mediated
primary precipitation of siderite and vivianite in anaerobic
culture experiments under Earth’s surface conditions using a
bacterial strain, Tessarococcus lapidicaptus, isolated from the
subsurface of Rio Tinto (Puente-Sánchez et al., 2014a). The
nucleation, chemical composition, texture and morphology
of the bioprecipitates have been studied using a combination
of high resolution transmission electron microscopy (TEM),
scanning electron microscopy (SEM), sensitive energy dispersive
X-ray Spectroscopy (EDS), and X-ray powder diffraction (XRD).
We demonstrate that T. lapidicaptus produces spatially restricted
supersaturated conditions and can overcome kinetic barrier
to nucleate phosphate and carbonate nanocrystals in its cells
and secreted EPS, respectively. We propose that microbial
nanostructures, nanocrystals, and crystalline nanoparticles, are
not related to a single microbial group or to a specific microbial

metabolism but to a wide range of microorganisms. Finally,
we discuss the mechanism of formation of both phosphate and
carbonate and their significance and implication in natural
systems.

Materials and Methods

Microorganism
Tessaracoccus lapidicaptus CECT 8385 (= DSM 27266) is a
gram-positive, non-spore forming, oval to rod shaped, nitrate-
reducing, and facultatively anaerobic Actinobacterium. The
growth temperature ranges from 15 to 40◦C (optimal at 37◦C)
and the growth pH range from 6 to 9 (optimal at 8). It was isolated
from a 297m depth-drilling core obtained from the Iberian Pyrite
Belt (Puente-Sánchez et al., 2014a). Only the innermost part of
the core was sampled, and sodium bromide was added to the
drilling water as a tracer for potential contamination, as described
in Amils et al. (2013).

Two members of the Tessaracoccus genus have been
previously isolated from marine sediments (Lee and Lee, 2008)
and deep subsurface environments (Finster et al., 2009). Others
have been isolated from crude oil-contaminated saline soil (Cai
et al., 2011) and oleaginous, water-mixed metalworking fluids
(Kämpfer et al., 2009), which suggests that the Tessaracoccus
genus might be specially adept at degrading hydrocarbons
and/or recalcitrant organic matter under harsh environmental
conditions.

Culture Medium
The composition of the anoxic medium FE used in this study
was (wt/vol): 0.25% NaCl; 0.04% NH4Cl; 0.003% MgCl2· 6H2O;
0.005% CaCl2· 2H2O; 0.2% FeCl2· 4H20; 0.01% yeast extract;
0.085% NaNO3; 0.1% glucose; 0.1% succinic anhidryde; 0.05%
KH2PO4; 0.025% NaHCO3; 0.05% cysteine hydrochloride; 0.01%
resazurin. The pH of the medium was 6 and it was sterilized at
121◦C for 20min.

Study of Crystal Nucleation and Precipitation
T. lapidicaptus was inoculated into liquid cultures which were
carried out in 100ml bottles containing 100ml of FE medium.
The bottles containing the culture medium were incubated
anaerobically at 30◦C and examined periodically for the presence
of minerals for up to 45 days after incubation. Controls
consisting of uninoculated culture media and media inoculated
with non-viable cells were included in all the experiments. pH
measurements were performed at the end of the growth and
mineral formation.

The optical density (OD) of the inocula was 0.5 at a
wavelength of 600 nm. It was analyzed using a Spectronic 20
Genesys spectrophotometer. The Fe2+ was measured using a
RQflex 10 Merck reflectoquant.

Mineral Analysis
The crystals were examined by X-ray diffraction (XRD) using a
PANlytical X’Pert MPD PW3011/10. A JEOL JSM 6335 scanning
electron microscope (SEM), equipped with a spectroscope of
dispersive energy (EDX), was used for imaging and elemental
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analysis of single crystals. The mineral precipitates were also
analyzed by transmission electro microscopy (TEM) under JEOL
JEM 2100, 200 KV TEM with a CCD camera model 832. The
morphology of the cells and crystal precipitates were examined
with a JEOL JEM-1010 (TEM). TEM sample preparation is
described in Ferrero et al. (2013) but without adding 5%
K3Fe(CN)6 in the post-fixation step.

Geochemical Studies
The activity of dissolved species and the degree of saturation
in the solutions assayed were determined using the geochemical
computer program PHREEQC version 2 (Parkhust and Appelo,
1999). The results from PHREEQC are presented in terms of the
saturation index (SI) for each predicted mineral. SI is defined by
SI = lg (IAP/Ksp), where IAP is the ion activity product of the
dissolved mineral constituents in a solubility product (Ksp) for
the mineral. Thus, SI > 0 implies oversaturation with respect to
the mineral, whereas SI < 0 means undersaturation.

Results

The mineral precipitates formed exclusively in culture bottles
with active bacterial cells, while no mineral precipitation
occurred in sterile parallel controls (bottles with non-viable cells
and without cells). The pH changed from 6 to ∼7.5 in cultures
with living bacteria. No change in pH was detected in the control
experiments. The starting concentration of Fe2+ was 0.56 g/L
and the final concentration, after mineral precipitation, 0.01 g/L.
The XRD study reveals that the bioprecipitates are composed of
vivianite and siderite, being vivianite the dominant mineral phase
(Figure 1).

TEM and SEM images of the bacterial precipitates show that
Fe-phosphate crystals and Fe-carbonate spheroidal nanoparticles
(nanoglobules) and in some cases, elongated nanoparticles were
attached to the bacterial cells and EPS (Figures 2A–D, 3A,B,D,
4A,B). EDX analyses (Figures 2F–H) confirm the X-ray results,
the nanoparticle precipitates are composed of both, vivianite and
siderite. Vivianite crystals have a prismatic or tabular habit and
form coarse radial-fibrous aggregates like rosettes with a high
degree of crystallinity and vitreous luster (Figures 3C,D). These
crystals are approximately 10–20µm in width and 100–300µm
in length. Siderite crystals are aggregates of nanoglobules
with a diameter 20–100 nm (Figures 4A,B). These nanoglobules
were attached to T. lapidicaptus cells and embedded in a
thin organic film (exopolymeric substances or EPS) produced
by T. lapidicaptus during its growth (Figures 2A–D, 4A,B).
Mineralized bacteria were clearly recognized (Figures 3A, 4A) as
well as dividing cells (Figures 2B, 4A); broken cells and mould of
degraded cells (Figures 3A, 4B). The process of microspherulites
(diameter > 10µm) formation comprises a sequence of events,
starting with the appearance of bacterial nanoglobules (<20 nm)
to larger ones (>100 nm), which agglomerate with time resulting
in microspherulites (Figures 4C,D). The most important process
in the sequence that leads to the formation of spherulites is
the accumulation of nanoglubules and mineralized bacterial
cells, embedded in EPS matrix, displaying a granulated texture
(Figures 4A,B,D).

Mineral phases with SI values positive or very close to 0
(above or below the equilibrium point) were observed, suggesting
the possibility for inorganic (chemical) precipitation in the
aqueous medium assayed (Table 1). These SI data were obtained
by applying the geochemical software PHREEQC to the ionic
composition of the culture medium. According to these data, the
culture FE medium is saturated in hydroxiapatite, vivianite, and
siderite.

Discussion

Nucleation and Precipitation of Phosphate and
Carbonate by T. Lapidicaptus
Our TEM and SEM studies showed that carbonate and
phosphate nanocrystals nucleated on bacterial cell surfaces and
EPS (Figures 2, 3, 4). The initial step of nucleation of carbonate
and phosphate spheroidal nanocrystals occurs in the outer side
of the bacterial envelopes (cell wall) and within EPS in intimate
association with the bacteria cell surface (Figures 2A–D, 3A,
4A,B). Later carbonate spherulites and elongated phosphate
crystals are formed by aggregation of nanocrystals embedded in
the EPS matrix (Figures 2E, 3A,B, 4A,B,D). We also observed
mineralized bacterial cells embedded in the surface of the crystals
(Figures 3A, 4A). Similar nanocrystals have been previously
reported for culture experiments using sulfate reducing-bacteria,
aerobic heterotrophic bacteria, acidophilic iron-reducing
bacteria and fungi (Aloisi et al., 2006; Bontognali et al., 2008;
Sánchez-Román et al., 2008, 2014; Oggerin et al., 2013). These
findings lead us to propose that microbial nanostructures such
as nanocrystals and crystalline nanoparticles are not related to a
single microbial group or to a specific microbial metabolism but
to a wide range of microorganisms including bacteria and fungi.
However, the mineralogy composition of such nanostructures
would depend on the physico-chemical properties of the
precipitating solution (chemistry, pH, salinity, etc.,) and on the
type of microorganism involved in the precipitation.

The aqueous culture medium used in these experiments is
saturated with respect to vivianite and siderite (Table 1), there
is a tendency toward their abiotic precipitation. The calculated
saturation indexes (Table 1) for vivianite and siderite indicate
that they should have been abiotically precipitated in the solution,
in the absence of bacteria. However, no mineral precipitation
was observed in the control experiments (without and with non-
viable cells), while in living culture experiments (with active cells)
vivianite and siderite precipitated. These data confirm that an
aqueous solution saturated with certain mineral phase(s) does
not imply abiotic precipitation with respect to those minerals,
but it depends on their precipitation kinetics (Morse, 1983).
Therefore, vivianite and siderite precipitation can be attributed
to the presence of living T. lapidicaptus cells which are capable
of overcoming the kinetic barriers for mineral precipitation, i.e.,
reducing the activation energy barriers. The metabolic activity
of the bacteria is very important because it supplies the ions
necessary for the formation of minerals, PO4

3− for phosphates
and CO3

2− for carbonates. Additionally, the appropriate
microenvironment around bacterial cells and EPS (increase pH
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FIGURE 1 | X-ray diffractogram of the bioprecipitates formed in T. Lapidicaptus anaerobic cultures. V, Vivianite; S, siderite.

and/or ionic concentration) is created for mineral precipitation.
In fact, an increase in the pH from 6 to 7.8 in the cultures with
active cells was measured. No mineralization was observed in the
control experiments where no pH alteration was detected.

Bacteria induce mineral precipitation by concentrating ions

(e.g., Ca, Fe, Mg, CO3
2−, PO3

4−, NH+

4 ) and changing the pH

in the microenvironment surrounding their cells (Ehrlich, 2002;
van Lith et al., 2003; Sánchez-Román et al., 2011). Bacterial cells
act as a template for mineral nucleation by adsorbing ions around

the cellular surface membrane or cell wall (Schultze-Lam et al.,
1996; Bosak and Newman, 2003). This process does not occur
in absence of bacterial activity. Moreover, EPS are considered as
important factor for mineral precipitation (Dupraz et al., 2004;

Aloisi et al., 2006; Ercole et al., 2007; Bontognali et al., 2008;
Krause et al., 2012). The charged cell walls as well as the reactive

groups of the EPS provide active interfacial sites for adsorption
and complexation of dissolved aqueous metal species, inducing
the nucleation and precipitation of minerals by reducing the
activation energy barriers (Konhauser, 1998; De Yoreo et al.,
2013; Habraken et al., 2013). This results in a mineralized cellular
matrix containing detectable concentrations of metallic ions
that are not easily re-dissolved (Beveridge and Fyfe, 1985).
During bacterial growth experiments using an aqueous medium

rich in organic compounds (yeast extract, glucose, succinic
anhidryd, cysteine) source for CO2, NH3 and HPO3

2−, the
pH, carbonate and phosphate concentrations increased because
of the production of CO2, NH3, and HPO3

2− (which hydrate
to form CO3

2−, NH+

4 and PO4
3−) during metabolization of

organic compounds.
These changes together with the adsorption of iron ions by

T. lapidicaptus would lead to local supersaturation gradients
around bacterial surfaces and EPS, using these as nucleation

sites to induce iron phosphate and carbonate precipitation as
previously has been demonstrated for other type of bacteria
(Aloisi et al., 2006; Bontognali et al., 2008; Sánchez-Román et al.,
2008, 2011, 2014).

It is essential to understand how super-saturation and
nucleation develop in our culture experiments. If concentration

of ions in solution exceeds the solubility product for a solid
mineral phase, precipitation will not occur until a certain
degree of supersaturation is achieved (Berner, 1980). The process
during which the maximum free energy is attained is known
as nucleation and involves the growth of critical crystal nuclei
(Jack et al., 1993; Sánchez-Navas et al., 2009). This process is
accompanied by a decrease in free energy and is referred to
as crystal growth. The presence of living bacteria can promote
either process. Here, the surface of the microbial cell and
EPS provides a template on which nucleation can occur and
overcome kinetic barriers to facilitate mineral precipitation as
previously expounded. This reduces the free energy required
during the nucleation step and focuses crystal growth because
nucleation on the biological template occurs before nucleation
in homogeneous solution (Jack et al., 1993). Most types of
bacteria are capable of acting as nucleation templates (Beveridge
and Fyfe, 1985). Although abiotic precipitation is difficult in
natural systems or in sterile laboratory experiments (present
work), the presence of bacteria can induce the precipitation of
minerals in microenvironments by (1) modifying the conditions
of their surrounding environments and/or concentrate ions in
the bacterial cell envelope and (2) acting as nucleation sites.

Apparently, siderite and vivianite have many physico-

chemical characteristics in common. However, morphological
details suggest different nucleation and growth conditions.

In most cases, siderite nucleates on the bacterial cell wall
and with time develops into a microspherulite (Figures 2A–C,

4A–D); and vivianite nucleates on the bacterial cell and within

the EPS on nanocrystals that agglomerate and get alone as
elongated (rosette) crystals (Figures 2A–E, 3A–D). On the
other hand, PO4

3− inhibits the precipitation of carbonate
minerals (Bouropoulos and Koutsoukos, 2000; Kofina and
Kotsoukos, 2005; Morse et al., 2007). Whereas, the presence
of phosphate can inhibit the formation of siderite (Fredrickson
and Gorby, 1996). Indeed, when phosphate is present, vivianite
appears to be the stable end product due to its lower
solubility product (Ksp = 10−36) (Glasauer et al., 2003). In
our cultures, vivianite precipitated first than siderite. Organic
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FIGURE 2 | TEM images of the bioprecipitates formed in T. Lapidicaptus anaerobic cultures. (A) The bioprecipitates are nanoparticles attached to T.

lapidicaptus cell and its secreted EPS, respectively. (B) Electron diffraction pattern of the darker areas, more mineralized areas. (C) T. lapidicaptus cells with

mineralized cell wall and covered by nanoparticles embeded in EPS. (D) Detail of T. lapidicaptus cell with mineralized cell wall. Note nanoparticles embedded in EPS.

(E) Detail of three cells together with mineralized cell wall and EPS. The upper cell covered by nanoparticles embedded in EPS. (F) Elongated nanoparticle, vivianite

nanocrystal, embedded in EPS. (G) Electron diffraction pattern of the nanocrystal (F). (H,I) EDX spectra of both dark and lighter mineralized areas (1A) composed of

Fe-carbonate and phosphate, respectively. (J) EDX spectrum of nanoparticle (1E) composed of Fe-phosphate (vivianite).

phosphates are hydrolysed by phosphatases, which liberate
orthophosphate during microbial decomposition of organic
material. Locally elevated orthophosphate, excreted during
microbial decomposition of organic material (yeast extract),
around bacterial cells becomes available together with the
inorganic phosphate and soluble iron (Fe2+) initially present
in the culture medium for the precipitation of vivianite.
Hence, the precipitation of Fe-phosphate (vivianite) removes
PO4

3− ions from the solution, leading to the precipitation of
Fe-carbonate (siderite). Thus, we propose that vivianite and
siderite are authigenic sedimentary minerals that require similar
physico-chemical conditions to precipitate and the presence of
microorganisms.

Significance and Implications of Vivianite and
Siderite in Natural Systems
In our aqueous solutions, conditions for the precipitation of Fe-
carbonates are created after phosphate precipitation. Thus, we
propose that in environments with sufficient phosphate and iron,
vivianite will precipitate first than siderite, while in environments
with PO4

3− deficiency siderite will precipitate first. The same
phenomenon might be occurring in Rio Tinto subsurface, from
where T. lapidicaptus has been isolated (Puente-Sánchez et al.,
2014a), characterized by the presence of iron sulfide (pyrite) and
carbonate (siderite) minerals (Fernández-Remolar et al., 2012).

However, Fe-phosphates have not yet been detected there, even
though vivianite is considered as an alteration of pre-existing
Fe-carbonates or sulfides (Garvin, 1998). This could be due to
the presence of abundant dissolve sulfide, which inhibits the
formation of vivianite (Postma, 1981; Manning et al., 1999). The
reduction of aqueous or embedded sulfate coupled to organic
matter oxidation would lead to the formation of H2S and
carbonate. H2S subsequently reacts with iron, and contributes
to the formation of FeS2 whereas CO3

2− would react with
iron to precipitate carbonate (FeCO3). Then, the absence of
phosphate minerals in Rio Tinto may be linked to the presence
of sulfate (Puente-Sánchez et al., 2014b) and its microbiological
transformation to H2S with the consequently formation of pyrite.
It is probably for this reason that we rarely find vivianite
occurring in nature. In fact, it only persists in reducing organic-
rich environments (lakes, deep-sea sediments, swamps, sewage)
with low concentrations of sulfate, which results in a high and
continuous precipitation of vivianite. Our experimental findings
provide information that could be used to interpret the role
of microorganisms in digenetic mineral processes resulting in
phosphate and carbonate formation in natural systems.

On the other hand, supersaturated solutions (e.g., interstitial
pore water) cannot serve as reliable predictors for the in situ
formation of phosphates (Rothe et al., 2014). A gel-like pore
structure (Rothe et al., 2014) of a sediment matrix rich in organic
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FIGURE 3 | SEM images of the Fe-phosphate precipitates from T. Lapidicaptus anaerobic cultures. EDX spectrum of mineralized cell displaying C, O, Fe,

and P. (A) Vivianite crystal attached to mineralized T. lapidicaptus cells and EPS. (B) Elongated vivianite crystal embedded in EPS. (C) Rosette formation of crystal

clusters of vivianite. (D) Vivianite crystals with prismatic or tabular habit.

FIGURE 4 | SEM images of the Fe-carbonate precipitates from T. Lapidicaptus anaerobic cultures. (A) Siderite nanoglobules embedded in EPS and

attached to mineralized dividing T. Lapidicaptus cells. Note the vivianite crystal attached to these cells. EDX spectrum of mineralized cell displaying C, O, Fe, and small

peak of P. (B) Fe-carbonate nanoglobules (siderite) embedded in EPS and delimiting the bacterial cell contours (white arrows). These nanostructures display

granulated texture. White arrows correspond to moulds of degraded bacteria (broken cells). (C) Broken microspherulite of siderite. (D) Detail of a siderite spherulite

which formed by aggregation of nanoparticles.
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TABLE 1 | Saturation index values (SI) in FE anaerobic medium.

Mineral phase SI

Aragonite, CaCO3 −1.16

Artinite, Mg2(CO3)(OH)2 × 3H2O −8.45

Brucite, Mg(OH)2 −6.76

Calcite, CaCO3 −1.02

Dolomite, CaMg(CO3)2 −1.34

Halite, NaCl −4.61

Huntite, CaMg3(CO3)4 −5.98

Hydroxiapatite Ca5(PO4)3OH 2.48

Magnesite, MgCO3 −0.81

Natron, Na2CO3× 10H2O −7.46

Nesquehonite, MgCO3× 3H2O −3.22

Siderite, FeCO3 2.40

Vivianite, Fe3(PO4)2× 8H2O 9.08

Results are from geochemical software PHREEQC. SI values are for initial conditions.

matter, in combination with release of soluble phosphorous
and iron due to microbial activity, is necessary for vivianite
formation in natural systems. In our culture experiments the
gel-like pore structure would be the bacterial EPS and cell
surfaces which throughout bacterial activity (1) create local
microenvironments supersaturated with respect to phosphates
and carbonates; and (2) act as templates for mineral nucleation
overcoming the kinetic barriers of mineral precipitation. Indeed,
similar nanocrystals of phosphate and carbonate to the ones
shown in the present study (Figures 2A,E, 4A,B) have been
also reported as closely linked to the presence of bacterial cells,
EPS and similar mucilaginous structures in modern and ancient
environments (Sánchez-Román et al., 2008; Crosby and Bailey,
2012; Cosmidis et al., 2013, 2014; Sánchez-Navas et al., 2013).
The preservation of these nanostructures in the geological record

may help us to trace microbial processes through geologic time.
Therefore, this experimental study (1) may help to understand
the formation of ancient iron phosphate (Fife and Mark, 1982;
Cook and Shergold, 1986; Simonen, 1986) and carbonate (Veizer
et al., 1989; Ohmoto et al., 2004) deposits, and (2) provides
potential biosignatures that may be useful to test terrestrial and
extraterrestrial habitats for life evidences.

Finally, our experiments demonstrate that T. lapidicaptus can
cause considerable iron accumulation through biomineralization
of phosphate and carbonate, therefore, T. lapidicaptus could
be considered a good phosphate removing bacterium from
anaerobic systems. Furthermore, vivianite and siderite produced
by T. lapidicaptus could be a good alternative fertilizer of
phosphorous and iron. The presence of this bacterium and/or
related bacteria in natural environments could explain the
formation of vivianite and siderite. The co-precipitation of Fe-
phosphate and carbonate in our cultures links the P, C, and Fe
cycles during biomineralization.
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