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The increase in environmental problems and the shortage of fossil fuels have led to
the need for action in the development of sustainable and renewable fuels. Methane
is produced through anaerobic digestion of organic materials and is a biofuel with very
promising characteristics. The success in using methane as a biofuel has resulted in the
operation of several commercial-scale plants and the need to exploit novel materials to
be used. Forest biomass can serve as an excellent candidate for use as raw material for
anaerobic digestion. During this work, both hardwood and softwood species—which
are representative of the forests of Sweden—were used for the production of methane.
Initially, when untreated forest materials were used for the anaerobic digestion, the yields
obtained were very low, even with the addition of enzymes, reaching a maximum of
only 40 mL CHy/g VS when birch was used. When hydrothermal pretreatment was
applied, the enzymatic digestibility improved up to 6.7 times relative to that without
pretreatment, and the yield of methane reached up to 254 mL CHy4/g VS. Then the
effect of chemical/enzymatic detoxification was examined, where laccase treatment
improved the methane yield from the more harshly pretreated materials while it had
no effect on the more mildly pretreated material. Finally, addition of cellulolytic enzymes
during the digestion improved the methane yields from spruce and pine, whereas for
birch separate saccharification was more beneficial. To achieve high yields in spruce
30 filter paper units (FPU)/g was necessary, whereas 15 FPU/g was enough when pine
and birch were used. During this work, the highest methane yields obtained from pine
and birch were 179.9 mL CHy/g VS and 304.8 mL CHy4/g VS, respectively. For mildly
and severely pretreated spruce, the methane yields reached 259.4 mL CH,4/g VS and
276.3 mL CHy4/g VS, respectively. We have shown that forest material can serve as raw
material for efficient production of methane. The initially low yields from the untreated
materials were significantly improved by the introduction of a hydrothermal pretreatment.
Moreover, enzymatic detoxification was beneficial, but mainly for severely pretreated
materials. Finally, enzymatic saccharification increased the methane yields even further.

Keywords: anaerobic digestion, methane, spruce, pine, birch, hydrothermal pretreatment, enzymatic
saccharification, detoxification
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INTRODUCTION

Our economy and production is strongly dependent on the use
of fossil fuels, which results in many complications, such as
environmental problems and insecurity regarding energy supply.
The use of fossil fuels results in the release of huge amounts
of carbon dioxide into the atmosphere, which exacerbates
global warming. Moreover, apart from carbon dioxide other
contaminants such as carbon monoxide, hydrocarbons,
particulate matter, etc., are released into the atmosphere with
negative effects on public health. One important problem that
many countries around the world are facing is the lack of energy
security, as most countries need to import fossil fuels. In order
to minimize the negative effects of the usage of non-sustainable
sources of energy, researchers are focusing on the development of
renewable fuels, which can be produced by exploiting domestic
sources. The most common sources of biofuels until now have
been ethanol, biodiesel, and biogas.

Biogas, a gaseous biofuel, consists mainly of carbon dioxide
(COz) and methane (CHy), but other minor gases (such as
hydrogen sulfide and hydrogen) and moisture are also present.
The ratio between the two main gases affects the energy
content of the biogas, which has been estimated to be between
18,630 kJ/m?® and 26,081 kJ/m? (Romano et al., 2009), whereas
natural gas has an energy content of approximately 37,000 kJ/m?
(Martin et al., 2013). The main application of biogas is either
production of electricity through burning in CHP (combined
heat and power) equipment or as a fuel for vehicles (Jeihanipour
et al., 2013). In order to be used as a vehicle fuel, the energy
content of the biogas must be increased by increasing the
concentration of methane. For this reason, carbon dioxide and
other gases should be removed by processes such as cryogenic
separation, chemical absorption, membrane separation, pressure
swing adsorption, and temperature swing adsorption (Kapdi
et al., 2005; Molino et al., 2013). Finally, the upgraded biogas is
liquefied or compressed. Until recently, only small volumes of
biogas have been directed to the transport sector (Naik et al.,
2010), although it would be more important to use biogas as a
fuel rather than for electricity production (due to the wide range
of alternatives).

One of the advantages of using biogas as a fuel is that it
can be directly used in vehicles, with only a few modifications
required, such as the installation of a special fuel tank. The use
of methane as a vehicle fuel contributes to a decrease in the
release of greenhouse gases (GHGs), as practically speaking it
does not release any GHGs. Moreover, the release of other gases
such as carbon monoxide, hydrocarbon, sulfur compounds, and
nitrogen oxides is negligible (Swedish Gas Association, 2011).
Nevertheless, production of biogas is considered better from a
resource efficiency point of view with an output to input ratio
reaching values as high as 28 (Jeihanipour et al., 2013; Zheng
et al.,, 2014). For comparison, the same ratio for bioethanol is
calculated to be 3.7 for the Brazilian model (where sugarcane is
the raw material) and only 1.1 for the U.S. model (where corn is
used; De Oliveira et al., 2005).

Biogas production takes place through anaerobic digestion,
which is a complex multi-step biochemical process. Each step of

this process is catalyzed by a different group of microorganisms,
where all of them work together as a ‘community’ to convert
organic molecules to biogas (Li et al, 2011; Parawira, 2012).
Anaerobic digestion consists of a hydrolysis step, an acidogenesis
step, an acetogenesis step, and a methanogenesis step. In the first
step, complex molecules such as polysaccharides are hydrolyzed
to more simple molecules, which in the second step are converted
to volatile fatty acids (VFAs) and alcohols. VFAs longer than
acetic acid are converted to acetate, CO;, and H2 by the
acetogens, whereas in the final step VFAs are converted to
CHy4 and CO; by methanogens (Mshandete et al., 2005; Adu-
Gyamfi et al, 2012). Due to the fact that the rate of VFA
production is higher than the rate of VFA consumption, if the
process is not well balanced there is a risk of accumulation
of VFAs—which will result in a decrease in the pH and
subsequent inhibition of methanogenesis. Anaerobic digestion
is normally performed under mesophilic conditions (25-35°C)
or thermophilic conditions (45-60°C) with the thermophilic
digestion presenting some positive characteristics such as higher
methanogenic activity, a faster process, and fewer contamination
problems (Lesteur et al., 2010; Xia et al., 2013). At the end of
the anaerobic digestion, the digestate produced can be used as a
bio-fertilizer as it is rich in nitrogen, phosphorus, and potassium,
which also presents peculiar rheology (Adu-Gyamfi et al., 2012;
Kafle et al., 2014).

Currently, the most commonly used materials for biogas
production are animal manure, food wastes, and municipal
wastewaters. Use of these raw materials has proven to be very
beneficial, as high yields have been already been achieved,
resulting in the construction and operation of commercial units.
On the other hand, the increasing need for biogas results in
an urgent need to incorporate novel renewable raw materials
in the biogas production line. Lignocellulosic biomass is an
excellent candidate for use as a raw material, and has attracted
much research interest in recent years. It can be derived from
a variety of sources such as agricultural residues and forest
residues. Forestry is a very important part of the Swedish
economy, and the total standing volume of forests in Sweden is
approximately 3,000 million m?® with an annual increase in the
standing volume of 40 million m?> (www.svenskttra.se), which
is a result of the very good forest management. The main tree
species in Sweden are Norway spruce (Picea abies), Scots pine
(Pinus sylvestris), and birch (Betula pendula and B. pubescens),
which make up 41, 40, and 18% of the total standing volume of
forests'.

Lignocellulosic materials have low digestibility and the
methane yields are therefore low, making a pretreatment step
prior to digestion necessary. Different kinds of pretreatments
have been evaluated in order to improve the methane yield
from forest biomass, such as steam explosion (Nakamura and
Mtui, 2003; Horn et al, 2011), ionic liquids (Teghammar
et al, 2012; Kabir et al, 2014), organosolv (Kabir et al,
2015), and supercritical water (Yoshida et al., 2010). On the
other hand, pretreatment could result in the degradation of

Uhttp://www.svenskttra.se/MediaBinaryLoader.axd?MediaArchive_FileID=eb34da
70-248d-4e78-b7cf-9592aca6c0db&FileName=Forest.pdf
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sugars and generation of inhibitory compounds that could
hinder the anaerobic digestion. In order to reduce the level
of inhibitors, a detoxification process could be used. Different
detoxification techniques have already been evaluated during
ethanol fermentation—such as treatment with reducing agents
(Alriksson et al., 2011; Xiros and Olsson, 2014), with laccase
(Moreno et al., 2013), or with linear polyethylenimine solutions
(Cannela et al., 2014)—but little is known about the effect of
detoxification on anaerobic digestion. Finally, despite the fact that
the microorganisms that are present in the sludge are capable
of exploiting the insoluble carbohydrates, our group has shown
previously that addition of hydrolytic enzymes can increase the
methane yields (Matsakas et al., 2014).

For this reason, the aim of this work was to evaluate the
possibility of using the main tree species in Sweden as raw
materials for anaerobic digestion. In addition, the effects of
hydrothermal pretreatment, slurry detoxification, and enzymatic
hydrolysis on the methane yield were also investigated.

MATERIALS AND METHODS

Raw Materials and Enzymes

Untreated forest residues were provided by SLU (Umed, Sweden).
The total solids (TS) and volatile solids (VS) of the materials
were as follows (w/w): spruce, 90.81% TS and 90.49% VS; pine,
91.45% TS and 91.26% VS; birch, 92.07% TS and 91.86% VS.
The thermophilic anaerobic sludge used during this work was
collected from a biogas plant in Boden, Sweden, where sewage
sludge and food waste are co-digested.

The cellulolytic enzymes used during this work were the
commercial enzyme solutions Celluclast® 1.5L and Novozym®
188 (Novozymes A/S, Bagsveerd, Denmark) at a ratio of 5:1
v/v. The activity of the mixture was measured to be equal to
83 filter paper units (FPU)/mL. The enzymatic detoxification
was performed using a laccase from the fungus Pycnoporus
cinnabarinus, which was kindly provided by Beldem (Belgium)
with a declared activity of 13 IU/mL.

Pretreatment of Forest Residues

Hydrothermal pretreatment took place at the SEKAB plant
in Ornskoldsvik (Sweden) in a continuous mode unit. Sulfur
dioxide was used as a catalyst during the pretreatment at a
concentration of 1 kg per 40 kg of biomass (Soudham et al., 2011).
The different source of biomass were pretreated under different
combinations of holding time and temperature (Table 1) and the
pH after the pretreatment varied depending on the severity of the
process (Table 1). The slurries obtained had a different content of
solids, which in terms of TS and VS were as follows (w/w): severe
pretreated spruce, 25.81% TS and 25.55% VS; mild pretreated
spruce, 23.48% TS and 23.28% VS; pine, 19.51% TS and 19.38%
VS; birch, 21.69% TS and 21.60% VS.

Enzymatic Saccharification of Pretreated

Slurries
In order to evaluate the effect of the pretreatment on the
enzymatic digestibility of the slurries, a series of enzymatic

saccharification experiments was performed. During these
experiments, both untreated and treated materials were included.
When pretreated materials were used, in order to be easier
to handle, low quantities of the slurries were dried at 70°C
before the experiments. Enzymatic hydrolysis was performed at
a solids content 3% w/v in an eppendorf thermomixer at 50°C for
24 h. The pH of the solution was adjusted to 5 using 100 mM
citrate-phosphate buffer. Sodium azide at a concentration of
0.01% w/v was added to the mixture in order to prevent
microbial contamination. Samples at 0 and 24 h of incubation
were centrifuged and the supernatants were analyzed for soluble
sugars.

Detoxification of the Slurries
Two different detoxification processes were evaluated during
this work, one chemical and one enzymatic. The chemical
detoxification consisted of treatment with sodium dithionite.
The concentration of sodium dithionite was set at 10 mM or
1 mM, and the treatment took place at the same time as the
anaerobic digestion. After the addition of the salt, the pH of
the sludge was measured in order to ensure that it was not
affected.

The treatment with laccase took place prior to digestion, for
12 h at 50°C under aerobic conditions. The slurries were diluted
with distilled water in order to obtain a final solids concentration
of 10% w/v and the enzyme load used was 10 IU/g VS. Finally,
the pH of the slurry was increased to 5.5 by adding appropriate
amounts of NaOH.

Enzymatic Treatment of the Slurries with
Cellulolytic Enzymes

Two different processes were used for enzymatic treatment of
the slurries, namely treatment along with the digestion and pre-
saccharification. During simultaneous treatment, the cellulolytic
enzymes were added to the sludge at the start of digestion. On
the other hand, when a pre-saccharification step was included,
the slurries were diluted to a solids concentration of 10% w/v
and the saccharification took place at 50°C for 12 h. The pH
was also kept at 5.5 by addition of NaOH. Two enzyme loadings
were applied in both configurations (15 FPU/g VS and 30 FPU/g
VS), in order to evaluate the effect of the enzyme activity on
the methane yields. Finally, it is worth mentioning that when
laccase treatment was applied for a specific slurry, then both
enzymatic treatments were performed at the same time (in the
case of pre-saccharification).

TABLE 1 | Pretreatment conditions of the materials used during this work.

Raw material Temperature Holding pH* Average
(°C) time (min) SF
Spruce Severe 212 4-8 1.6-1.8 4.08
Mild 200 4-8 1.8-2.0 3.72
Pine 210-215 5 1.5-1.7 4.01
Birch 190 4-6 1.8-2.0 3.35

*The value of pH is for the slurry after the pretreatment.
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Biochemical Methane Potential (BMP)

Tests

In order to evaluate the digestibility of the substrates, BMP tests
were used. More specifically, the BMP tests were performed
using the AMPTS II system (Bioprocess Control AB, Lund,
Sweden). The system has three parts: the digestion flask, the
CO;, fixation unit, and the flow meter unit. The digestion flasks
are 500-mL glass bottles; these were filled with 400 g of sludge
and substrate. The CO2 fixation unit consists of 100-mL glass
bottles; these were filled with approximately 80 mL of 3 M
NaOH in order to ‘trap’ all the other gases except methane.
Thymolphthalein was added as a pH indicator, in order to check
that the solution remained active. Finally, the flow meter unit
consists of an array of flow meter cells where the methane
is counted. The values of methane volume are correlated to
normalized volume.

In each batch of experiments, two control samples were also
included. The first one contained the sludge, in order to calculate
the methane produced by the organic load that remained in the
sludge, and the second control contained the enzyme (cellulases
or laccase, alone or together), which was used in order to count
the amount of methane produced from the digestion of the
enzymes. The values of methane from both the sludge and the
enzymes were subtracted from the total amount of methane, in
order to calculate the methane yield from the substrate alone.
Finally, a positive control was also included where avicel cellulose
was used as raw material, in order to evaluate the quality of the
sludge.

The digestions were performed in duplicate and the
I/S ratio (inoculum-to-solid ratio) was set at 2 in terms
of VS. The digestion was carried out at 55°C, and each
flask was supplemented with mineral and salt solution, the
composition of which is described elsewhere (Antonopoulou and
Lyberatos, 2013). Prior to digestion, the flasks were sparged for
approximately 1.5 min with nitrogen in order to remove the

oxygen.

Analytical Methods

The TS and ash contents were determined gravimetrically
after drying for 24 h at 105°C and burning for 2 h at
550°C, respectively. In order to determine the VS content,
the ash content was subtracted from the TS content. Total
reducing sugars during the enzymatic hydrolysis experiments
were determined according to the DNS method (Miller, 1959).
The enzymatic activity of the mixture of Celluclast® 1.5L
and Novozym® 188 was determined by standard filter paper
activity method (Ghose, 1987). The sugars from the structural
carbohydrates analysis and also the inhibitors were determined
using an HPLC apparatus equipped with a Series 200 RI
(refractive index) detector (PerkinElmer). More specifically,
during the sugar analysis an Aminex HPX-87P was used with
ultra-pure water as mobile phase. The flow rate was set at
6 mL/min and the column was kept at 85°C. For the inhibitors, an
Aminex HPX-87H column was used with 5 mM H,SO,4 as mobile
phase. The flow rate was set at 0.6 mL/min and the column was
kept at 65°C.

NN W W B s 0w
o w o w o nw o
s n L 3

Methane yield (mL CH4 /gVs)
I

Pine Birch

Spruce

FIGURE 1 | Methane yield from untreated materials without the
addition of enzymes (first bar), and with the addition of 15 FPU/g
enzyme (second bar) and 30 FPU/g enzyme (third bar).

RESULTS

Methane Yields from Untreated Materials

In the initial stage of this work, the possibility of using untreated
spruce, pine, and birch as raw materials for anaerobic digestion
was evaluated. The highest yield obtained was observed with
birch, and it only reached 17.5 £ 1.9 mL CHy/g VS, whereas the
yields obtained from spruce and pine were even lower (Figure 1).
In an attempt to improve the methane yield, we studied
the effect of addition of cellulolytic enzymes. As previously
described, anaerobic sludge is capable of hydrolyzing insoluble
carbohydrates such as cellulose. On the other hand, addition of
external enzymes can facilitate this process and improve methane
yields. Two different enzyme loadings were applied, namely
15 FPU/g and 30 FPU/g. The presence of the enzymes improved
the yield of methane from all the materials, with the highest yield
(40 £ 3 mL CHy4/g VS) being obtained when 30 FPU/g was used
for birch (Figure 1). On the other hand, addition of enzyme
slightly improved the yield obtained from spruce. Despite the fact
that the yields were improved compared to digestion without the
addition of enzymes, the yields were low to be considered as an
efficient anaerobic digestion.

Effect of Hydrothermal Pretreatment on
the Digestibility of Residues and on
Methane Yield

During this step of the work, a hydrothermal pretreatment with
SO, as a catalyst was used at the SEKAB plant (Ornskéldsvik,
Sweden). The materials were treated at different combinations
of temperature and holding time, resulting in different pH after
pretreatment (Table 1). The treated materials were collected as
slurry with a total solid content varying from 19.5 to 25.8%
w/v, and the composition of the liquid (in inhibitors) and solid
fractions is presented in Table 2.

At a first step, the digestibility of the pretreated materials
was examined. For this reason the slurries obtained after the
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TABLE 2 | Structural and inhibitor analysis of the solid and liquid fraction, respectively.

Raw Solid Fraction (% w/w) Liquid Fraction (g/L)
material
Glucan Xylan Lignin Ash Acetic Levulinic HMF Furfural
acid acid
Severe 31.96 ND 46.69 0.36 10.24 5.30 6.11 1.87
Mild 47.61 1.06 46.77 0.17 6.39 ND 1.27 1.21
Pine 46.24 0.76 47.49 0.26 5.50 2.28 1.70 1.48
Birch 47.73 1.82 32.47 0.10 19.17 ND 0.37 2.76
ND, not detected.
6 300
_5 & 250 T —
=)
3 [ ] ! :
e 4 £ 200 |
5 11 i
é 5 - 3 150 P = —
g o
i U B
K g
g 50 —‘ —
14
3} T T ; )
o - Spruce mild Spruce severe Pine Birch
Spruce Pine Birch
FIGURE 3 | Methane yield from the hydrothermally pretreated
FIGURE 2 | Release of TRS from untreated materials (dark gray) and materials.
pretreated materials (light gray) after 24 h of enzymatic digestion with
an enzyme load of 10 FPU/g and solids content of 3% w/w. For
pretreated spruce, the first and the second bar represent mild and severe
treatment conditions, respectively. 170

pretreatment were digested at low solids concentration using
an enzyme load of 10 FPU/g solids. Pretreatment improved the
release of reducing sugars up to 6.7 times compared to the
untreated materials (Figure 2). The greatest improvement was
observed with birch, whereas for spruce severe pretreatment
improved only slightly the saccharification compared to the mild
pretreatment.

In the next step, the effect of the pretreatment on the anaerobic
sludge was also evaluated. As can be seen in Figure 3, the methane
yield was greatly improved from all types of forest materials
relative to that without pretreatment. The highest methane yield
was obtained with birch, reaching 254.1 + 3 mL CH4/g VS, which
was approximately 14.5 times higher than the yield obtained from
untreated birch. On the other hand, the lowest yield was observed
with mildly pretreated spruce, reaching only 95.4 £ 2.5 mL
CH4/g VS. When softwood materials were used, there was a linear
increase in methane yield as SF increased (Figure 4).

Effect of Detoxification of the Slurries on
Methane Yield

During this work, we studied the effects of enzymatic and
chemical approaches (based on the use of laccase and sodium
dithionate, respectively) for detoxification of the inhibitors that

y=14774x 45337
90 - R:= 09814

Methane yield (mL. CHy/gVS$)
o
[S)

~
o
s

"
o

37 3.75 3.8 3.85 3.9 3.95 4 4,05 41
Severity factor

FIGURE 4 | Correlation between methane yield and SF of the
pretreatment.

were generated. The enzymatic treatment took place for 12 h
prior to anaerobic digestion in order to let the enzyme act in the
presence of oxygen. The enzyme load was set at 10 U/g VS. On
the other hand, the chemical treatment took place simultaneously
with the digestion.

When 10 mM sodium dithionite was used, a concentration
that was found previously to be optimal for detoxification of
spruce hydrolysates for ethanol production (Alriksson et al.,
2011), it was inhibitory to the anaerobic digestion (data not
shown), and this inhibitory effect was still observed to some
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FIGURE 5 | Methane yields from undetoxified material (first bar),
material detoxified with sodium dithionite (second bar), and material
detoxified with laccase (third bar).

extent even when the concentration was reduced to 1 mM
(Figure 5). These results indicate that despite the fact that sodium
dithionite can be used to detoxify hydrolysates for ethanol
fermentation, it is not appropriate for use in anaerobic digestion.
On the other hand, when laccase was used for detoxification, it
proved to be more effective for forestry-derived feedstocks that
had been pretreated under more severe conditions and improved
the methane yields from spruce and pine by 14.3 and 9.8%,
respectively (Figure 5).

Effect of Cellulase Treatment on the
Methane Yield

Two different process configurations were examined: hydrolysis
at the same time as anaerobic digestion and a separate
saccharification step before digestion. In both configurations, two
enzyme loadings (15 and 30 FPU/g VS) were used. Addition
of enzymes improved the methane yields in both process

configurations, with both enzyme loads (Figure 6). Although
both processes were beneficial, the pre-saccharification treatment
gave higher methane yield than simultaneous treatment for
all the materials except birch. Of all the materials, pine
showed the lowest degree of improvement when enzymes were
included. On the other hand, the highest improvement was
observed with spruce (both mildly and severely pretreated). The
highest methane yield was obtained from birch when enzymatic
treatment was performed simultaneously with the digestion,
using 15 FPU/g VS enzyme load. This yield reached 304.8 + 6.35
mLCHy/g VS, whereas increasing the enzyme load did not
improve the methane yield further.

DISCUSSION

During this work, different source of forest biomass was evaluated
as raw material of anaerobic digestion. Initially, the ability of
digesting the forest materials without any sort of treatment
was evaluated. Despite the fact that high methane yields from
untreated agricultural residues have been demonstrated (Bauer
et al., 2009; Lei et al., 2010), forest residues are considered to be
‘tougher’ raw materials, and for this reason the yields obtained
from untreated materials are often very low (Nakamura and Mtui,
2003; Yoshida et al., 2010). Similar (low) results for methane yield
were also obtained during this work when untreated materials
were used reaching a highest value of 17.5 &+ 1.9 mL CHy/g
VS when birch was used (Figure 1). The addition of cellulolytic
enzymes facilitated the anaerobic digestion and improved the
methane yields obtained from the forest materials. From the
results described above, it can be concluded that untreated forest
materials cannot be used as raw materials for anaerobic digestion,
as the yields obtained were very low even with the addition of
cellulase.

Generally, when lignocellulosic materials are used for
anaerobic digestion, it is believed that the rate-limiting step of
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FIGURE 6 | Effect of enzymatic treatment on the methane yields, when it took place prior to (A) and along with (B) the digestion. The first bar represents
the control without addition of enzyme, and the second and third bars the addition of enzyme at 15 FPU/g and 30 FPU/g load, respectively.
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TABLE 3 | Comparison of the results obtained during this work with other research works in the literature.

Material Pretreatment Type of Yield of Yield of % improvement Reference
digestion untreated treated
(mL CH4/gVS)
Spruce Alkali Thermophilic 30 50 74 Mirahmadi et al., 2010
Birch Alkali Thermophilic 250 460 83 Mirahmadi et al., 2010
Spruce lonic liquids Thermophilic 66 245 271 Teghammar et al., 2012
Spruce NaOH/thiourea Thermophilic 30 210 600 Mohsenzadeh et al.,
2012
Birch NaOH/thiourea Thermophilic 230 360 57 Mohsenzadeh et al.,
2012
Pine Alkali Mesophilic 65 178 181 Salehian et al., 2013
Mixture of spruce and lonic liquids Thermophilic 70 150 114 Kabir et al., 2014
pine
Mixture of spruce and Organosolv Thermophilic 50 340 580 Kabir et al., 2015
pine
Spruce Hydrothermal Thermophilic 10 276 2660 Present work
Pine Hydrothermal Thermophilic 5 180 3500 Present work
Birch Hydrothermal Thermophilic 18 305 1594 Present work

the process is the hydrolysis of the polysaccharides (holocellulose
or cellulose and hemicellulose) to monomeric sugars (Parawira,
2012). Due to the complex nature of holocellulose and lignin,
untreated materials are highly resistant to microbial attacks. In
order to reduce the resistance of holocellulose to degradation,
some kind of pretreatment is necessary prior to digestion (Bruni
et al., 2010). During our work a hydrothermal pretreatment
was applied, where sulfur dioxide was used as -catalyst.
Hydrothermal pretreatment is considered as effective method to
treat lignocellulosic biomass and has extensively studied during
ethanol production from lignocellulosic biomass (Negro et al.,
2003; Matsakas and Christakopoulos, 2013; Nitsos et al., 2013;
Paschos et al,, 2015). All the pretreated materials demonstrated
an increase in the methane yield reaching a highest value of
254.1 + 3 mL CHy/g VS when birch was used. The yields
obtained from pine and spruce were lower compared to the
birch, with the mild pretreated spruce resulting in the lowest
results of all the pretreated materials. The difference in the
methane yields obtained when birch was used and when the
other forest materials were used can be attributed to the fact that
birch is a hardwood, whereas spruce and pine are softwoods.
Softwoods are known to be more recalcitrant than hardwoods
(Kim and Hong, 2001; Palonen et al., 2004; Mirahmadi et al,,
2010), and this difference in resistance is commonly attributed
to the different types of lignin, as hardwoods contain a mixture of
guaiacyl and syringyl units and softwoods have mainly guaiacyl
units in lignin (Taherzadeh and Karimi, 2008). This could
explain the lower yields achieved with softwoods during this
work.

The same great improvement in methane yields was also
described by Salehian and Karimi (2013), from pine branches
when they were pretreated with alkali. Same positive effect of
pretreatment on the methane yield from lignocellulosic materials
was also found with birch after steam explosion (Vivekanand
et al.,, 2013), with spruce and pine after alkaline pretreatment

(Mirahmadi et al., 2010), and with spruce pretreated with ionic
liquids (Teghammar et al., 2012).

Although pretreatment process results in an easier
hydrolysable biomass and subsequent higher methane
formation, inhibitory compounds can be formed during
this process. These compounds are mainly derived either from
the carbohydrate fraction or the lignin fraction. These inhibitors
can be hydroxymethylfurfural (HMF) from the degradation of C6
sugars, furfural from the degradation of C5 sugars, and polymeric
lignin or aromatic compounds—such as syringaldehyde or 4-
hydroxybenzoic acid—from the degradation of lignin. Moreover,
weak organic acids can be produced, such as formic acid and
acetic acid. During anaerobic digestion, the aliphatic acids are
not a problem (in contrast to ethanol fermentation), as they can
be consumed during the methanogenesis stage. Moreover, HMF
and furfural were not found to be inhibitory during digestion of
xylose, and they could be consumed by the sludge and produce
methane (Barakat et al., 2012). On the other hand, phenolic
compounds that are released from lignin, such as phenol,
cinnamaldehyde, or 4-hydroxybenzoic acid, can be potential
inhibitors of the anaerobic sludge (Sierra-Alvarez and Lettinga,
1991; Hernandez and Edyvean, 2008). Such phenolic compounds
have been detected in the hydrolysates of wet oxidized and steam
exploded sugarcane bagasse (Martin et al., 2007; Kayembe et al.,
2013).

Enzymatic treatments based on laccase have been used to
improve the fermentability of pretreated slurries by reducing the
amount of phenolic compounds (Jonsson et al., 1998; Jurado
et al., 2009; Moreno et al., 2012). On the other hand, the
benefit of using chemical reducing agents for detoxification is
that they can be applied during the fermentation, and there
is no need for a separate step (Cavka et al, 2011). It was
also mentioned that generally sulfur oxyanions (like sodium
dithionite) act by sulfonate aromatic compounds and furan
aldehydes (Cavka et al., 2011). Sodium dithionite has proven to
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be beneficial for improvement of the fermentability of pretreated
lignocellulosic biomass (Alriksson et al, 2011; Xiros and
Olsson, 2014). Despite the fact that treatment with sodium
dithionite was effective in reducing the inhibitory effect during
ethanol fermentation, during our trial it resulted in decrease
in methane yields (Figure 5). On the other hand, laccase
treatment improved the methane yields on severe treated
spruce and pine. In both materials, the SF was higher
than 4 and this could have resulted in the generation of
more inhibitors than with the materials that were treated
at lower SF. For the materials that were pretreated at
lower SEF, laccase treatment did not have any effect on
the methane yields. The difference in the effect of laccase
detoxification can also be explained by the concentration
of inhibitors in the liquid fraction. As can be seen from
Table 2, the amounts of HMF and furfural were higher
in the severely pretreated spruce and pine, following by
birch and mildly pretreated spruce. Moreover, levulinic acid
was only detected in severely pretreated spruce and pine
(Table 2).

Finally, we examined the effect of cellulase treatment of
the slurries on methane yields. As mentioned previously, the
hydrolysis of carbohydrates to monomeric sugars is considered
to be the rate-limiting part of the anaerobic digestion of
lignocellulosic biomass. The consortium present in the anaerobic
sludge has the ability to secrete lignocellulolytic enzymes and
break down polymeric carbohydrates. On the other hand, it
has been shown that the addition of external enzyme solution
can increase the efficiency of the decomposition of insoluble
carbohydrates (Antonopoulou and Lyberatos, 2013; Matsakas
et al, 2014). The use of cellulolytic enzymes to enhance
the methane yield when lignocellulosic biomass is used as
raw material is not very common practice in the literature,
despite the positive effect that it has. On the other hand,
enzymes are used more on other materials such as wheat
grains (Sonakya et al, 2001), household solid waste (Rintala
and Ahring, 1994), and dairy industrial wastewater (Mendez
et al., 2006). It was also demonstrated that the stage at which
enzymes are added has an important effect on the methane
yield. For example, Romano et al. (2009) concluded that
addition of enzyme—either at the same stage of digestion
or as a pre-hydrolysis—did not improve the methane yield
from Jose Tall wheat grass. On the other hand, they found
an improvement from 220 mLCHy4/g VS to 290 mLCHy/g VS
when the enzymes where added at the first stage of a two-
stage anaerobic digestion. During our work, presence of enzymes
was beneficial for the methane yield independently the step
that the enzymes were included (either prior or simultaneous
to digestion) and enzyme load. Generally, the simultaneous
enzymatic treatment was more efficient for all the materials
except birch. Addition of higher enzyme activities was beneficial
for spruce and prehydrolyzed pine. On the other hand, higher
enzyme activities did not affect the methane yield from birch and
had a negative impact on pine when was treated simultaneously
with the digestion. The highest results were obtained with birch,

reaching 304.8 &+ 6.35 mLCH4/g VS when an enzyme load
of 15 FPU/g VS was applied prior to digestion. This is in
good agreement with the results obtained before, where birch
was found to be the most efficient raw material irrespective
of the treatment. Forest materials have been also used by
other researchers after applied different kind of pretreatments
(Table 3). Birch is proven to be the most efficient material
to be used for anaerobic digestion, whereas the application of
pretreatment always resulted in an increase in the methane
yields. Although some works demonstrated higher methane
yield, the improvement of the methane yield compared to the
untreated materials achieved during our work was the highest
(Table 3).

CONCLUSION

We have demonstrated that forest residues can be efficient raw
materials for anaerobic digestion. Due to their complex structure,
pretreatment of the materials is necessary in order to increase the
methane yield. During our work, we found that the hydrothermal
pretreatment can rapidly increase the methane production from
all the materials used. When the pretreatment takes place
under severe conditions, a detoxification step is necessary. We
also found that detoxification with sodium dithionite resulted
in partial inhibition of the process—in contrast to ethanol
fermentation, where this detoxification is beneficial. On the
other hand, detoxification with laccase can improve the methane
yield. Finally, incorporation of an enzymatic treatment results
in a further improvement in the methane yields. Treatment
performed along with the digestion was found to be beneficial
for spruce and pine, whereas pre-saccharification was more
appropriate for birch. All the materials were successfully used
for the efficient anaerobic digestion resulting in the high
yields of 179.9 mL CHy/g VS and 304.8 mL CH4/g VS for
pine and birch, respectively, and 259.4 mL CH4/g VS and
276.3 mL CHy/g VS for mildly and severely pretreated spruce,
respectively. These yields are among the highest demonstrated
in the literature, whereas we also demonstrated the ability of
facilitating the anaerobic digestion by enzymatic detoxification
and saccharification.

AUTHOR CONTRIBUTIONS

All authors (LM, UR, and PC) contributed jointly to all aspects of
the work reported in the manuscript. All authors have read and
approved the final manuscript.

ACKNOWLEDGMENTS

We thank Bio4Energy, a strategic research environment
appointed by the Swedish government, for supporting this work.
LM also thanks The Kempe Foundations for financial support.

Frontiers in Microbiology | www.frontiersin.org

October 2015 | Volume 6 | Article 1163


http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

Matsakas et al.

Biogas from forest based lignocellulose

REFERENCES

Adu-Gyamfi, N., Rao Ravella, S., and Hobbs, P. J. (2012). Optimizing
anaerobic digestion by selection of the immobilizing surface for
enhanced methane production. Bioresour. Technol. 120, 248-255. doi:
10.1016/j.biortech.2012.06.042

Alriksson, B., Cavka, A., and Jénsson, L. J. (2011). Improving the fermentatbility
of enzymatic hydrolysates of lignocellulose through chemical in-situ
detoxification with reducing sugars. Bioresour. Technol. 102, 1254-1263.
doi: 10.1016/j.biortech.2010.08.037

Antonopoulou, G., and Lyberatos, G. (2013). Effect of pretreatment of sweet
sorghum biomass on methane generation. Waste Biomass Valorization 4, 583—
591. doi: 10.1007/s12649-012-9183-x

Barakat, A., Monlau, F., Steyer, J. P., and Carrere, H. (2012). Effect of lignin-derived
and furan compounds found in lignocellulosic hydrolysates on biomethane
production. Bioresour. Technol. 104, 90-99. doi: 10.1016/j.biortech.2011.1
0.060

Bauer, A., Bosch, P., Friedl, A, and Amon, T. (2009). Analysis of methane
potentials of steam-exploded wheat straw and estimation of energy yields of
combined ethanol and methane production. J. Biotechnol. 142, 50-55. doi:
10.1016/j.jbiotec.2009.01.017

Bruni, E., Jensen, A. P., and Angelidaki, I. (2010). Comparative study of
mechanical, hydrothermal, chemical and enzymatic treatments of digested
biofibers to improve biogas production. Bioresour. Technol. 101, 8713-8717.
doi: 10.1016/j.biortech.2010.06.108

Cannela, D., Sveding, P. V., and Jergensen, H. (2014). PEI detoxification of
pretreated spruce for high solids ethanol fermentation. Appl. Energy 132,
394-403. doi: 10.1016/j.apenergy.2014.07.038

Cavka, A., Alriksson, B., Ahnlund, M., and Joénsson, L. J. (2011). Effect of
sulfur oxyanions on lignocellulose-derived fermentation inhibitors. Biotechnol.
Bioeng. 108, 2592-2599. doi: 10.1002/bit.23244

De Oliveira, M. E. D., Vaughan, B. E., and Rykiel, E. J. (2005). Ethanol

as fuel: energy, carbon dioxide balances, and ecological footprint.
Bioscience 55, 593-602. doi: 10.1641/0006-3568(2005)055[0593:EAFECD]
2.0.CO;2

Ghose, T. K. (1987). Measurement of cellulase activities. Pure Appl. Chem. 59,
257-268. doi: 10.1351/pac198759020257

Hernandez, J. E., and Edyvean, R. G. J. (2008). Inhibition of biogas production
and biodegradability by substituted phenolic compounds in anaerobic sludge.
J. Hazard. Mater. 160, 20-28. doi: 10.1016/j.jhazmat.2008.02.075

Horn, S. J., Estevez, M. M., Nielsen, H. K., Linjordet, R., and Eijsink,
G. H. (2011). Biogas production and saccharification of Salix pretreated at
different steam explosion conditions. Bioresour. Technol. 102, 7932-7936. doi:
10.1016/j.biortech.2011.06.042

Jeihanipour, A., Aslanzadeh, S., Rajendran, K., Balasubramanian, G., and
Taherzadeh, M. J. (2013). High-rate biogas production from waste
textiles using a two-stage process. Renew. Energy 52, 128-135. doi:
10.1016/j.renene.2012.10.042

Jonsson, L. J., Palmgyist, E., Nilvebrant, N. O., and Hahn-Hagerdal, B. (1998).
Detoxification of wood hydrolysates with laccase and peroxidase from the
white-rot fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 49, 693-697.

Jurado, M., Prieto, A., Martinez-Alcald, A., Martinez, A. T., and Martinez,
M. J. (2009). Laccase detoxification of steam-exploded wheat straw for
second generation bioethanol. Bioresour. Technol. 100, 6378-6384. doi:
10.1016/j.biortech.2009.07.049

Kabir, M. K., Rajendran, K., Taherzadeh, M. J., and Horvath, I. S. (2015).
Experimental and economical evaluation of bioconversion of forest residues to
biogas using organosolv pretreatment. Bioresour. Technol. 178, 201-208. doi:
10.1016/j.biortech.2014.07.064

Kabir, M. M., Niklasson, C., Taherzadeh, M. J., and Horvath, I. S. (2014). Biogas
production from lignocelluloses by N-methylmorpholine-N-oxide (NMMO)
pretreatment: effects of recovery and reuse of NMMO. Bioresour. Technol. 161,
449-450.

Kafle, G. K., Bhattarai, S., Kim, S., and Chen, L. (2014). Effect of feed to microbe
ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and
thermophilic conditions: biogas potential and kinetic study. J. Environ. Manage.
133, 293-301. doi: 10.1016/j.jenvman.2013.12.006

Kapdi, S. S., Vijay, V. K., Rajesh, S. K., and Prasad, R. (2005). Biogas scrubbing,
compression and storage: prespective and prospectus in Indian context. Renew.
Energy 30, 1195-1202. doi: 10.1016/j.renene.2004.09.012

Kayembe, K., Basosila, L., Mpiana, P. T., Sikulisimwa, P. C., and Mbuyu, K.
(2013). Inhibitory effects of phenolic monomers on methanogenesis in
anaerobic digestion. Br. Microbiol. Res. ]. 31, 32-41. doi: 10.9734/BMR]J/
2013/2291

Kim, K. H., and Hong, J. (2001). Supercritical CO2 pretreatment of lignocellulose
enhances enzymatic cellulose hydrolysis. Bioresour. Technol. 77, 139-144. doi:
10.1016/S0960-8524(00)00147-4

Lei, Z., Chen, J., Zhang, Z., and Sugiura, N. (2010). Methane production from rice
straw with acclimated anaerobic sludge: effect of phosphate supplementation.
Bioresour. Technol. 101, 4343-4348. doi: 10.1016/j.biortech.2010.01.083

Lesteur, M., Bellon-Maurel, V., Gonzalez, C., Latrille, E., Roger, J. M., Junqua, G.,
et al. (2010). Alternative methods for determining anaerobic biodegradability:
a review. Process Biochem. 45, 431-440. doi: 10.1016/j.procbio.2009.1
1.018

Li, Y., Park, S. Y., and Zhu, J. (2011). Solid-state anaerobic digestion for methane
production from organic waste. Renew. Sustain. Energy Rev. 15, 821-826. doi:
10.1016/j.rser.2010.07.042

Martin, C., Klinke, H. B., Marcet, M., Garcia, L., Herndndez, E., and Thomsen,
A. B. (2007). Study of the phenolic compounds formed during pretreatment
of sugarcane bagasse by wet oxidation and steam explosion. Holzforschung 61,
483-487.

Martin, M. R,, Fornero, J. J., Start, R., Mets, L., and Angenent, L. T. (2013). A single-
culture bioprocess of Methanothermobacter thermautotrophicus to upgrade
digester biogas by CO2-to-CH4 conversion with H2. Archaea 2013, 157529. doi:
10.1155/2013/157529

Matsakas, L., and Christakopoulos, P. (2013). Fermentation of liquefacted
hydrothermally pretreated sweet sorghum bagasse to ethanol at high-
solids content. Bioresour. Technol. 127, 202-208. doi: 10.1016/j.biortech.2012.
09.107

Matsakas, L., Rova, U., and Christakopoulos, P. (2014). Evaluation of dried sweet
sorghum stalks as raw material for methane production. Biomed Res. Int. 2014,
731731. doi: 10.1155/2014/731731

Mendez, A. A., Pereira, E. B., and de Castro, H. F. (2006). Effect of the
enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic
biodigestion. Biochem. Eng. J. 32, 185-190. doi: 10.1016/j.bej.2006.09.021

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of
reducing sugar. Anal. Chem. 31, 426-428. doi: 10.1021/ac60147a030

Mirahmadi, K., Kabir, M. M., Jeihanipour, A., Karimi, K., and Taherzadeh, M. J.
(2010). Alkaline pretreatment of spruce and birch to improve bioethanol and
biogas production. Bioresources 5, 928-938.

Mohsenzadeh, A., Jeihanipour, A., Karimi, K., and Taherzadeh, M. J. (2012). Alkali
pretreatment of softwood spruce and hardwood birch by NaOH/thiourea,
NaOH/urea, NaOH/urea/thiourea, and NaOH/PEG to improve ethanol and
biogas production. J. Chem. Technol. Biotechnol. 87, 1209-1214.

Molino, A., Migliori, M., Ding, Y., Bikson, B., Giordano, G., and Braccio, G. (2013).
Biogas upgrading via membrane process: modeling of pilot plant scale and
the end uses for grid injection. Fuel 107, 585-592. doi: 10.1016/j.fuel.2012.1
0.058

Moreno, A. D., Ibarra, D., Fernandez, J. L., and Ballesteros, M. (2012).
Different laccase detoxification strategies for ethanol production from
lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus
CECT 10875. Bioresour. Technol. 106, 101-109. doi: 10.1016/j.biortech.2011.1
1.108

Moreno, A. D., Tomés-Pejo, E., Ibarra, D., Ballesteros, M., and Olsson, L. (2013).
In situ laccase treatment enhances the fermentability of steam-exploded wheat
straw in SSCF processes at high dry matter consistencies. Bioresour. Technol.
143, 337-343. doi: 10.1016/j.biortech.2013.06.011

Mshandete, A., Bjomsson, L., Kivaisi, A. K., Rubindamayugi, S. T., and
Mattiasson, B. (2005). Enhancement of anaerobic batch digestion of sisal pulp
waste by mesophilic aerobic pre-treatment. Water Res. 39, 1569-1575. doi:
10.1016/j.watres.2004.11.037

Naik, S. N., Goud, V. V., Rout, P. K., and Dalai, A. K. (2010). Production of first and
second generation biofuels: a comprehensive review. Renew. Sustain. Energy
Rev. 14, 578-597.

Frontiers in Microbiology | www.frontiersin.org

October 2015 | Volume 6 | Article 1163


http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

Matsakas et al.

Biogas from forest based lignocellulose

Nakamura, Y., and Mtui, G. (2003). Anaerobic fermentation of woody biomass
treated by various methods. Biotechnol. Bioprocess Eng. 8, 179-182. doi:
10.1007/BF02935893

Negro, M. J., Manzanares, P., Ballesteros, I, Olivia, J. M., Cabanas, A., and
Ballesteros, M. (2003). Hydrothermal pretreatment conditions to enhance
ethanol production from poplar biomass. Appl. Biochem. Biotechnol. 105, 87-
100. doi: 10.1385/ABAB:105:1-3:87

Nitsos, C. K., Matis, K. A, and Triantafyllidis, K. S. (2013). Optimization
of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol
production process. ChemSusChem 6, 110-122. doi: 10.1002/cssc.2012
00546

Palonen, H., Thomsen, A. B., Tenkanen, M., Schmidt, A. S., and Viikari, L. (2004).
Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood.
Appl. Biochem. Biotechnol. 117, 1-17. doi: 10.1385/ABAB:117:1:01

Parawira, W. (2012). Enzyme research and applications in biotechnological
intensification of biogas production. Crit. Rev. Biotechnol. 32, 172-186. doi:
10.3109/07388551.2011.595384

Paschos, T., Xiros, C., and Christakopoulos, P. (2015). Simultaneous
saccharification and fermentation by co-cultures of Fusarium oxysporum
and Saccharomyces cerevisaeenhances ethanol production from liquefied
wheat straw at high solid content. Ind. Crops Prod. 76, 793-802. doi:
10.1016/j.indcrop.2015.07.061

Rintala, J., and Ahring, B. (1994). Thermophilic anaerobic digestion of source-
separated household solid waste: the effect of enzyme additions. Appl. Microbiol.
Biotechnol. 40, 916-919. doi: 10.1007/BF00173999

Romano, R. T., Zhang, R., Teter, S., and McGarvey, J. A. (2009). The effect of
enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresour.
Technol. 100, 4564-4571. doi: 10.1016/j.biortech.2008.12.065

Salehian, P., and Karimi, K. (2013). Alkali pretreatment for improvement of biogas
and ethanol production from different waste parts of pine tree. Ind. Eng. Chem.
Res. 52, 972-978. doi: 10.1021/ie302805¢

Salehian, P., Karimi, K., Zilouei, H., and Jeihanipour, A. (2013). Improvement of
biogas production from pine wood by alkali pretreatment. Fuel 106, 484-489.
doi: 10.1016/j.fuel.2012.12.092

Sierra-Alvarez, R, and Lettinga, G. (1991). The methanogenic toxicity of
wastewater lignins and lignin related compounds. J. Chem. Technol. Biotechnol.
50, 443-455. doi: 10.1002/jctb.280500403

Sonakya, V., Raizada, N., and Kali, V. (2001). Microbial and enzymatic
improvement of anaerobic digestion of waste biomass. Biotechnol. Lett. 23,
1463-1466. doi: 10.3109/07388551.2011.595384

Soudham, V. P., Alriksson, B., and Jonsson, L. J. (2011). Reducing agents
improve enzymatic hydrolysis of cellulosic substrates in the presence of
pretreatment liquid. J. Biotechnol. 155, 244-250. doi: 10.1016/j.jbiotec.2011.0
6.026

Swedish Gas Association (2011). Biogas in Sweden. Energigas Sverige. Stockholm:
Swedish Gas Association.

Taherzadeh, M. J., and Karimi, K. (2008). Pretreatment of lignocellulosic wastes to
improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621-1651.
doi: 10.3390/ijms9091621

Teghammar, A., Karimi, K., Horvath, I. S, and Taherzadeh, M. J. (2012).
Enhanced biogas production from rice straw, triticale straw and softwood
spruce by NMMO pretreatment. Biomass Bioenergy 36, 116-120. doi:
10.1016/j.biombioe.2011.10.019

Vivekanand, V., Olsen, E. F., Eijsink, V. G. H., and Horn, S. J. (2013).
Effect of different steam explosion conditions on methane potential and
enzymatic saccharification of birch. Bioresour. Technol. 127, 343-349. doi:
10.1016/j.biortech.2012.09.118

Xia, Y., Fang, H. H. P., and Zhang, T. (2013). Recent studies on thermophilic
anaerobic bioconversion of lignocellulosic biomass. RSC Adv. 3, 15528-15542.
doi: 10.1039/c3ra40866¢

Xiros, C., and Olsson, L. (2014). Comparison of strategies to overcome the
inhibitory effects in high-gravity fermentation of lignocellulosic hydrolysates.
Biomass Bioenergy 65, 79-90. doi: 10.1016/j.biombioe.2014.03.060

Yoshida, K., Miyafuji, H., and Saka, S. (2010). Methane production from organic
acids obtained by supercritical water treatment of Japanese beech. J. Wood Sci.
56, 160-165. doi: 10.1007/s10086-009-1074-9

Zheng, Y., Zhao, J., Xu, F., and Li, Y. (2014). Pretreatment of lignocellulosic
biomass for enhanced biogas production. Prog. Energy Combust. Sci. 42, 35-53.
doi: 10.1016/j.pecs.2014.01.001

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Matsakas, Rova and Christakopoulos. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org

10

October 2015 | Volume 6 | Article 1163


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Sequential parametric optimization of methane production from different sources of forest raw material
	Introduction
	Materials And Methods
	Raw Materials and Enzymes
	Pretreatment of Forest Residues
	Enzymatic Saccharification of Pretreated Slurries
	Detoxification of the Slurries
	Enzymatic Treatment of the Slurries with Cellulolytic Enzymes
	Biochemical Methane Potential (BMP) Tests
	Analytical Methods

	Results
	Methane Yields from Untreated Materials
	Effect of Hydrothermal Pretreatment on the Digestibility of Residues and on Methane Yield
	Effect of Detoxification of the Slurries on Methane Yield
	Effect of Cellulase Treatment on the Methane Yield

	Discussion
	Conclusion
	Author Contributions
	Acknowledgments
	References


