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The availability of complete genome sequences of bacterial endosymbionts with strict
vertical transmission to the host progeny opens the possibility to estimate molecular
evolutionary rates in different lineages and understand the main biological mechanisms
influencing these rates. We have compared the rates of evolution for non-synonymous
and synonymous substitutions in nine bacterial endosymbiont lineages, belonging to
four clades (Baumannia, Blochmannia, Portiera, and Sulcia). The main results are the
observation of a positive correlation between both rates with differences among lineages
of up to three orders of magnitude and that the substitution rates decrease over long
endosymbioses. To explain these results we propose three mechanisms. The first,
variations in the efficiencies of DNA replication and DNA repair systems, is unable to
explain most of the observed differences. The second, variations in the generation
time among bacterial lineages, would be based on the accumulation of fewer DNA
replication errors per unit time in organisms with longer generation times. The third,
a potential control of the endosymbiont DNA replication and repair systems through
the transfer of nuclear-encoded proteins, could explain the lower rates in long-term
obligate endosymbionts. Because the preservation of the genomic integrity of the
harbored obligate endosymbiont would be advantageous for the insect host, biological
mechanisms producing a general reduction in the rates of nucleotide substitution per
unit of time would be a target for natural selection.

Keywords: endosymbiosis, evolutionary rate, nucleotide substitution, generation time, DNA replication, DNA
repair

INTRODUCTION

The main problem to estimate and compare the rates of sequence evolution among bacterial
lineages is the difficulty to obtain the times of divergence of the compared species and strains.
Although for culturable bacteria, in very short periods of time, an experimental approach in
laboratory may be applied (Lenski et al., 2003), the estimations of the rates of nucleotide
substitution over long periods of time are intractable. However, there is one exception: host-
associated bacteria. Because these organisms coevolve with eukaryotic lineages, the times of
divergence of the hosts may be estimated with divergence dating methods using calibration points
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based on fossil records. Once estimated, host divergence times
may be used to obtain the rates of nucleotide substitution in
the endosymbionts, provided that transmission from host to
offspring is strictly vertical. In insects, many endosymbiont
lineages with strict vertical transmission for millions of years
have been described (Baumann, 2005; Moran et al., 2008; Moya
et al., 2008). They are ideal subjects to be analyzed although,
until now, only some studies using rough estimations of the times
of divergence among insect taxa have been performed. The use
of methods for temporal calibration of molecular phylogenies
permits the estimation of the rates of molecular evolution within
any endosymbiotic clade with strictly vertical transmission.

RATES OF GENE SEQUENCE
EVOLUTION IN BACTERIAL
ENDOSYMBIONTS

The first comparisons of the rates of gene sequence evolution
between endosymbionts and free living microorganisms were
mainly focused on rRNA genes. It was observed through relative
rate tests the significant acceleration of the 16S rRNA genes
of the primary endosymbionts of aphids (Buchnera aphidicola),
mealybugs, whiteflies, and tse-tse flies in comparison with close
free-living relatives (Moran, 1996). This kind of fast evolution
was later reported for sulfur-oxidizing bacteria (Peek et al.,
1998), fungi (Lutzoni and Pagel, 1997), or fungi and bacteria
(Woolfit and Bromham, 2003). These comparative analyses were
extended to a few coding genes. For example, the number of non-
synonymous substitutions per site (dN) was higher in several
Buchnera genes than in their corresponding orthologs in enterics
(Moran, 1996; Clark et al., 1999). However, the differences in the
number of synonymous substitutions per site (dS) between the
endosymbiont (Buchnera) and the free-living relative were small
(Clark et al., 1999).

Later, the comparative analyses were extended to different
endosymbiont lineages, among then and with their free-living
relatives, and the estimated dS were weighted by estimations
of the times of divergence. In this case, large differences
were observed for the dS/t (dS/time) of the genes gidA and
groEL with estimations of around 1 × 10−7, 1 × 10−8

and 1 × 10−9 synonymous substitutions per site per year
for “Candidatus Blochmannia” (endosymbiont of carpenter
ants, hereafter Blochmannia), Buchnera and free-living enterics,
respectively (Degnan et al., 2004). Rates of evolution for non-
functional DNA sequences were also estimated for Buchnera
and Blochmannia at 4.3 × 10−9 and 1.5 × 10−8, respectively
(Gomez-Valero et al., 2007, 2008).

Although the analysis of a reduced set of genes may give
clues about the rates of molecular evolution, the availability of
the complete endosymbiont genomes may contribute to get a
whole view of the rates of evolution in each symbiont lineage, not
affected by the random or selective processes of each gene.

Recently, two analyses involving the estimation of dN and
dS (or dN/t and dS/t) at genomic scale and the comparison
among different endosymbiont lineages have been performed
(Bennett et al., 2014; Santos-Garcia et al., 2015). In the first

study, two obligate endosymbionts (“Candidatus Sulcia muelleri”
and “Candidatus Baumannia cicadellinicola,” hereafter Sulcia
and Baumannia, respectively) of two sharpshooters species
(Hemiptera:Cicadellidae:Cicadellinae) of the tribes Proconiini
(Homalodisca vitripennis) and Cicadellini (Graphocephala
atropunctata) were analyzed. For both symbionts, the start
of the symbiosis took place before the divergence of both
insect lineages, but while Sulcia has a long-term coevolutionary
history with Auchenorrhyncha, the relation of Baumannia
with sharpshooters is much more recent, because it replaced
another ancestral symbiont in the subfamily Cicadellinae,
probably as a consequence of a diet change from phloem
to xylem (Bennett and Moran, 2013). Because the same
divergence time may be applied to the two Baumannia strains
and the two Sulcia strains, dN and dS were compared in
spite of the absence of a concrete time of divergence. The
average gene dN was 28-fold higher in Baumannia than
in Sulcia, while the differences in average gene dS were
even higher (89-fold) (Bennett et al., 2014). This clearly
differentiates Baumannia and Sulcia as fast and slow evolving
endosymbionts.

In the second study, the rates of dN/t and dS/t were estimated
in four lineages of “Candidatus Portiera aleyrodidarum”
(hereafter Portiera), the endosymbiont of whiteflies (Santos-
Garcia et al., 2015). The divergence times of the lineages were
estimated with the program BEAST (Bouckaert et al., 2014),
sequence datasets from the endosymbionts and mitochondria
and calibrators for the nodes of divergence of the two whitefly
subfamilies (125–135 My) and of aphids and whiteflies (250–
278 My). The results showed significant differences in the rate of
evolution of the lineages, and an interesting correlation between
dN/t and dS/t, with Portiera from Bemisia tabaci evolving for
both rates fivefold higher than the slow-evolving Portiera from
Aleurodicus floccissimus. High dN and dS values in Portiera
from B. tabaci had been previously reported when compared
to Portiera from Trialeurodes vaporariorum (Sloan and Moran,
2013).

With the aim to compare at genomic scale the rates of
nucleotide substitution in several endosymbiont lineages, we
selected two long-term and two relatively recent endosymbiont
clades. Sulcia and Portiera were the long-term clades. The
infection of Sulcia took place 260–280 My ago (Moran et al.,
2005), while in Portiera, the original infection probably took
place in the ancestors of psyllids and whiteflies (>250 My ago),
leading with time to the endosymbiotic genera “Candidatus
Carsonella” and Portiera, respectively (Santos-Garcia et al.,
2014). Baumannia, whose infection took place at least 50
My ago (Koga and Moran, 2014) and Blochmannia, whose
infection of the ant tribe Camponotini took placed around 40
Mya (Williams and Wernegreen, 2015) were the short-term
clades.

Only the dN/t and dS/t values from four Portiera lineages were
directly obtained from a previous report (Santos-Garcia et al.,
2015), while values for the remaining lineages were estimated for
this work. Baumannia (BAU) and Sulcia (SUL) dN and dS gene
estimations were obtained from the Supplementary Material of
a previous publication (Bennett et al., 2014). In Sulcia, only the
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gene set retained for average estimations by Bennett et al. (2014),
excluding those with zero dN or dS values and in Baumannia, the
unsaturated genes. Because dN and dS were pairwise estimations,
we obtained the dN/t and dS/t values corresponding to the
substitutions in the two analyzed branches (Figure 1A) using
twice the time of divergence of the lineages. We used a time of
divergence between H. vitripennis and G. atropunctata of 66.2
My, an average of the estimations of 69 My and 63.4 My obtained
for their Sulcia and Baumannia endosymbionts (Szklarzewicz
et al., 2015), because the value should be the same if both
symbionts have strict vertical transmission.

Finally, we estimated the dN and dS gene values from the gene
sequences reported in the genomes of Blochmannia floridanus,
endosymbiont of Camponotus floridanus (Gil et al., 2003),
Blochmannia pennsylvanicus, endosymbiont of Camponotus
pennsylvanicus (Degnan et al., 2005) and the more distant
relative, Blochmannia obliquus endosymbiont of Colobopsis
obliquus (Williams and Wernegreen, 2015). To obtain these
values, genomes of these species and Baummania as outgroup
were obtained and their proteins classified in orthologous
groups with OrthoMCL (Supplementary Material, Li et al.,
2003). Then, codon alignments were obtained and codeML
(Yang, 2007) was used to obtain the dN and dS values as
previously described (Santos-Garcia et al., 2015). Only those
genes with no zero dN or dS values and dS values less than
four were selected for plotting and other analyses (the data
files and the R markdown file can be found in Supplementary
material). Three lineages were considered, the one leading to
B. obliquus (BOB), whose period of evolution was estimated
at 32.6 My (Degnan et al., 2004) and the two lineages
leading to B. floridanus (BFL) and B pennsylvanicus (BPN),
with a period of evolution of 18 My each (Degnan et al.,
2004).

Gene dN/t and dS/t values in the nine lineages (Figure 1A)
were plotted (Figure 1B). A significant positive correlation
(r2 = 0.54) (p-value <0.001) was observed under the linear
regression model When the average values for dN/t and dS/t
in each lineage were plotted (Figure 1C), a positive correlation
(r2 = 0.98) was more clearly observed. Sulcia was the slowest
evolving lineage followed by three out of the four Portiera
lineages. Portiera from B. tabaci and Baumannia evolved with
intermediate values. Finally, the rates of evolution of the
three Blochmannia lineages were very high with the values of
B. floridanus around 140-fold and 600-fold higher than Sulcia for
dN/t and dS/t, respectively. On the contrary, the average dN/dS
ratios were similar in most of the lineages, except in Sulcia which
showed a value of around 0.30 (Figure 1D).

Although only a limited number of lineages have been
analyzed, the main general conclusion that we can extract is that
the evolution of the gene sequences in bacterial endosymbionts
are triggered by mechanisms affecting both substitution rates.
The second conclusion is that the long-term endosymbiotic
clades (Sulcia and Portiera) evolve more slowly than the recent
ones (Baumannia and Blochmannia). The exception is one of
the lineages of Portiera, but it may be explained by the genome
instability associated with this lineage (Sloan and Moran, 2012,
2013).

EVOLUTIONARY PROCESSES
EXPLAINING THE CORRELATION
BETWEEN dN/t AND dS/t IN BACTERIAL
ENDOSYMBIONTS

The selection of four bacterial endosymbiotic clades for the
analysis of the rates of coding gene evolution at genomic
scale shows very large differences, in the range of three
orders of magnitude between the slowest and the fastest
evolving lineages. To explain this observation, we need to
understand how endosymbiotic lifestyle may alter fundamental
evolutionary processes such as mutation, selection, genetic drift,
and recombination, and the profound consequences on the rates
of nucleotide substitution (Wernegreen, 2015).

The heterogeneity of the gene dN/dS ratios within a specific
lineage may be conducted basically by natural selection. Positive
selection may favor non-synonymous changes in some positions
as an adaptation to changes in the intracellular environment,
or purifying selection may remove a larger proportion of
non-synonymous changes in some genes than in others. But,
neither of these conditions affect both synonymous and non-
synonymous rates (Figure 1C). To explain this plot we need
to consider mechanisms that alter simultaneously the rates
of synonymous and non-synonymous substitutions. Both rates
will not be the same because natural selection will favor
the removal of most of the non-synonymous substitutions
avoiding their transfer to the next generation but, in theory,
it will have almost no effect over the synonymous ones, by its
neutrality for most of the changes. However, natural selection
may affect both rates simultaneously, if its action consists of
selecting general mechanisms that either increase or decrease
the mutation at any position of the DNA sequence. In this
regard, we might predict that mechanisms lowering mutation
rates would be favored in primary endosymbionts (Wernegreen,
2015).

Which are, thus, the mechanisms that can explain the
differences of three orders of magnitude in the rates of the four
analyzed symbiont clades? We propose three mechanisms, with
the understanding that they are not mutually exclusive.

The first possible mechanism we considered is the efficiency
of DNA replication and repair systems. The lower the efficiency,
the higher the rates of mutation and substitution. The overall
efficiency of these two systems involves many components. Not
only is it difficult to analyze these components, but to determine
how they are combined to generate an overall efficiency. Many
mechanisms for DNA repair have been described in living
beings including direct reversal, base excision repair, nucleotide
excision repair and recombination (Sancar et al., 2004). Their
efficiencies depend on many factors, such as, for example, the
variety, concentration, error rate and activity of DNA replication
and repair enzymes. The number of genes encoding proteins
involved in DNA replication and DNA repair is one of these
components (Table 1), although the observation of a lower
number of genes in this category does not mean automatically
a high substitution rate since it may be compensated by better
performances of other components. Only within one clade,
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FIGURE 1 | Sequence evolution in bacterial endosymbiont lineages. (A) Tree topologies for the nine analyzed lineages (host genus between parentheses) were
based on concatenated protein alignments (Bennett et al., 2014; Santos-Garcia et al., 2015; Bennett and Moran, 2013; Williams and Wernegreen, 2015). Branch
colors mark the lineages. Notice that the analyses of Sulcia and Baumannia were not performed in a single branch. (B) Scatter plot of dN/t vs. dS/t. Each point is a
gene. (C) Scatter plot of dN/t vs. dS/t. Each point is the average gene value for each lineage. A regression line is displayed. (D) Box plot for the dN/dS values of the
genes in each lineage. Color codes and abbreviations are shown at the end. They were ordered according to dN/t from smallest to largest. Abbreviations: SUL,
Sulcia; PAF, Portiera A. floccissimus; PTV, Portiera T. vaporariorum; PAD, Portiera A. dispersus; PBT, Portiera B. tabaci; BAU, Baumannia; BOB, B. obliquus; BPN,
B. pennsylvanicus; and BFL, B. floridanus.

TABLE 1 | Number of genes in the DNA replication and repair category and rates of nucleotide substitution (average values).

SUL PAF PTV PAD PBT BAU BOB BPN BFL

Gene number 6 13 13 13 5 26 18 18 18

dS/t 1.5 × 10−10 2.9 × 10−09 3.6 × 10−09 4.8 × 10−09 1.3 × 10−08 1.1 × 10−08 7.9 × 10−08 6.4 × 10−08 8.9 × 10−08

dN/t 5.8 × 10−11 2.0 × 10−10 2.4 × 10−10 3.1 × 10−10 9.5 × 10−10 1.0 × 10−09 5.2 × 10−09 5.6 × 10−09 7.9 × 10−09

See abbreviations in Figure 1.

we can observe some changes that may be associated with
an increase of the mutation rate based on the loss of DNA
repair and replication enzymes. This is the case of Portiera

from B. tabaci B and Q biotypes (Santos-Garcia et al., 2012;
Sloan and Moran, 2012) which has lost a large number of
genes for DNA replication and repair comparing with the last
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common ancestor of Portiera strains (Santos-Garcia et al., 2015).
However, when we compared the repertoires for these functional
categories among the nine analyzed genomes, we did not find a
general relationship between rates of substitution and number
of genes in these categories and, in fact, the genera with the
largest number of genes in these categories (Baumannia and
Blochmannia), are those displaying the largest substitution rates
(Table 1).

From the first theoretical studies, generation time was
considered as one of the main factors contributing to explain
the variability of the rates of molecular evolution among
lineages. The generation time hypothesis was based on the
idea that species with shorter generation times would have
larger rates of mutations per year considering that larger
numbers of DNA replications per unit of time generate larger
numbers of mutations. Initially, the effect of generation time
in vertebrates was only clearly observed in synonymous rates
(Ohta, 1993). The difficulties to detect this effect in non-
synonymous rates were explained by the fact that species with
larger generation times also tend to have smaller effective
population sizes and both factors are compensated. Effects
of generation time on the molecular evolutionary rates have
also been described in other taxonomic groups such as
invertebrates (Thomas et al., 2010) and, in this case, the
effect was evident for both synonymous and non-synonymous
rates.

In spite of the difficulties of study the effect of generation time
in bacteria, it has been recently reported that, in Firmicutes, the
DNA mutation and the protein evolutionary rates are smaller
in spore-forming lineages than in non-spore-forming lineages
(Weller andWu, 2015). Because, it is expected that the generation
time is longer in spore-forming lineages, the authors indicate
that their results support the effect of generation time also in
bacteria.

In our analysis with endosymbionts, generation time may
explain the observed differences, although no information over
the number of DNA replications per unit of time may be easily
estimated. However, the differences between B. floridanus and
B. pennsylvanicus could be explained by the behavior of their
hosts (Camponotus floridanus and Camponotus pennsylvanicus)
with the former displaying year-round activity and the latter
winter dormancy (Degnan et al., 2005). These host traits would
probably affect to the number of bacterial generations and the
rates of substitution per unit of time.

If the large differences among Sulcia and Portiera by
one way and Baumannia and Blochmannia by the other are
related to generation time, we cannot discard that it was
natural selection, which selected that the former replicate
their genomes with slower rates per unit of time than the
latter. By this way, the degenerative effects associated with
intracellular life will be weakened avoiding its replacement by
a novel and more efficient endosymbiont (Santos-Garcia et al.,
2015).

The third proposed mechanism is based on the recent
demonstration that an insect protein was transferred to an
endosymbiont, in the aphid endosymbiont B. aphidicola
(Nakabachi et al., 2014) and the suggestion that the lack of

a specific aminoacyl-tRNA synthetase in the endosymbiont
“Candidatus Evansia muelleri” may be compensated by
the import of the insect nuclear-encoded protein (Santos-
Garcia et al., 2014). After, a long-co-evolutionary relation,
some insects would have taken power on their long-term
endosymbionts, and to avoid their destruction, a mechanism
of targeting some proteins inside the endosymbiont cell would
have been developed. Some of the targeted proteins may
be DNA repair enzymes, which would be able to remove
many of the new mutations generated in the endosymbiont
genome. Such a kind of mechanism for general decrease
of the rates of mutation would have been selected and
would explain why some endosymbiont lineages evolve
with average rates for synonymous changes as small as
1 × 10−10.

CONCLUSION

The huge variation among the rates of synonymous substitution
among lineages of endosymbiotic bacteria cannot be explained
by differences in the genetic arsenal required to avoid the
production of mutations. The fact that this variation also affects
to the non-synonymous rates requires that one or several
general mechanisms decreasing the number of substitution by
unit of time were involved. The generation time effect could
explain this variability but, it is not necessary that the hosts
display differences in their generation times. A slow rate of
DNA replication and cell division in the endosymbionts will
be sufficient to reduce the number of mutations per unit
of time. The idea that the hosts may take the control of
the endosymbiont rate of DNA replication or decrease the
number of mutations by the transport of nuclear-encoded
proteins within the endosymbiotic bacterial cell should be
explored.
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