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INTRODUCTION

Strategies involving new applications of existing drugs are urgently needed to reduce the time
required to cure patients with drug-susceptible and drug-resistant tuberculosis (TB). Use of
high-dosage rifampicin is one such approach. Recent data from preclinical animal models
(Hu et al., 2015) and clinical studies (Boeree et al., 2015) support a potential role for high-
dosage rifampicin in TB chemotherapy, although more studies are required to guide optimal
clinical management. Specifically, further basic preclinical research is needed to: (i) Develop
pharmacokinetic/pharmacodynamic models to improve our understanding of drug bioavailability
and activity in tissues; (ii) Determine the antimicrobial efficacy and the ability of high-dosage
rifampicin to reduce the emergence of antibiotic resistance; and (iii) Explore high-dosage
rifampicin for evaluation of new combination regimens to achieve the ultimate goal of shortening
TB treatment and achieving stable cure without relapse.

AN UPDATE ON THE USE OF HIGH-DOSAGE RIFAMPICIN FOR

THE TREATMENT OF TUBERCULOSIS

Rifampicin and its Role in Dots (Directly Observed Treatment,

Short-course)
Combination chemotherapy has been the standard of care for TB since the 1950s, when it was
demonstrated that combining streptomycin with para-aminosalicylic acid and, later, with isoniazid
prevented the emergence of drug resistance and enabled reliable cures following 18–24 months
of treatment (1972). In the 1980 s, the sequential incorporation of rifampicin and pyrazinamide
accelerated the eradication of bacterial “persisters” and shortened the duration of treatment
needed to prevent relapse. Combining the synergistic antimicrobial properties of rifampicin and
pyrazinamide with the potent bactericidal activity of isoniazid formed the basis of the current
6-month “short-course” regimen, which showed the least frequency of relapse. Yet, despite the
high efficacy of this treatment and efforts to implement it throughout the world, TB remains a
global health emergency, in part because even a 6-month regimen poses formidable challenges for
the resource-limited healthcare infrastructures of many TB-endemic countries.

Mechanism of Action and Resistance
Rifampicin is a semisynthetic derivative of rifamycin B which is produced by Amycolatopsis
(formerly Streptomyces) rifamycinica. It is one of the key drugs for the short course TB regimen
and possesses bactericidal as well as sterilizing activity against tubercle bacilli in both cellular and
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extracellular locations. The rifamycins are highly protein-
bound in plasma, but easily diffuse across the Mycobacterium
tuberculosis cell envelope due to their lipophilic nature (Wade
and Zhang, 2004). The bactericidal activity of the rifamycins
is attributed to their ability to inhibit transcription by binding
with high affinity to bacterial DNA-dependent RNA polymerase
(Hartmann et al., 1967; Jin and Gross, 1991; Campbell et al.,
2001).

The development of rifampicin resistance is strongly
associated with lower serum drug concentrations (Pasipanodya
et al., 2013), while higher maximum concentration (Cmax) and
area under the serum concentration-time curve (AUC0−24)
inhibit the development of rifampicin resistance (Gumbo
et al., 2007). Mutations in the rpoB gene account for over 95%
of clinical cases of rifampicin resistance and are commonly
associated with the presence of multidrug-resistant tuberculosis
(Shah et al., 2007). Unlike mutations in codons 531 and 526,
which confer high-level resistance to rifampicin (MIC >

32µg/ml) and cross-resistance to all rifamycins (Wade and
Zhang, 2004), mutations in codons 511, 516, and 522 are
associated with low- or high-level resistance to rifampicin
(MIC 2–32µg/ml) (Bodmer et al., 1995; Moghazeh et al., 1996;
Williams et al., 1998).

Consistent with the clinical data, selection of spontaneous
rifampicin resistance in vitro in the M. tuberculosis laboratory
reference strain H37Rv indicate that the Ser531-to-Leu mutation
and multiple mutations in codon 526 occur at a significantly
higher frequency than other point mutations (Billington et al.,
1999). In fact, mutants with low-level rifampicin resistance
appear to be better adapted to in vivo growth than mutants with
high-level rifampicin resistance. Mutant strains can be enriched
in the presence of drug pressure (Mariam et al., 2004). Whether
higher dosages of rifampicin facilitate the emergence of mutants
with higher MIC of the drug requires further study. Louw et al.
showed that the level of rifampicin resistance is determined by
the activation of efflux and transporter genes (Louw et al., 2011).
Recent data suggest that in addition to classical mutations in
rpoB, the efflux pumps Rv2333, DrrB, DrrC, Rv0842, BacA, and
EfpA may have a role in rifampicin resistance (Li et al., 2015).

Pharmacokinetics and Pharmacodynamics
Rifampicin is used at a dose of 600mg per day throughout
the 6-month TB treatment course. This dosing scheme was
determined in the 1960 s based on cost and efficacy, although
the highest tolerable dose was not defined (Steingart et al.,
2011; van Ingen et al., 2011). Rifampicin’s microbial killing
was linked to the area under the AUC0−24/minimum inhibitory
concentration (MIC) ratio (Jayaram et al., 2003). However,
many patients achieve rifampicin AUC0−24/MIC and Cmax/MIC
ratios associated with suboptimal microbial killing and resistance
suppression (Peloquin et al., 1997), indicating that higher dosages
of rifampicin could improve treatment outcomes, so long as
patients can tolerate them. Following delivery of the standard
600-mg dosage, rifampicin concentrations attained at the site
of infection were determined to be too low (Ziglam et al.,
2002; Goutelle et al., 2009). Interestingly, the use of a 1200-
mg rifampicin dosage significantly increased the probability of

attaining AUC0−24/MIC or Cmax/MIC ratios compatible with
bacterial killing (Goutelle et al., 2009). Recent studies indicate
that increases in rifampicin dosage result in concentrations that
are more than dose-proportional; specifically, a 2-fold increase
in dosage from 10 to 20mg/kg daily results in a 4-fold increase
in the AUC0−24 and enhanced early bactericidal activity for
each increase in dosage (Boeree et al., 2015). In addition,
higher dosages of rifampicin may result in nonlinear increases
in drug concentrations inside the bacteria, a phenomenon
possibly related to saturation of bacterial efflux pumps (Gumbo
et al., 2007). Piddock et al. demonstrated the accumulation of
rifampicin by mycobacteria in the presence of efflux inhibitor
reserpine (Piddock et al., 2000). There is a need to assess
whether high-dosage rifampicin affects the pharmacokinetics
of other anti-TB drugs and antiretroviral drugs, particularly
its inductive effect on the cytochrome P450 enzyme system.
While physiologically based pharmacokinetic modeling is often
motivated by animal-to-human scaling (Savic et al., 2014), the
differences in variability, absorption, distribution, metabolism,
and excretion of rifampicin between mice and humans should
be considered (Lyons et al., 2013). For example, penetration of
rifampicin into lung cavities cannot be modeled in standard
mouse models of TB, which lack cavities (Lenaerts et al., 2015).
The rate of intestinal absorption of rifampicin is reduced in
mice when given at higher dosages, although this does not
affect total AUC. The impact of higher protein binding in mice
(96%) relative to human (89%) on differences in pharmacokinetic
and pharmacodynamic properties of the drugs is unknown.
In addition, rifampicin can reduce the plasma concentrations
of drugs that are not metabolized (e.g., digoxin) by inducing
drug transporters such as P-glycoprotein. Finally, mice do not
generate 25-desacetyl rifampicin, which is the main metabolite
of rifampicin in humans (Wilkins et al., 2008; Dutta et al., 2012,
2013).

Recent Advances
Recently, existing drugs are being repurposed or optimized
for TB with the goal of shortening the duration of treatment
for drug-sensitive and drug-resistant TB. Use of high-dosage
rifampicin is one such approach. Results from studies with
mice (Jayaram et al., 2003) and early bactericidal activity studies
(Diacon et al., 2007) indicate that a single dosage of 600mg
of rifampicin in TB treatment is at the lower end of the
concentration-response curve. Using the murine TB model,
Rosenthal et al. showed that increasing the dosage of rifampicin
significantly increased the sterilizing activity of the regimen
(Rosenthal et al., 2012). Steenwinkel et al. reported that an
eightfold increase in the currently used 10mg/kg rifampin dosage
was well tolerated and allowed reduction of therapy duration
from 6 to 2 months (de Steenwinkel et al., 2013). The study by
Hu et al. (2015) investigated the role of high-dosage rifampicin
against Mycobacterium tuberculosis persisters in an in vitro
model of progressive hypoxia and in the Cornell mouse model
of persistence. The authors found a dose-proportional increase
in rifampicin Cmax and AUC0−24, resulting in eradication of
resuscitation promoting factor-dependent persisters. Hu et al.
study also showed that lung culture-conversion and relapse-free
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cure were obtained much earlier in mice treated with high-
dosage rifampicin (50mg/kg) (Hu et al., 2015), thereby allowing
for an abbreviated treatment course without incurring disease
relapse. It has been poignantly recognized in the TB field recently
that observations made in mice are not necessarily predictive of
outcomes in human clinical trials of TB chemotherapy, nor is
early “sterilization” a predictor of cure (Gillespie et al., 2014).

Recently, data from patients with osteoarticular tuberculosis
suggest that increasing the rifampicin concentration at the site
of infection may optimize this drug’s antitubercular effect, even
against some rifampicin-resistant isolates, if systemic toxicity
can be minimized (Zhang et al., 2014). Historical trials suggest
that higher than standard rifampicin dosing results in improved
culture conversion rates (please see systematic review (Steingart
et al., 2011). Currently, several clinical trials are examining
the efficacy and safety of higher dosages of rifampicin than
the currently used dosage of 10mg/kg against drug-susceptible
TB. Phase II and III clinical trials evaluating higher dosages
of rifampicin and other rifamycins are needed to confirm
efficacy and assure tolerability. PanACEA (the Pan-African
Consortium for the Evaluation of Antituberculosis Antibiotics)
which is funded by the European and Developing Countries
Clinical Trials Partnership, has found that administering up
to 35mg/kg of rifampicin is safe and well tolerated, resulting
in a non-linear increase in exposure to rifampicin without
an apparent ceiling effect, and increased early bactericidal
activity at 14 days (HIGHRIF1-phase IIA, multiple dose rising
study grouping 20, 25, 30 up to 35mg RIF/kg, NCT01392911);
(Boeree et al., 2015). However, it is important to note that as
we are dealing with months of exposure to rifampin, a drug
administration of 2 weeks only qualifies as an acute toxicity
study and cannot provide sufficient estimation of toxicities from
subacute or chronic exposure. A second trial (HIGHRIF2- phase
IIb, NCT00760149) is examining the efficacy of rifampicin given
at 10, 15, and 20mg/kg daily. Although the microbiological data
are not yet available, this study found no serious adverse events
for 2 months of rifampicin at 15 and 20mg/kg. HIGHRIF3
(phase II) is a dosage-ranging study designed to identify the
optimal rifampicin dosage for evaluation of efficacy. The group
recently started the above-described multi-arm multi-stage
study, which tests one group with 35mg/kg of rifampicin
(isoniazid/rifampin35/pyrazinamide/ethambutol), a second
group with 20mg/kg of rifampicin combined with moxifloxacin
(isoniazid/rifampicin20/pyrazinamide/moxifloxacin), and a
third with 20mg/kg of rifampicin combined with the novel
ethylenediamine, SQ109. Preliminary analysis of the data
suggests that the first two groups may shorten the duration
of TB treatment. The International Consortium for Trials of
Chemotherapeutic Agents in Tuberculosis (INTERTB) will soon
publish the results of the RIFATOX study, which indicated that

rifampicin at 900 and 1200mg daily for the first 4 months of the
standard 6-month regimen was safe, with no increase in serious
adverse events (ISRCTN55670677). However, these higher
dosages of rifampicin did not significantly improve culture
conversion rates at 2 months. Based on these results, a phase III
study (RIFASHORT) has been initiated to assess the treatment-
shortening potential of high-dosage (1200/1800mg) rifampicin

(2 months of isoniazid/rifampicin/pyrazinamide/ethumbutol +
4 months of isoniazid/rifampicin). The NIAID HIRIF study,
started in September 2013, is a randomized trial of high-
dosage rifampicin in patients with new, smear-positive TB
(NCT01408914). French National Institute for Health and
Medical Research-French National Agency for Research on
AIDS and Viral Hepatitis (Inserm-ANRS) started RIFAVIRENZ
(NCT01986543), a drug-drug interaction study between high
dosage rifampicin and efavirenz in the context of pulmonary
tuberculosis and HIV co-infection. Recent report suggests that
rifampicin and rifapentine significantly reduce concentrations of
bedaquiline, a new anti-TB drug (Svensson et al., 2015).

CONCLUSIONS

Use of high-dosage rifampicin against Mycobacterium
tuberculosis is promising as it may not only result in enhanced
killing of mycobacteria and shorter therapy duration, but may
also result in prevention of drug resistance (Gumbo et al., 2007;
Goutelle et al., 2009; Rosenthal et al., 2012; de Steenwinkel
et al., 2013; Boeree et al., 2015; Hu et al., 2015), which are
highly desirable properties in an anti-TB regimen. While
these preclinical studies are subject to questions regarding
their predictive accuracy for assessing the efficacy of anti-TB
regimens, the results of ongoing phase IIB studies promise to
provide further guidance on the optimal dosage of rifampin
(Boeree et al., 2015). However, whether high-dosage rifampicin
results in reduced relapse rates remains to be explored in
clinical studies. Additional preclinical research using well-
validated animal models of tuberculosis is warranted to guide
the future study of high-dosage rifampicin in clinical trials.
For joint HIV–TB treatment, it is important to determine
if high-dosage rifampicin can shorten the time required
to cure TB without increasing adverse events and drug
interactions with other antitubercular drugs and antiretroviral
agents.
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