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Paracoccidioides brasiliensis and P. lutzii are etiologic agents of paracoccidioidomycosis
(PCM), an important endemic mycosis in Latin America. During its evolution, these
fungi have developed characteristics and mechanisms that allow their growth in adverse
conditions within their host through which they efficiently cause disease. This process
is multi-factorial and involves host–pathogen interactions (adaptation, adhesion, and
invasion), as well as fungal virulence and host immune response. In this review, we
demonstrated the glycoproteins and polysaccharides network, which composes the
cell wall of Paracoccidioides spp. These are important for the change of conidia or
mycelial (26◦C) to parasitic yeast (37◦C). The morphological switch, a mechanism for
the pathogen to adapt and thrive inside the host, is obligatory for the establishment
of the infection and seems to be related to pathogenicity. For these fungi, one of the
most important steps during the interaction with the host is the adhesion. Cell surface
proteins called adhesins, responsible for the first contact with host cells, contribute to
host colonization and invasion by mediating this process. These fungi also present the
capacity to form biofilm and through which they may evade the host’s immune system.
During infection, Paracoccidioides spp. can interact with different host cell types and has
the ability to modulate the host’s adaptive and/or innate immune response. In addition,
it participates and interferes in the coagulation system and phenomena like cytoskeletal
rearrangement and apoptosis. In recent years, Paracoccidioides spp. have had their
endemic areas expanding in correlation with the expansion of agriculture. In response,
several studies were developed to understand the infection using in vitro and in vivo
systems, including alternative non-mammal models. Moreover, new advances were
made in treating these infections using both well-established and new antifungal agents.
These included natural and/or derivate synthetic substances as well as vaccines,
peptides, and anti-adhesins sera. Because of all the advances in the PCM study, this
review has the objective to summarize all of the recent discoveries on Paracoccidioides-
host interaction, with particular emphasis on fungi surface proteins (molecules that play
a fundamental role in the adhesion and/or dissemination of the fungi to host-cells), as
well as advances in the treatment of PCM with new and well-established antifungal
agents and approaches.

Keywords: Paracoccidioides brasiliensis, Paracoccidioides lutzii, fungi–host interaction,
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INTRODUCTION

It is estimated that about 1.2 billion people worldwide suffer
from fungal diseases. Some of these are invasive or chronic
and difficult to diagnose and treat. It is estimated that 1.5 to
2.000.000 people die of fungal infections each year, surpassing
those who die from other causes (Denning and Bromley, 2015).
In Latin America, the rich diversity of biomass and climates
provides a rich range of habitats for different microorganisms,
including these pathogenic fungi responsible for endemic
mycoses and that have an important impact on public health:
histoplasmosis, coccidioidomycosis, and paracoccidioidomycosis
(PCM; Colombo et al., 2011).

The Paracoccidioides spp. specie complex is dimorphic fungi
that are the etiologic agents of PCM. This is the most important
systemic mycosis in Latin America with Brazil, Venezuela,
and Argentina being the countries with the greatest number
of patients. Non-autochthonous cases have been described
outside endemic areas in patients who have lived in or visited
Latin America. Brazil, which accounts for 80% of the cases,
concentrated the occurrence in its southeastern, southern, and
Midwestern regions. PCM is an endemic mycosis that is
responsible by the highest cause of mortality and the eighth most
important cause of mortality from chronic infectious diseases
reaching rates of 1.65 deaths per 106 inhabitants (Coutinho
et al., 2002; Bocca et al., 2013). According to Martinez (2010),
an estimated 3,360 new cases per year reflect the fatality
and mortality rates attributed to PCM in Brazil. Through
epidemiological surveys it’s known that PCM occurs throughout
Brazil (Blotta et al., 1999; Bellissimo-Rodrigues et al., 2011; Loth
et al., 2011; de Souza et al., 2014; Vieira et al., 2014). Recent eco-
epidemiological studies (Table 1) have been demonstrating the
occurrence of the PCM in different regions of the Brazil, warning
the scientific community about the importance of this disease to
the country.

The Paracoccidioides genus is composed of thermally
dimorphic fungi classified in the Onygenales order and in the
Ajellomycetaceae family (Untereiner et al., 2004). Currently, due
to advances in phylogenetic studies of different Paracoccidiodes
isolates, this genus is divided into two species: P. brasiliensis and
P. lutzii, being the first divided into three different phylogenetic
species, S1, PS2, and PS3 (Matute et al., 2006; Carrero et al.,
2008; Marini et al., 2010). Agents of systemic mycoses, such as
P. brasiliensis and P. lutzii, express factors that facilitate their
survival in severe conditions inside the host cells and tissues,
and as such, benefit the disease’s development (Casadevall
and Pirofski, 1999). The successful colonization of host tissues
by the fungus is thus a complex event, usually involving
various regulatory mechanisms of cellular homeostasis and
the expression of different virulence factors during infection
that allows the fungi to cause this systemic mycosis with deep
extension in the host organism.

The PCM fungi primarily infects male peasants, between 30
and 60 years of age (Svidzinski et al., 1999; Villa et al., 2000),
that are mostly represented by rural workers in the endemic areas
(Franco, 1987). Poor hygiene, malnutrition, smoking, and alcohol
consumption are considered risk factors for the manifestation

of the disease (Silva-Vergara et al., 2000). The inhalation of
the fungus conidia or mycelial propagules is the most common
transmissionmode that allows the fungi to reach the lungs (which
are the primary infection site).

The clinical forms of PCM were classified based on the
relationship between clinical aspects and the natural history
of the disease. Then, the infection is related to the patient
without signals and symptoms of the disease but with a
positive paracoccidioidin skin test reaction. Patients with PCM
disease were divided between acute/subacute form (juvenile
type), that mainly affects children and young adults presenting
more disseminated lesions, and chronic form (that primarily
affect adult men) generally found in oral mucosa, airways,
and lung lesions (Bocca et al., 2013; Marques, 2013; Martinez,
2015).

Because of its importance, this review will summarize all
the recent discoveries on Paracoccidioides-host interaction with
particular emphasis in fungi surface proteins, which play a
fundamental role in the adhesion and/or dissemination of the
fungi to host-cells. The goal is to point out that there are multi-
factorial processes involving host–pathogen interactions as well
as fungal virulence and host immune response. Finally, this
review will also focus in the recent advances in drug discoveries
and treatments of PCM.

THE ADHESION PROCESS IN PCM

The interaction of host and parasite is a complex event in which
the host is under pressure to develop resistance while the parasite
tries to evade and adapt to the host’s immune response and thus
survive in the host’s environment (Tronchin et al., 2008; Sironi
et al., 2015).

Paracoccidioidomycosis can be acquired through inhalation of
infectious propagules, which then lodge in the alveoli from which
they spread to other organs. The fungi developed mechanisms
(such as adhesion to host cells), to avoid entrapment within
mucus and their elimination by mucigen cilliary cells (Filler and
Sheppard, 2006; Hernández et al., 2010). Therefore, their effective
adherence contributes to higher speed invasion of host cells,
allowing for evasion of the immune system, establishment of
the infection, and in the case of Paracoccidioides spp., lead to
different clinical manifestations (Singer-Vermes et al., 1994; de
Oliveira et al., 2015). Another important fact is that P. brasiliensis
is able to form biofilm in vitro, which opens up new possibilities
in understanding the infection process of these fungi, since
biofilm formation is a condition that provides for the pathogen’s
protection against drugs and the host’s immune system (Sardi
et al., 2015).

Some differences in the degree of adherence have been
observed for Paracoccidioides spp. regarding the manner in which
they enter different cell types. This is perhaps related to changes in
the cell wall composition (Telles-Filho, 1987; Puccia et al., 2011).
Hanna et al. (2000) observed differences in adhesion capacity to
Vero cells of four P. brasiliensis strains. Additionally, successive
subcultures of P. brasiliensis resulted in their attenuation or loss
of virulence (Brummer et al., 1990), that can be re-established

Frontiers in Microbiology | www.frontiersin.org 2 November 2015 | Volume 6 | Article 1319

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


de Oliveira et al. An Overview on Paracoccidioides-host Interaction

TABLE 1 | Occurrence of paracoccidioidomycosis in the Brazilian territory raised by eco-epidemiological studies.

State Region Period Number of cases Gender/age Reference

Parana Western 2008–2009 102 72 male and 30 female/18–81 years Loth et al., 2011

Sao Paulo Southeast 1960–1999 1.000 858 male and 142 female/03–80 years Bellissimo-Rodrigues et al., 2011

Amazon North 1997–2012 2.163 1.951 males and 211 females/03–81 years Vieira et al., 2014

Sao Paulo Southeast 1988–1996 584 492 males and 92 females/05–87 years Blotta et al., 1999

Rio Grande do Sul South 1966–2009 123 104 males and 17 females/02–97 years de Souza et al., 2014

after passage in animals (San-Blas et al., 1977; Castaneda et al.,
1987) or epithelial culture cells (Andreotti et al., 2005).

Recently de Oliveira et al. (2015) found significantly higher
capacity for adhesion to pneumocytes by P. brasiliensis compared
to P. lutzii. They also demonstrated that P. brasiliensis is more
virulent than P. lutzii, using an in vivo model. This supports
the fact that adherence and virulence are closely related in
Paracoccidioides spp. and reinforces the importance of adhesion
in the infection process of these fungi.

Paracoccidioides spp. recognizes several of the host
molecules such as components of the extracellular matrix
(ECM). ECM is basically composed by collagen, elastin fibers,
glycosaminoglycans (GAGS), proteoglycans (PG), fibronectin,
laminin, heparan sulfate, nidogen/entactin, hyaluronate,
chondroitin sulfate, and collagens subtypes I, III, IV, and V
(Dunsmore and Rannels, 1996; Mendes-Giannini et al., 2006;
Balestrini and Niklason, 2015). These can serve as a substrate
for the attachment of colonizing microorganisms (Chagnot
et al., 2012). Comparing the adhesion to ECM components
of two species of Paracoccidioides, de Oliveira et al. (2015)
demonstrated that P. brasiliensis adheres more to fibronectin in
contrast to P. lutzii that showed more tropism to type I and IV
collagen.

Different studies reinforced the importance of the fungus
interactions with ECM proteins during the adhesion process.
González et al. (2008b) evaluated Paracoccidioides conidia treated
with laminin, fibronectin, and fibrinogen in mice experimental
PCM. They observed that the treatment with all ECM proteins,
especially laminin and fibrinogen, induces a less severe pathology,
with a decrease of chitin content in the lungs. In a different study,
André et al. (2004) treated yeasts of Paracoccidioides with laminin
and they to observed that this treatment induces a less severe
pathology.

Several studies in the Paracoccidioides genus have been
conducted to characterize the adhesion process, revealing that
Paracoccidioides spp. synthetizes several molecules, known as
surface adhesins, that are involved, directly or indirectly, in the
interaction with host cells and in the in vitro biofilm formation
(Mendes-Giannini et al., 2000; Hernández et al., 2010; Sardi et al.,
2015).

Paracoccidioides spp. adhesins are widely studied using in vitro
and in vivo approaches of different forms of Paracoccidioides
spp. in order to identify and characterize these molecules.
The understanding of the adhesion process provides a better
understanding of the disease as well-bringing new possible targets
for therapeutics (Gonzalez et al., 2005; Tomazett et al., 2005;
Pereira et al., 2007; de Oliveira et al., 2015).

Several Paracocccidiodes spp. adhesins have been found to
have a multifunctional role, being primarly involved in metabolic
pathways and later found in fungus cell walls and/or secreted
and mediating fungus adhesion (Karkowska-Kuleta and Kozik,
2014). The transport of these molecules (together with antigenic
components and other molecules that can interact with the
host’s cellular immune system such as α-galactosyl), to the
fungal cell wall and to the extracellular compartment, can be
mediated by vesicles produced by the fungus as described by
Vallejo et al. (2011, 2012). Recently, Peres da Silva et al. (2015)
described the presence of RNA in extracellular vesicles secreted
by Paracoccidioides spp., which might interfere in both fungi and
host gene expression, modulating the host–pathogen interaction.

The gp43 is a glycoprotein that is the most studied molecule
from Paracoccidioides spp. Due to its importance in the host–
pathogen interactions, including the adhesion process. The gp43
was the first described P. brasiliensis adhesin, and it binds to
laminin and fibronectin. In vitro studies showed that treatment
with gp43-purified protein is able to reduce Paracoccidioides
adhesion, showing that this protein is one of the mediators
of fungus adhesion to host epithelial cells and internalization
(Vicentini et al., 1994; Hanna et al., 2000). This interaction also
occurs with macrophages cells. Silenced strains for gp43 are
less adherent or internalized by activated macrophages (Almeida
et al., 1998; Torres et al., 2013).

A 32 kDa hydrolase (PbHAD32) was found in Paracoccidioides
spp. cell wall extracts from mycelial and yeast forms and is able
to bind to laminin, fibronectin, and fibrinogen and act as an
adhesin in the initial stage of Paracoccidioides spp. adhesion. An
increase of PbHAD32 is observed during the transition from
conidia to yeast or mycelial form (González et al., 2005, 2008a;
Hernández et al., 2012). Hernández et al. (2010) using antisense
RNA (aRNA) technology performed PbHAD32 silencing and the
knockdown of this gene resulted in morphological changes in
the yeast form. Furthermore, a decrease of the adherence of
both yeast and conidia forms to epithelial lung cells (A549) in
a knockdown strain (PbHAD32 aRNA) was observed. In vivo
analysis demonstrated a significant increase in the survival rate
of mice challenged with Paracoccidioides PbHAD32 aRNA when
compared to the wild type Paracoccidioides (Hernández et al.,
2010, 2012).

The 30 kDa protein was first identified in a Paracoccidioides
proteomic study before and after mice infection, where a
significant increase of its expression was observed after mice
infection and was also characterized as a laminin ligand
(Andreotti et al., 2005). Later, da Silva et al. (2013) sequenced
this protein and identified it as belonging to the 14-3-3 protein
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family characterized as small multifunctional proteins present in
eukaryotic cells. During infection, Pb14-3-3 accumulates in the
P. brasiliensis cell walls. The treatment with recombinant protein,
promotes the inhibition of P. brasiliensis adhesion to epithelial
lung cells, demonstrating its importance in this process (da Silva
et al., 2013).

In a study conducted by Donofrio et al. (2009) to identify
fibronectin-binding adhesins from P. brasiliensis, a 54 kDa
protein was highly expressed in different strains when cultured
in a medium supplemented with blood. The sequencing of
this protein identified it as enolase (PbEno), a well-known
glycolytic enzyme. Later, it was found that surface expressed
PbEno also binds to laminin, type I and IV collagen, plasminogen,
and fibrinogen (Nogueira et al., 2010; Marcos et al., 2012).
The participation in the adhesion process was evaluated using
anti-54 kDa polyclonal antibodies in which the inhibition of
P. brasiliensis adhesion to epithelial lung cells in vitro was
demonstrated (Nogueira et al., 2010). In addition, during
infection and when cultivated with sheep blood, an increase
of PbEno in cell walls was observed, demonstrating its role in
fungus–host interaction (Marcos et al., 2012). The ability of
enolase to interact with plasminogen has already been related
to the pathogen’s invasive capacity. It is mediated by lysine-
dependent binding, degrading ECM, and promoting invasion
(Ghosh and Jacobs-Lorena, 2011). Sequence analysis showed that
PbEno has similar internal motif responsible for plasminogen
binding in Paracoccidioides spp. and the recombinant PbEno
binding to plasminogen in the presence of a lysine, suggesting
that PbEno also plays a role in the invasion process (Marcos et al.,
2012).

Triosephosphate isomerase (TPI) is a glycolytic enzyme
described as a protein that is able to react with the sera of PCM
patients. The localization of TPI was detected in the cytoplasm
and in the cell wall of the yeast phase of P. brasiliensis (da
Fonseca et al., 2001). Pereira et al. (2007) produced an anti-TPI
polyclonal antibody and used it to treat P. brasiliensis and observe
the influence of this treatment in the interaction of the fungi
with epithelial cells. After the treatment, they observed that the
antibody inhibited the adhesion of P. brasiliensis. These findings
showed the involvement of the TPI in the cell adhesion acting as
an adhesin.

Malate synthase is an enzyme from the glyoxylate pathway and
in Paracoccidioides spp. is also required in allantoin degradation
pathway (Zambuzzi-Carvalho et al., 2009). However, besides
the metabolic role, PbMLS is found in fungus cell walls and is
characterized as an adhesin able to bind to fibronectin as well
as types I and IV collagen (da Silva Neto et al., 2009). In a
study of intermolecular interactions of PbMLS, de Oliveira et al.
(2013) found that PbMLS present in cell walls interact with other
adhesins such as enolase and TPI and this interaction could
enhance the adhesion ability.

GAPDH (glyceraldehyde 3-phosphate dehydrogenase) is a
well-known protein from the glycolysis pathway, however, this
protein can also act as virulence factor for some pathogens,
including fungal pathogens (Karkowska-Kuleta and Kozik, 2014;
Marcos et al., 2014). In P. brasiliensis, GAPDH expression is
increased during the mycelium-yeast transition and was found

in cell wall and extracellular vesicles (Barbosa et al., 2004; Longo
et al., 2014). Paracoccidioides spp. GAPDH is able to bind to host
ECM components laminin, fibronectin, and type I collagen. This
molecule seems to play a role in the initial steps of infection
once in vitro assays demonstrated the inhibition of adhesion
and infection of P. lutzii to pneumocytes after fungus incubation
with anti-GAPDH antibody or cell treatment with recombinant
GAPDH (Barbosa et al., 2006).

Another protein involved in the process of cell adhesion and
tissue invasion/dissemination is the fructose 1,6 bisphosphate
aldolase (ALD) protein that interacts with plasminogen.
The antibodies anti-ALD and the recombinant protein were
able to reduce the interaction between macrophages and
Paracoccidioides (Chaves et al., 2015).

Recently, de Oliveira et al. (2015) evaluated gene expression
of differents adhesins as 14-3-3, ENO, gp43, MLS, GAPDH, and
TPI after mice infection by P. brasiliensis and P. lutzii. They
could observed that 14-3-3 and enolase were the most expressed
adhesins and also that P. brasiliensis express in higher levels
adhesins than P. lutzii. Besides this, this study demonstrated that
the virulence of its species is related to its adhesion capacity with
P. brasiliensis being more virulent than P. lutzii.

The adhesion is an universal prerequisite for pathogens to
efficiently deploy their repertoire of virulence (Krachler and
Orth, 2013). In summary, the attachment of Paracoccidioides
spp. to host cells is mediated by adhesins present at the fungal
surface and that this is a critical step in PCM, acting as an
essential virulence factor for Paracoccidioides spp. Figure 1
summarizes the affinity of each adhesin to different ECM
components: laminin, fibronectin, type I collagen, type IV
collagen, plasminogen, and fibrinogen.

Based on all that was presented in this section, what is needed
are new approaches that aim for the discovery of new molecules
or further investigation of the already known molecules. This
holds especially true for studies that evaluate strategies to block
the adhesion in order to try and discover how the fungi
modulated itself to cause the infection and how we can avoid the
infection and prevent the PCM.

MORPHOLOGICAL SWITCHING AND
PATHOGENICITY OF Paracoccidioides
spp.

Different polysaccharides, proteins, lipids, and melanin compose
the complicated structure of fungi cell walls. An incisive way
for pathogens to respond, adapt, and survive in new niches
of infection can be found in the alterations in the expression
of surface-exposed molecules under different environmental
conditions (Karkowska-Kuleta and Kozik, 2015).

The genus Paracoccidioides comprises of thermally dimorphic
fungi that grow as saprophytic mycelium at environmental
temperature (e.g., 26◦C; San-Blas, 1993). Produces infective
conidia or mycelial (M) fragment propagules that are inhaled
by the host. When the propagules reach the pulmonary alveolar
epithelium of a mammalian host (exposed to temperature higher
than 37◦C), they transform into the parasitic yeast (Y) form
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FIGURE 1 | Schematic representation of the affinity of different Paracoccidioides spp. adhesin [gp43, hydrolase (PbHAD32), 14-3-3, Enolase (ENO),
Malate synthase (MLT), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and 1,6 bisphosphate aldolase (ALD)] to different ECM components:
laminin, fibronectin, type I collagen, type IV collagen, plasminogen, and fibrinogen.

causing different clinical manifestations. This phenomenon can
also be reversibly triggered in vitro by changing the temperature
from 26 to 37◦C (San-Blas et al., 2002).

The glycoproteins and polysaccharides network that composes
the cell wall of Paracoccidioides spp., similar to many other
fungi, is important for the protection against environmental
stresses (De Groot et al., 2005) while promoting its virulence. The
morphological switch, a mechanism for allowing the pathogen
to adapt and thrive inside the host (Nemecek et al., 2006), is
obligatory for the establishment of the infection. This seems to be
related to pathogenicity, since isolates incapable of undergoing
the morphological transition are less virulent (Maresca and
Kobayashi, 2000).

The fungal cell wall synthesis is performed by glucan synthases
(Sorais et al., 2010). The phenotypic switch entails changes in
the composition of the fungal cell walls with a predominance
of β-1,3 and β-1,6-glucan and carbohydrates in mycelial form,
while in yeast form there is a prevalence of α-1,3-glucan and
chitin (Puccia et al., 2011; Free, 2013). Changes may occur in
the quantity and the spatial arrangement of these polysaccharides
(San-Blas et al., 1994). This occurs in order to ensure fungal
survival within the host (Tavares et al., 2015). α-1,3-glucan is
correlated with the level of virulence (Hogan and Klein, 1994),
hiding immunostimulatory β-glucans that could be detected by
the host phagocytic cells (Klein and Tebbets, 2007), assisting its
evasion of the host’s immune responses (Rappleye et al., 2007).

For Paracoccidioides spp. the temperature is an essential
factor involved in dimorphism and is preceded by several
molecular changes (Boyce and Andrianopoulos, 2015). This
is a characteristic shared with other dimorphic fungi such as
Histoplasma capsulatum, Blastomyces dermatitidis (Medoff et al.,

1987), Coccidioides immitis, Sporothrix schenckii, and Penicillium
marneffei (Klein and Tebbets, 2007). The growth of yeast from
the mycelium is initiated from the time of thermal change
reaching 50% of changes after 48 h from the start of the
process. The multiple developments into yeast budding occurs
after 5 days (Salazar and Restrepo, 1985; Goldman et al., 2003).
The reverse has also been reported and studies show that
48 h following the temperature change, 50–60% of the cells
showed conversion mycelium (Goldman et al., 2003; Nunes et al.,
2005).

However, in Paracoccidioides genus the conidia- or mycelium-
to-yeast transition is blocked by exposure of Paracoccidioides
spp. to female hormones, such as estrogen, via steroid-binding
proteins (Loose et al., 1983; Aristizábal et al., 1998). This gives
the PCM the peculiarity of affecting more men compared to the
number of women (Shankar et al., 2011b).

Regarding the evaluation of molecular mechanisms and gene
expression in both morphological states, several studies have
been conducted using different strategies such as expressed
sequence tags (ESTs) libraries, microarrays, analysis of genes
expressed during the stages of mycelium and yeast, as well
as those differentially expressed in transition and proteomics.
Several efforts have been made to understand the morphological
alterations, including those depending on the factors of
temperature and the presence of female hormones. There are
many studies focusing on genes that are regulated during
mycelium-to-yeast (M-Y) transition (Felipe et al., 2005; Bastos
et al., 2007; Parente et al., 2008; Muñoz et al., 2014). Although a
number of genes that govern the phase transition are known, how
these genes fit into a larger network of regulated genes remains
poorly explored (Gauthier, 2015).
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Transcriptional analysis of 6,022 assembled groups
demonstrated that the mycelial cells have a more aerobic
metabolism in comparison to the yeast phase, with greater
expression of genes of citrate cycle such as succinyl-CoA
dehydrogenase and isocitrate synthase suggesting a metabolic
shift to oxidative phosphorylation. In contrast the yeast phase
displays slanted energy metabolism for the production of
alcohol by fermentation, presenting the glyoxylate pathway
(into anaerobic metabolism) as being more active. This is
demonstrated by analysis of transcription in yeast and mycelia
which is consistent with low oxygen levels found in infected
tissue (Felipe et al., 2005).

A biochip carrying of 4,692 genes from P. brasiliensiswas used
to trace gene expression in different points of the morphological
transition (5–120 h). Among the various genes identified, some
encoding enzymes are involved in the catabolism of amino
acids, signal transduction, protein synthesis, cell wall metabolism,
genome structure, response to oxidative stress, growth control
and development (Nunes et al., 2005).

Proteomic analysis during phase conversion of P. brasiliensis
demonstrated quantitative differences correlated with
transcripts levels. The mycelia phase protein profile showed
18 overexpressed proteins involved in cell defense, energy,
and protein fate. During M-Y transition, 33 proteins were
upregulated, most of them belonging to the glycolytic pathway.
Some glycolytic enzymes such as enolase and fosfoglucomutase
begin to accumulate during the transition (M-L) and maintain
high levels in the yeast phase. It is therefore another sign of the
global reorganization of carbohydrate metabolism that occurs
during morphological change (Rezende et al., 2011).

N-linker glycans are involved in glycoprotein folding,
intracellular transport, secretion, and protection from proteolytic
degradation (Nagai et al., 1997). In Candida albicans it has been
shown to be involved in cell wall integrity as well as in the fungus–
host interaction (Mora-Montes et al., 2007). Dos Reis Almeida
et al. (2014) showed that the treatment of Paracoccidioides with
tunicamycin, responsible for blocking the N-linked glycosylation
of α-1,4 amylase, interfere in the transition for both Y-M and
M-Y, since the α-1,4 amylase is responsible for biosynthesis of
α-1,3 glucan the major cell wall glucan of the yeast form.

Phosphatidic acid and diacylglycerol produced by a
phospholipase D1 participates in the morphological transition
of C. albicans (Hube et al., 2001). A similar finding was seen
in P. brasiliensis in which up-regulation of phospholipase was
found in M-Y transition (Soares et al., 2013).

Thermal dimorphism may occur as a result of a specialized
heat shock response triggering a cellular adaptation to high
temperatures (Lambowitz et al., 1983). Matos et al. (2013)
demonstrated the involvement of HSP90 during the dimorphism
of P. brasiliensis using pharmacological approaches. HSP90 is
required for the transition from non-infective to infective forms
but not for Y-M transition. This protein is also highly transcribed
under in vitro oxidative stress. HSP90 is a chaperone that binds
and stabilizes calcineurin. It also competes with calmodulin for
the Ca2+/calmodulin docking site in calcineurin interfering with
the activation of the latter (Imai and Yahara, 2000). So, it was
suggested that HSP90 acts synergistically with calcineurin in

the control of cell differentiation (Matos et al., 2013). Other
proteins of HSP family such as HSP70, HSP80, and HSP88, were
down-regulated in mycelial cells treated with estradiol (Shankar
et al., 2011b) suggesting that this hormone impairs the favorable
expression of genes necessary for adaptation to a change of
temperature (Nicola et al., 2008).

In spite of several studies suggesting the potential role
of estradiol in dimorphism of Paracoccidioides, the exact
mechanism that leads to such genetic modulation resulting
in differences in disease rates, remains unknown (Tavares
et al., 2015). Hormones act as messenger molecules, leading
to regulation of gene expression through receptor-mediated
interactions that mediate this interaction and the subsequent
functional response to the presence of the hormone (Shankar
et al., 2011a).

In vivo studies have shown that female mice, especially at
estrus, reach a higher clearance of yeast and restraint of fungal
proliferation as compared to male mice (Aristizábal et al., 1998,
2002; Sano et al., 1999). Pinzan et al. (2010) revealed remarkable
influences of gender on experimental PCM, which could be
partly attributed to interference of female hormones on the
immune response triggered by a P. brasiliensis infection. Estradiol
promotes protective responses to this infection, IL-12, IFN-γ,
and TNF-α cytokines (Calich et al., 1998; Kashino et al., 2000)
correlated with resistance to female infection. On the contrary,
infected male produces IL-10 (Benard et al., 2001; Oliveira et al.,
2002; Romano et al., 2002) which plays an important role in
antigen specific immunosuppression of PCM (Pinzan et al.,
2010).

Shankar et al. (2011b) using microarray technology to evaluate
the P. lutzii transcriptional response to a fixed concentration
of estradiol during 9 days, revealed that the chitin synthase
1 gene (CHS) was down-regulated in response to estradiol at
earlier time points. Nunes et al. (2005) identified a positive
modulation of chitin synthases and down-regulation of chitinases
in the M–Y transition, while Bastos et al. (2007) detected two
chitinases over-expressed in the dimorphic transition. In fact,
the yeast cell wall is mainly constituted of chitin (37–48%),
compared to the mycelium form (7–18%; Kanetsuna et al.,
1969).

High levels of gene expression may occur during this process.
Hernández et al. (2011b) showed increased expression of HSP90,
AOX, and GS1 (glucan synthase-1) throughout the entire yeast
to mycelium germination and αGS (glucan synthase α) for the
opposite. The HSP90 was up regulated early in the transition
suggesting their involvement in the initial contact of the fungus
with the host and the modifications necessary to adapt within
the same. The AOX (alternative ubiquinol oxidase) gene acts
by reducing the reactive oxygen species and correlates with
metabolic activation required to obtain carbon and energy owing
to the non-phosphorylative nature of the alternative respiratory
pathway to the morphological changes (Gessler et al., 2007;
Hernández et al., 2011a). AOX is present in early stages of M-Y
transition and plays an important role in intracellular redox
balance. Furthermore, it is the only enzyme in P. brasiliensis that
is not present in its mammalian hosts therefore it is a promising
target for therapy (Martins et al., 2011).
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TNF-α is a cytokine related with anti-microbicidal activity in
IFN-γ activated macrophages stimulating NO production.
Gonzalez et al. (2004) illustrated that TNF-α activated
macrophages are capable of inhibiting the conidia to-yeast
transition in P. brasiliensis by an NO-independent pathway;
acting as a fungicidal and/or fungistatic mechanism against
P. brasiliensis conidia.

Cyclic AMP (cAMP) is the regulatory component of a
well-characterized signaling pathway implicated in a variety
of cellular processes among fungal species (Fernandes et al.,
2005). The importance of the cAMP-signaling pathway in the
control of morphological changes and pathogenicity of various
fungi has been reported (Medoff et al., 1987; Cho et al., 1992;
Borges-Walmsley and Walmsley, 2000). During morphological
transition the cAMP levels increase transiently in the early stages
(<24 h) and progressively in the subsequent stages (>120 h;
Chen et al., 2007). Moreover, the transition may be modulated
by exogenous cAMP (Paris and Duran, 1985; Chen et al., 2007),
suggesting possible involvement of cAMP in the dimorphic
transition.

Understanding how different cell types recognize both
yeast and mycelial and how each cell type is activated in
accordance with the morphology is important, however, the
likely consequences of this activation probably differ according
to cell type (e.g., in macrophage or in epithelial cell; Jacobsen
et al., 2012). Inhibitors targeting the morphological transition
from mycelium-to- yeast are an interesting choice to attempt
to control the Paracoccidioides infection. As discussed above
the change to yeast form is essential for the establishment of
infection, and thereby inhibitors of this can prevent the infection.
Table 2 summarizes the main works related to dimorphism of
Paracoccidioides spp. that focused on specific genes and proteins.

HOST CELLS MANIPULATION BY
Paracoccidioides spp.

The ability of pathogens to colonize their hosts is highly
dependent on mechanisms that may allow the pathogen to break
the physical and immunological barriers imposed by the host.
In order to avoid rapid clearance of the organism, pathogens act
quickly and effectively on adhesion to host cells.

The capacity of cells to interact with each other in an
orderly manner depends on multiple adhesive interactions
between cells and their adjacent extracellular environment,
mediated by cell adhesion molecules (Miyoshi and Takai, 2008;
Troyanovsky, 2009). These function as cell surface receptors that
can trigger physical and biochemical signals that regulate a great
numbers of functions such as cell proliferation, gene expression,
differentiation, apoptosis, and cell migration and are used as a
gateway to some pathogens (Finlay and Falkow, 1997; Guttman
and Finlay, 2009; Han et al., 2010; Voltan et al., 2013).

Many pathogenic microorganisms have the ability to induce
its internalization in epithelial cells, forcing the activation
of phagocytosis mechanism. Specific extracellular signals can
stimulate their cytoskeleton rearrangement in the contact
site with the microorganism, making cells to behave like a

“phagocyte unprofessional” (Swanson and Baer, 1995; Lim
and Gleeson, 2011), in a process that involves integrins and
the cytoskeleton (Mendes-Giannini et al., 2004; Feriotti et al.,
2013). Paracoccidioides spp. invasion affects the structure of
the cytoskeleton of pulmonary epithelial cells and keratinocytes,
interfering with morphological aspects of actin, tubulin and
cytokeratin (Mendes-Giannini et al., 2004; Peres da Silva et al.,
2011).

The capacity of fungal invasion to mammalian cells is specific
to some fungi and there is still a lacuna in the understanding
of this process (Tsarfaty et al., 2000; Wasylnka and Moore,
2002; Mendes-Giannini et al., 2004). The signaling pathways
that control the morphological changes in P. brasiliensis, as well
as the cellular signals upon interaction with the host cell are
also not well-understood. Mendes-Giannini et al. (2004) showed
that treatment with cytochalasin D and colchicine reduced the
invasion by P. brasiliensis, indicating the functional involvement
of microfilaments and microtubules in this process.

Some studies evaluated the role of adhesins in the invasion
process of Paracoccidioides and it was observed that gp43 may
also participate in the cytokeratin degradation leading to the
loss of the filamentous characteristics that can facilitate the
invasion of the host (Mendes-Giannini et al., 1990; Puccia and
Travassos, 1991; Tacco et al., 2009; Puccia et al., 2011). The 14-3-
3 adhesin is also known to have the capacity to cause structural
modifications in the host cells influencing in the polymerization
of the cytokeratin microfilaments of actin (Andreotti et al., 2005;
Mendes-Giannini et al., 2006; da Silva et al., 2013).

The Rho GTPase family of proteins is known to regulate
the dynamic organization of the cytoskeleton and membrane
traffic physiological processes such as cell proliferation, motility,
polarity, and growth (Sinha and Yang, 2008). The Rho-GTPase
is able to down-regulate genes related to chitin and glucans
biosynthesis. Rho-GTPase, FKS (β-1,3 glucan synthase), and
AGS1 (coding α-1,3 glucan synthase) were down-regulated on
Paracoccidioides estradiol samples treated. They indicate that
this hormone promotes a transcriptional modulation of the cell
wall, remodeling related genes (Shankar et al., 2011b; Tavares
et al., 2015). Rho GTPases have been extensively studied in
human fungal pathogens and have a set of interacting proteins
to orchestrate their activation in the cells (Yamochi et al., 1994).
Cdc42, a member of the Rho GTPase, was characterized as a
convergence point in the signal transduction and are involved in
multiple signaling pathways including receptor tyrosine kinases
and cytokines, heterodimeric G proteins, as well as physical and
chemical stress. In P. brasiliensis plays a role in morphology of
yeasts cells since the knockdown PbCDC42 showed decrease in
cell size and more homogenous cell growth and this provided
a higher phagocytosis and decreased virulence (Almeida et al.,
2009).

In mammalian cells, the Rho GTPases are also the center
of a complex signaling pathway that plays an important role
in adhesion. The activation of tyrosine kinase (PTK) receptors
stimulate Rho GTPase which in turn activates the Ras pathways
and MAPKs (Sinha and Yang, 2008). Monteiro da Silva et al.
(2007), showed significant inhibition of fungal invasion after pre-
treatment of epithelial cells with genistein, a specific inhibitor
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TABLE 2 | Summary of studies related to dimorphism of Paracoccidioides genus.

Condition Approach (isolate) Target Observation Reference

Mycelium-to-yeast
transition

Pharmacologycal tools – inhibition with
geldanamycin (P. brasiliensis)

Hsp90 Up-regulated Matos et al., 2013

Mycelium-to-yeast
Yeast-to-mycleium

Real-time reverse
transcription-polymerase chain reaction

Hsp90/AOX/GS1
αGS

Up-regulated
Up-regulated

Hernández et al.,
2011b

Mycelium-to-yeast
transition

Pharmacologycal tools – inhibition with
CsA, a calcineurin inhibitor cyclosporine
A (P. brasiliensis)

Calcineurin Transition to the yeast form was
blocked before the blastoconidial
budding stage

Campos et al.,
2008

Mycelium-to-yeast
transition

Transcriptional profiling and
pharmacological tools – 4-HPPD
inhibitor (P. brasiliensis)

4-hydroxyl-phenyl pyruvate
dioxygenase (4-HPPD)

Up-regulated
Inhibit growth and differentiation to the
pathogenic yeast phase

Nunes et al., 2005

Mycelium-to-yeast Pharmacologycal tools – inhibition with
benzohydroxamic acid – inhibitor of
AOX (P. brasiliensis)

AOX Delayed the M-Y transition Martins et al., 2011

Yeast-mycelium
germination and
mycelium/conidia-to-
yeast
transition

Antisense RNA technology
(P. brasiliensis)

AOX Delayed the Y-M transition Hernández et al.,
2015

Mycelium-to-yeast
transition

Transcriptional response to
17-β-estradiol treatment (P. brasiliensis)

Chitin synthase Down-regulated in response to estradiol Nunes et al., 2005

Mycelium-to-yeast
transition

1007 ESTs from a transition cDNA
library (P. lutzii)

Two chitinases Up-expressed Bastos et al., 2007

Mycelium-to-yeast
transition

Gene expression in the presence or
absence of 17-β-estradiol (P. lutzii)

Rho-GTPase components
FKS1 and AGS (coding
α-1,3-glucan synthase)

Down-regulated Shankar et al.,
2011b

Mycelium-to-yeast and
yeast-to-mycelia

Pharmacological approach – using
tunicamycin (TM)

N-glycosylation TM treatment interferes the transition in
both directions by interference in the
activity of α-1,4 amylase (involved in the
biosynthesis of α-1,3 glucan)

Dos Reis Almeida
et al., 2014

Mycelium-to-yeast Real-time (P. brasiliensis) Phospholipase (PLB) Up-regulation in mycelial cells Soares et al., 2013

of PTK located on the plasma membrane of the epithelial cells.
These results suggest that the inhibition of PTK is important
in signal transduction during early events in the adhesion and
invasion processes of P. brasiliensis in epithelial cells.

Apoptosis is a highly regulated physiological process of
cell death required for the development and homeostasis of
multicellular organisms by eliminating individual cells without
inducing an inflammatory response. The enabling or prevention
of apoptosis can be a critical step in the development of
infectious processes. The process of apoptosis is characterized
by typical changes in the symmetry of the plasma membrane,
chromatin condensation, nuclear fragmentation, DNA cleavage,
cell disintegration, and formation of apoptotic bodies (Strasser
et al., 2011).

Programmed cell death has been observed as a response to a
variety of infections and can be mediated by a variety of virulence
determinants encoded by pathogens. The modulation induced
by pathogens pathways responsible for cell death in the host
favor the elimination of cells of the immune system or avoidance
of host defense response that attempt to act in eliminating the
infection (Weinrauch and Zychlinsky, 1999).

The ability of the pathogen to induce apoptosis in phagocytes
may be an important virulence factor, since it reduces the
host’s defense mechanisms (Ashida et al., 2011). P. brasiliensis
and other fungi can induce the apoptosis of phagocytes to

acquire advantages, allowing intracellular survival in epithelial
cells (Cacere et al., 2002).

Paracoccidiodes brasiliensis induces apoptosis when it invades
epithelial cells or phagocytes, which benefits its intracellular
survival (Souto et al., 2003; Mendes-Giannini et al., 2004,
2005; Verícimo et al., 2006; Ketelut-Carneiro et al., 2015). Silva
et al. (2008), showed that P. brasiliensis induces apoptosis of
macrophages by expression of caspase-2, 3 and 8, but also found
that it induces the expression of genes that encode inhibitors
of apoptosis proteins, such as caspase-8 and Fas-L inhibitors.
Caspases-2 and 8 are responsible for the transduction of signals
for cleavage of other caspases, such as caspase-3, which leads to
apoptosis induction (Silva et al., 2008).

Paracoccidiodes brasiliensis may modulate apoptosis of
epithelial cells A549 by the expression of apoptotic molecules
such as Bcl-2, Bak, and caspase-3, confirming the inducing of
apoptosis by the fungus which can then survive and spread to
other parts of the body (Del Vecchio et al., 2009). More recently,
Silva et al. (2015), showed that the 14-3-3 and gp43 adhesins
has strong influence in this process. Campanelli et al. (2003)
demonstrated that apoptosis mediated by Fas-FasL and CTLA-
4 engagement are involved in modulating the immune response
in patients infected with PCM. Souto et al. (2003) demonstrated
in experimental PCM, a considerable increase in apoptosis in the
infection site. Cacere et al. (2002) studied the role of apoptosis
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in PCM using peripheral blood mononuclear cells of patients
with the PCM disease, noting that apoptosis induced by gp43 was
lower in controls than in peripheral blood mononuclear cells of
patients.

All of these studies demonstrated that Paracoccidioides spp.,
during its evolution, has developed mechanisms that allows the
fungi, since it is inhaled in its mycelial form, to survive in a hostile
host environment. During the interaction, using its adhesins,
Paracoccidioides spp. adheres to host ECM components and
cells, manipulates the cell cytoskeleton, invades the cytoplasmic
compartment, and can then induce the cell apoptosis, which gives
it its capacity to evade the immune system and spread within
the host organism causing systemic mycosis, as summarized in
Figure 2.

ADVANCES IN ANIMAL
EXPERIMENTATION FOR THE STUDY
OF THE PCM

The use of animals in research is essential for studies of
host–fungal interaction, pathogenesis, treatment mechanisms,
immunological aspects, or studies that imply the response of a
complex organism. It is important to consider the experimental
animal type, age, sex, and routes of inoculation (Conti-Diaz et al.,
1959; Iabuki and Montenegro, 1979; Defaveri et al., 1982). The
firsts studies described guinea-pigs (de Brito and Netto, 1963),
hamsters (Iabuki and Montenegro, 1979), and rabbits (Conti-
Diaz et al., 1959) as models to study PCM, however, most of the
animals do not develop the disease until a long time after being
infected (Linares and Friedman, 1972).

After many decades of investigation, murine animal models
are considered the gold standard for in vivo studies to simulate
the Paracoccidioides spp. infection. The establishment of a
pulmonary PCM was described in murine models using the
intratracheal route after about 30 days of infection. Antibodies
were detected 15–60 days after infection, however, were not
observed after 360 days (Defaveri et al., 1982). Intranasal route
was efficient to develop fatal acute pulmonary or chronic
pulmonary and disseminated PCM by using different inoculum
concentrations. The development of this model of infection
is useful to study treatment (fatal acute pulmonary) and to
understand immunological aspects of the disease (chronic;
Brummer et al., 1984). The dissemination occurs through a
hematogenous route and affects mainly the lungs, secondly
liver, thirdly the lymph-nodes and finally within the spleen
with the formation of granuloma (Bedoya et al., 1986). The
classification of nine different congenital strains of mice were
realized after infecting these animals using an intraperitoneally
route with P. brasiliensis. These mice were classified according
to the susceptibility to infection as very resistant, intermediate,
and sensitive. The study demonstrated that the susceptibility
to P. brasiliensis infection of the different animal strains was
not dependent on the inoculum concentration. In addition,
male mice were generally more susceptible to the infection than
females (Calich et al., 1985). In the infection of susceptible mice,
high numbers of viable yeasts in different organs were found,

however, low fungal burdenwere observed in all examined organs
of resistant animals representing the regression of the infection
(Singer-Vermes et al., 1993).

Once the infection model was established to study the
efficacy of traditional medicines, new drug candidates or drug
combinations could be evaluated (Lefler et al., 1985; McEwen
et al., 1985; Restrepo et al., 1992), as well as to study immunologic
aspects (Defaveri et al., 1989; Calich and Kashino, 1998; Kashino
et al., 2000; Pinto et al., 2006).

Because of the advances in medical technology the number
of animals in the research increased and many acts and laws
were created in different countries to control ethical issues and to
minimize the pain to animals during experimentation (Doke and
Dhawale, 2015). Since 1959, the use of animals during scientific
experiments has been a debated from which the three Rs theory
was created. This theory proposes for the Reduction of the
number of animals used in an experiment, the Refinement of the
experiment to animal welfare, and the Replacement of animals by
using alternative methodologies (Russell and Burch, 1959).

The use of alternative models like tissues or cell cultures,
computer or mathematical analysis (in silico testing), and
imaging/analyzing techniques are suggested to obtain
preliminary data before the start of in vivo assays. However, in
many cases the research requires information about the response
of one whole and complex organism (Balls, 2002; Arora et al.,
2011; Doke and Dhawale, 2015).

Considering the need for animal experimentation and
the restriction in the use of mammalian animals because of
ethical issues, researchers developed alternative animal models.
Invertebrates represent a good alternative for in vivo assays,
because of their short life cycle, small size, evolutionary
conservation of the innate immune response between
invertebrates and mammals, and low cost. A large number
of animals can be used per experiment and until now, no ethical
problems limit their use (Mylonakis et al., 2007; Lionakis, 2011;
Wilson-Sanders, 2011; Glavis-Bloom et al., 2012; Arvanitis et al.,
2013).

Different invertebrate model have been used to study fungal
diseases. The fly, Drosophila melanogaster (Alarco et al., 2004;
Lionakis and Kontoyiannis, 2012), the nematode, Caenorhabditis
elegans (Pukkila-Worley et al., 2009, 2011; Muhammed et al.,
2012); the insect Galleria mellonella (Fuchs et al., 2010; Mesa-
Arango et al., 2013; Firacative et al., 2014; Maurer et al., 2015)
were reported as being used to study fungal virulence factors and
to identify novel antifungal compounds.

The use of alternative animal models to study PCM was firstly
described by Thomaz et al. (2013). In this study, G. mellonella
model was used to study P. lutzii that was able to kill larvae at 25
and 37◦C.Moreover, melanization and granuloma-like structures
were observed. Recently, because of the new classification of two
distinct species (P. brasiliensis and P. lutzii), a comparative study
of the virulence was developed. Both species cause a hemocyte
decrease and kill G. mellonella in a similar way. However, P. lutzii
has higher adhesion ability to hemocytes and this could be
attributed to the higher expression of the gp43 gene (Scorzoni
et al., 2015). To study the importance of the adhesins for
the virulence of P. brasiliensis and P. lutzii, the treatment of
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FIGURE 2 | Schematic representation of the steps, processes, and molecules involved in the Paracoccidioides-host interaction.

Paracoccidioides spp. with antibodies to block two adhesins (14-
3-3 and enolase) caused a decrease in the death of the larvae (de
Oliveira et al., 2015).

Despite the evolutionary distance between invertebrate and
mammalian models, recent works describe the correlation
response to infection between these models (Brennan et al.,
2002; Brunke et al., 2015; Desalermos et al., 2015). Considering
these evidences, invertebrate models are a good alternative for
preliminary studies to investigate Paracoccidioides spp. virulence,
as well as new treatment and immunological aspects of the
infection.

FACING THE PROBLEM: THROUGH THE
DIAGNOSTIC TO TREATMENT OF PCM

The diagnosis of PCM is based on clinical and laboratory
findings. In the acute or juvenile form of the disease, the skin
lesions are often present. On the other hand, in the chronic
or adult form, the lung is mainly affected. In this case, it
is indicated by a radiography of the organ, which exhibits a
pattern that resembles a butterfly wing, characterized by bilateral

and symmetrical reticulonodular infiltrate in the two upper
thirds of the lungs (Barreto et al., 2012). In the laboratory,
the direct microscopic examination of the material collected
from lesions or tissue is made to observe the fungi, especially
its typical multiple budding aspect, as well as the culture to
observe the thermal dimorphism, but the fungus has slow
growth (Mendes-Giannini and Fusco-Almeida, 2013; Benard and
Mendes-Giannini, 2014).

Furthermore, the diagnosis of disease can be made using
serological methods. The counter-immunoelectrophoresis (CID)
and double immunodiffusion (IDD) are the reactions most used
in reference centers (Vidal et al., 2014). In these cases, the 43 kDa
glycoprotein (gp43), which is secreted during the infection, is
the main antigen detected. The values of titers correlate with the
severity of the disease and efficacy of the treatments. In addition,
the negativity or stabilization at dilution 1:2 or less indicates the
disease cure (Abreu e Silva et al., 2013). However, differences
in the antigenic composition, probably related to phylogenetic
peculiarities of the two species, should be considered in the
diagnosis of PCM (Batista et al., 2010).

When detection by microscopy and serology fail, an
alternative can be the use of molecular techniques as polymerase
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chain reaction (PCR) can be used (due to its greater sensitivity).
Several studies have been designed with specific primers to target
the genes of the Paracoccidioides species. For example, primers
for the gp43 antigen were developed to identify P. brasiliensis
DNA (Gomes et al., 2000). A set of primers for PbITS1s and
PbITS3a genes was also used for the detection of the fungus by
PCR (Buitrago et al., 2009). Another study reported the use of
the primer OPG18, which generates two specific DNA fragments
(0.72 and 0.83 kb) for P. brasiliensis (San-Blas et al., 2005). Finally,
Motoyama et al. (2000) showed that the use of fungal universal
primers to target 5.8S and 28S rDNA genes followed by more
specific primers (OL3 and UNI-R) for PCR resulted in good
identification of Paracoccidioides spp.

Recently, Nobrega de Almeida et al. (2015) proposed the use
of MALDI TOF MS for Paracoccidioides spp. identification. In
this study, they analyzed 22 strains, belonging to the two species
of the genus. All of the strains were correctly identified. MALDI
TOFMS is an interesting tool because of its possibility to adapt to
routine laboratories and because the results achieved by this study
brings benefits in the clinical and laboratorial studies allowing for
the identifying of differences between the diseases caused by this
genus.

Besides all well-established methodologies to diagnose the
PCM, the diagnostic is not an easy subject. The observation
of the fungi in clinical specimens, and growth and reversion
to mycelium phase, is difficult in clinical labs. Because of
this, until recent times, the serological diagnosis was the most
commonly used, since molecular approaches are expensive in
countries that PCM occur. However, several recent studies in the
characterization of different isolates of Paracoccidioides spp. bring
difficulties to the serological diagnosis.

Gegembauer et al. (2014) for example, demonstrated that
serum from PCM patients infected with P. brasiliensis is not
able to recognize any antigen from the cell-free preparations
of P. lutzii, however, serum from patients infected with
P. lutzii is able to recognize both antigens from P. lutzii and
P. brasiliensis. This means that P. lutzii serum is more complex
antigenically presenting species-specific antigens and common
antigens shared with P. brasiliensis. Queiroz Júnior et al. (2014)
analyzed the protein/glycoprotein profiles of exoantigens from
two clinical isolates of P. brasiliensis and three of P. lutzii with
differences between the species observed. P. lutzii exoantigens
were different from each other showing high species-specific
antigens variability, while P. brasiliensis isolates exoantigens
present similar protein profiles.

Because of these difficulties in the identification and diagnostic
of the PCM with incidence of false negative results (da Silva
et al., 2015), this is a public health problem as the number of
notifications of the disease can be higher than the numbers we
currently have today. In addition, the correct identification of the
infection can lead to an efficient treatment. Because of this, new
efforts in the identification of serological markers is extremely
necessary and one of the great challenge in the study of PCM.

Many drugs are useful in treating PCM. Ribeiro in 1940
suggested the initial treatment with sulfapyridine. Later, Lacaz,
and Sampaio proposed the use of amphotericin B in 1958.
Barbosa e Vasconcelos, in 1973, recommended the use of a

combination of trimethoprim-sulfamethoxazole. Around 1979,
Negroni suggested the use of ketoconazole. Restrepo, in 1987
suggested itraconazole and more recently, in 2007, the use of
voriconazole was suggested by Queiroz-Telles (Cavalcante et al.,
2014).

The treatment depends on the severity of the disease,
type of antifungal agent, and the time of use. Despite the
limited information on studies with different therapies, the
itraconazole therapy is the first choice to control the mild to
moderate clinical forms. Since 1987, many groups developed
studies with azoles antifungals, which showed a reduction in
the symptoms, and that they arrested the progression of the
PCM (Negroni et al., 1987a,b,c; Restrepo et al., 1987). However,
itraconazole therapy is not easily available in most of the endemic
regions. Consequently, the therapy consisting of a trimethoprim-
sulfamethoxazole combination (daily for 12 months for mild
cases and for 24 months in moderate clinical infections) is a
useful option. On the other hand, for severe cases, amphotericin
B therapy is the best choice. In case of PCM of the central
nervous system, the treatment should be with fluconazole or
voriconazole therapy daily for 3–6 months, with a maintenance
dose daily for 6–12 months. This is because both have a good
penetration through the blood brain barrier (Marques, 2012).
Today, ketoconazole is little used for the treatment of this
infection because of its severe side effects (hepatotoxicity, loss of
libido, inhibition of cortisol production etc; Ferreira, 2009).

The possibility of triazole derivatives interacting with several
drugs has to be kept in mind such as antihistamines, antacids, H2
receptor blockers, barbiturates, cyclosporine, diphenylhydantoin,
digoxin, cisapride, and rifampicin, among others, as well as the
well-known side effects and toxicity (nephrotoxicity, myocardial
toxicity, myelotoxicity, etc.) related to amphotericin B which will
sometimes require discontinuation of therapy (Ferreira, 2009).
In the last 30 years there have been efforts at improving AmB
preparation, however, the high costs, neglected clinical data, and
alternative antifungal therapies have led to the use of this therapy
as a second-line therapy (Laniado-Laborín and Cabrales-Vargas,
2009).

More recently, Rodríguez-Brito et al. (2010) evaluated the
susceptibility of P. brasiliensis (both at their mycelial and yeast
phase), to caspofungin, an antifungal drug of the echinocandin
class. For the yeast phase, they found that caspofungin was able
to inhibit the growth in 20–65%, while in the mycelial, 75–82%.
This variation in their susceptibility is related to the amount of
cell wall β-1,3-glucan, that the caspofungin target, which is more
pronounced in the mycelial than in the yeast phase of the fungi.
These results are interesting and new studies in the use of this
drug in the treatment of PCM should be made, especially in
studies using combinations of caspofungin with other antifungal
drugs to increase their inhibitory capacity.

There are not many reports in the literature about resistant
yeasts of Paracoccidioides spp. to antifungal therapies. There
is a study however, that relates clinical and in vitro resistance
to ketoconazole and trimethoprim-sulfamethoxazole. In this
study, they have found that patients infected with P. lutzii
had good responses to trimethoprim-sulfamethoxazole, while
those infected with P. brasiliensis relapsed with the same
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FIGURE 3 | Time line based on studies that brings development and new insights on treatment and active biomolecules against PCM.

drug administration (Hahn et al., 2003). In a different way,
another study verified that the melanization process decreased
susceptibility to antifungal agents, particularly amphotericin B,
what can lead to resistance (da Silva et al., 2006).

Due to these facts, new drugs that are safer, more effective,
cheaper and with shorter periods of therapy, seem warranted for
the treatment of PCM. In this sense, many groups have been
developing new alternatives treatment.

One trend is the study of natural and semi-synthetic
compounds with great biological activity. In 1989 there began
the evaluation of the antifungal activity of Ajoene, a compound
derived from ethanolic garlic extracts. These inhibited the
growth of P. brasiliensis by affecting the integrity of the fungal
cytoplasmic membrane (San-Blas et al., 1989). The same authors
discussed the possible involvement of ajoene on the sulphydryl
metabolism of P. brasiliensis, inhibiting the effect on the yeast
cells but not on the mycelial cultures (San-Blas et al., 1993).
Alterations was observed in phospholipid, fatty acid proportions,
phosphatidylcholine, and phosphatidylethanolamine in both
phases and reduced saturated fatty acids in the yeast phase, with
a corresponding increase in the unsaturated components (San-
Blas et al., 1997). Two studies evaluated the antifungal effect
of the ajoene in murine models were published; one showing a
significant reduction in the levels of antibodies at the 10th week
of treatment (Maluf et al., 2008). The other showed a positive
additive effect when ajoene therapy was used in association with
antifungal drugs (sulfametoxazol/trimethoprim) and a protective
proinflammatory immune response (Thomaz et al., 2008).

Martins et al. (2009) showed that Paracoccidioides spp. isolates
were susceptible to curcumin, a compound produced by the
rhizome of Curcuma long, and which presented more inhibition
effect than the antifungal agent, fluconazole. Johann et al. (2010a)
found that the extract from Schinus terebinthifolius presented
strong antifungal activity against P. brasiliensis isolates. Another
study from the same authors showed that two compound isolates
from the extract of Schinus terebinthifolius, schinol, and a new

biphenyl compound, had antifungal activity against P. brasiliensis
isolates. Schinol presented a synergistic effect when combined
with Itraconazole (Johann et al., 2010b).

The 6-quinolinyl and quinolinyl N-oxide chalcones,
specifically those named 4c and 4e, presented strong activity
against P. brasiliensis. Histopathological analysis and a
progression score of the disease in mice showed that the 4c
compound was able to control inflammation and resolved the
infection with better results than treatment with Itraconazole
and 4e, while avoiding granuloma formation and preservation of
lung tissue (de Sá et al., 2015).

Gullo et al. (2012) evaluated natural and semi-synthetics
compounds such as maytenin and pristimerin and observed
excellent minimum inhibitory concentration against different
isolates of P. brasiliensis. In the same way, de Paula et al.
(2014) evaluated the antifungal activity of the Alkyl gallates,
which presented important biological activity reported by the
literature, against different fungi species, including different
isolates of P. brasiliensis and P. lutzii. They observed that these
molecules presented important relations between the structure
and activity, and that the decyl gallate have special activity against
Paracoccidioides species.

Clinical and experimental data indicate that cell-mediated
immunity plays a central role in host defenses against infection
by P. brasiliensis, whereas high levels of specific antibodies and
polyclonal activation of B cells are associated with more severe
forms of disease (Cano et al., 1998).

The gp43 contains epitopes capable of producing a cellular
immune response in guinea pigs (Rodrigues and Travassos, 1994)
and human patients (Saraiva et al., 1996). The sensitivity of the
immune response in mice to gp43 occurs by proliferation of CD4
+ Th1 (Travassos et al., 1995). These epitopes stimulate CD4 +
Th1 lymphocytes, which produce interferon (IFN-γ), which has
the function of stimulating the formation of granulomas that may
contain yeasts (Brummer et al., 1988). However, the contribution
of each subtype of T cell in the immune response of the host
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depends on the genetic patterns and an immunity with a balance
of CD4/CD8 regulating the secretion of cytokines of the Th1 and
Th2 type, which correlates with resistance of the host to infection
by P. brasiliensis (Chiarella et al., 2007).

A 43 kDa glycoprotein (gp43) has 416 amino acids, where a
specific stretch of 15 amino acids designated as P10, is recognized
by T lymphocytes in mice and humans. The protective effect of
P10 is related to inducing an immune response of Th1 dependent
IFN-γ- dependent on isogenic mice (Taborda et al., 1998).

Isogenic mouse strains immunized with P10, developed lung
infection 200 times less intense than the unimmunized animals
(Taborda et al., 1998). Iwai et al. (2003) using TEPITOPE software
verified the probability of caucasian HLA-DR recognizing
different peptides. They verified that P10, a promiscuous peptide,
was an important vaccine candidate for use in humans (Iwai et al.,
2003). This peptide could be associated with drugs commonly
used for the treatment of PCMand presented an additive effect in
the experimental model using BALB/c mice. This demonstrates
the capacity of peptide P10 to be useful for reducing the
treatment time of this mycosis (Marques et al., 2006). Besides
this, Magalhães et al. (2012) demonstrated the potential use of
primed dendritic cells (DCs) with P10 as a vaccine that can
protect the host against the development of PCM or treating a
well-established disease.

According to studies developed in the last years, innate
immune system and DCs play an important role in the resolution
of Paracoccidoides spp. and other dimorphic fungal infections
(Thind et al., 2015). DCs play a crucial role in the detection
of pathogens, trigger an initial response of the host, as well
as instruction to the adaptive immune response. It is also
known that DCs play an important role in the induction of
effector T cells that P. brasiliensis infection control and has been
shown that P. brasiliensis induces regulatory DCs in susceptible
mice. This, in turn, promotes IL-10 production and contributes
to the infection susceptibility (Ferreira et al., 2007). Recently,
Dos Santos et al. (2011) demonstrated that P. brasiliensis
infection stimulates migration of DC and, bone marrow-derived
DC, when stimulated by P. brasiliensis, migrate to the lymph
nodes and activate a T-cell response. These studies open up
new perspectives since the understanding of the regulation
of the DC migration allow for the development of tools to
efficiently activated a T-cell response aiding in the control of
PCM.

The latest research about alternative therapies presented the
immunization in murine models with rPb27, a recombinant
protein of P. brasiliensis, showing its protective effect against the
PCM and its important ability to prevent pulmonary fibrosis
(Reis et al., 2008; Fernandes et al., 2011a,b; Morais et al.,
2015).

The Figure 3 we present a time line based on studies that
bring development and new insights into the treatment and use
of active biomolecules against PCM.

The treatment of mycosis is a great challenge for science, and
in the PCM, this is not different. The problem is even more
challenging because since 2006, no antifungal was approved. Of
the drugs available today, many cannot be orally administered,
have high toxicity, display cases of resistance, and present drug
interactions. Thus, the development of new antifungal therapies
has become an increasingly challenging problem mainly because
of their growing resistance. This issue leads to a search for new
antimicrobial agents that have different mechanisms to effectively
combat infections and that do not contribute to the resistance
of the pathogens that may complicate any therapy (Krachler and
Orth, 2013).

CONCLUSION REMARKS

The advances in PCM studies bring us a better knowledge of
how the interaction with the host was constructed during its
evolution enabling the fungi to evade from host human immune
system and remain in the organisms causing a mycosis with a
high incidence in Latin America. This disease is a great public
health issue that, with agricultural expansion, has an increasing
occurrence area that may affect many more people in the future.
This expansion is an alarming problem since the detection of the
disease is difficult depending on the isolate, the patient, and the
fact that the treatment of the PCM is difficult given the limited
arsenal available against it.

The studies we present in this review are evidence of a great
effort in the search for knowledge of the PCM and its etiologic
agents, P. brasiliensis and P. lutzii, in the last years. The details
of the Paracoccidioides-host interaction, the advances in the use
of animal models to study the disease, and the discovery of
new treatment methods and anti-Paracoccidioides agents, reveal
a promising future in combating this disease.
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