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Carbon-fixation is a critical process in severely oligotrophic Antarctic Dry Valley (DV) soils
and may represent the major source of carbon in these arid environments. However,
rates of C-fixation in DVs are currently unknown and the microorganisms responsible
for these activities unidentified. In this study, C-fixation rates measured in the bulk arid
soils (<5% moisture) ranged from below detection limits to ~12 nmol C/cc/h. Rates
in ephemerally wet soils ranged from ~20 to 750 nmol C/cc/h, equating to turnover
rates of ~7-140 days, with lower rates in stream-associated soils as compared to
lake-associated soils. Sequencing of the large subunit of RuBisCO (cbbL) in these soils
identified green-type sequences dominated by the 1B cyanobacterial phylotype in both
arid and wet soils including the RNA fraction of the wet soil. Red-type cbblL genes were
dominated by 1C actinobacterial phylotypes in arid soils, with wetted soils containing
nearly equal proportions of 1C (actinobacterial and proteobacterial signatures) and 1D
(algal) phylotypes. Complementary 16S rRNA and 18S rRNA gene sequencing also
revealed distinct differences in community structure between biotopes. This study is the
first of its kind to examine C-fixation rates in DV soils and the microorganisms potentially
responsible for these activities.

Keywords: CO, fixation, Antarctic soils, primary production, Dry Valleys, microbial communities

INTRODUCTION

The McMurdo Dry Valleys (DV) of Antarctica represents one of the coldest, driest and most
oligotrophic desert systems on Earth (Cary et al., 2010). Due to the lack of higher trophic levels,
microorganisms dominate the arid DV soils (Cary et al.,, 2010), and as a result, community
dynamics and ecological function are independent of other biological processes and are most likely
directly coupled to the chemical and physical environment. This ecosystem therefore provides an
extraordinary opportunity to examine metabolic adaptations that allow communities to function
in extreme environments.

With the recent discovery of high microbial cell concentrations (5 x 10° to 4 x 108 g
wet weight™!) and microbial diversity comparable to that of temperate soils(Cowan et al.,
2002; Smith et al., 2006; Niederberger et al., 2008; Cary et al., 2010), there is great interest in
resolving the sources, controls and turnover of carbon in these severely oligotrophic DV soils
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(Burkins et al., 2000, 2001; Barrett et al., 2005, 2006b, 2007;
Elberling et al., 2006; Hopkins et al., 2006b, 2009; Cary et al,,
2010; Feng et al., 2010). Soil organic carbon (SOC) concentrations
in the bulk arid DV soils do not typically exceed 1.0 mg g~ 1,
with concentrations being at least an order of magnitude higher
in soils associated with ephemerally wetted lake and stream
systems (Parsons et al., 2004; Barrett et al., 2006a; Elberling et al.,
2006; Hopkins et al., 2006b, 2009; Ball et al., 2009; Cary et al,,
2010; Feng et al., 2010). Wetted soils form in the DV during
the summer months when temperatures become warm enough
to melt lake ice edges and the surfaces of glaciers resulting in
the formation of moats around the edges of lakes/ponds and
short-lived (4-12 weeks) melt-water streams. Collectively, these
form important hydrological links between glaciers and lakes
(McKnight et al., 1999, 2007; Takacs-Vesbach et al., 2010). The
wetted soils associated with these systems are well-documented
hotspots of biogeochemical cycling and can contain dense
microbial mat communities that bind the top 1-2 cm of soil
together (Runkel et al., 1998; McKnight et al., 1999, 2004, 2007;
Maurice et al., 2002; Gooseff et al., 2003). Mat communities in
these ephemerally wet soils are typically cyanobacterial-, or moss-
dominated and exhibit extremely patchy distribution (McKnight
et al., 2004; Adams et al., 2006; Takacs-Vesbach et al., 2010).
These communities survive the winter months in a desiccated
state and, in some cases, are re-activated through hydration
by summer melt-waters and over multiple wetting events can
form large concentrations of responsive biomass (Vincent and
Howard-Williams, 1986; McKnight et al., 1999).

In contrast to the high productivity wetted soils, SOC in
bulk arid DV soils is hypothesized to originate from three
major sources; (1) legacy deposits of ancient lake sediments,
(2) allochthonous inputs from high productivity sites via wind
transportation and (3) in situ CO,-fixation. As supported by
laboratory-based studies, SOC turnover in DV soils has proven
to be surprisingly rapid given the conditions, in the range of
decades to ~150 years (Burkins et al., 2001; Barrett et al., 2006b;
Elberling et al., 2006; Hopkins et al., 2009; Tiao et al., 2012). It
therefore seems unlikely that legacy deposits have survived to the
present day, and if so, may only represent a minor or recalcitrant
fraction of current SOC pools with more contemporary sources
of C sustaining C-cycling in DV soils (Hopkins et al., 2006b; Feng
etal., 2010).

Aeolian transport of mat detritus from high productivity sites
has also been hypothesized to be an important source of organic
C to bulk arid DV soils (Elberling et al., 2006) and a proven
facilitator of soil respiration (Hopkins et al., 2006a). However,
aeolian transport has been estimated to be an insignificant
method of carbon delivery (0.01-7 g C m~2 year™!) and may
only be relevant to regions in close proximity to lake systems
(Lancaster, 2002; Barrett et al., 2006b). Independent studies
have also shown that the natural stable isotopic ('*C and °N)
abundances of soil organic matter (SOM) differ between high and
low productivity sites, with SOC isotopic signatures from remote
locations (i.e., at large distance from wet sources and at higher
elevation) resembling endolithic sources, and sites closer to high
productivity sites and at lower elevation resembling lacustrine
signatures (Burkins et al., 2000, 2001; Hopkins et al., 2009).

Most recently, through the use of both gas chromatography/mass
spectrometry and nuclear magnetic resonance spectroscopy,
Feng et al. (2010) have shown that certain SOM compounds
differ between bulk arid soils and microbial mats associated
with a nearby lake, suggesting either a fast turnover of lake
derived material in nearby arid soils or insignificant aeolian
distribution (Feng et al., 2010). In situ CO,-fixation (primary
productivity) has therefore been hypothesized to be the most
consistent source of C, appearing to make the largest contribution
to SOC and replenishing C stocks in DV soils (Burkins et al.,
2000, 2001; Hopkins et al., 2009). However, C-fixation rates
and the microorganisms responsible for these activities in DV
soils remains largely unknown with a recent DNA-based study
(Chan et al.,, 2013) of DV biotopes indicating that autotrophic
functionalities are present in the endemic biota encompassing
members of the Cyanobacteria, Archaea, Actinobacteria, and
Proteobacteria.

The most common CO,-fixation pathway for chemo- and
phototrophs is the reductive pentose phosphate/Calvin-Benson-
Bassham (CBB) cycle. Ribulose-bisphosphate carboxylase
(RuBisCO; EC 4.1.1.39) is a key enzyme responsible for the
fixation of CO; in this pathway (Tourova and Spiridonova, 2009)
and exists as two major forms, I and II, that share ~25-30%
amino acid similarity. Form I RuBisCO has eight large subunits
(encoded by the c¢bbL gene) and eight small subunits (encoded
by the cbbS gene). Based on phylogenetic analyses the large
subunit can be further divided into two independent ‘green’
and ‘red’ types as defined by amino acid sequence identities.
The green-type has two variants: IA occurring in several
proteobacteria and IB occurring in plants, green algae, and
cyanobacteria. The red-type also has two variants: IC, specific
to a- and B-proteobacteria and ID to non-green algae (Alfreider
et al., 2009; Tourova and Spiridonova, 2009). Form II RuBisCO
consists of two large subunits encoded by the cbbM gene (Shively
et al., 1998). The cbbL and cbbM genes are routinely used as
molecular markers for the identification of autotrophs in natural
microbial communities (Watson and Tabita, 1997; Giri et al.,
2004; van der Wielen, 2006; Alfreider et al., 2009; Videmsek et al.,
2009), due to sequence conservation, its essential function in
C-fixation and the large number of RuBisCO gene sequences
in public databases. However, whilst RuBisCO sequences do
provide valuable phylogenetic insight into the identity of C-fixers,
RuBisCO taxonomic groupings do not always concur with 16S
rRNA gene phylogeny, most likely the result of horizontal gene
transfer and gene loss or duplication events (Spiridonova et al,,
2004; Tourova and Spiridonova, 2009).

C-fixation is hypothesized to be a highly important process
in DV soils, perhaps representing the major source of C
in the bulk arid soils. However, rates of C-fixation in both
arid and high productivity soils of the DV are unknown,
and the microorganisms responsible for these activities remain
unidentified. The objective of this study was therefore to:
(1) estimate rates of C-fixation, as measured by 13CO,
uptake in contrasting wet and dry DV soil habitats and (2)
identify microbial community structure and identify C-fixers via
complementation of 16S rRNA and 18S rRNA gene sequencing
with RuBisCO gene sequencing. Results from this study revealed
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distinct differences in community structure between both arid
and wetted DV soils biotopes. Moreover, rates of C-fixation
detected in both biotopes with low levels of SOC were higher
than expected. Therefore, these collective results lend further
credence to the hypothesized turnover rates of C in DV
soils.

MATERIALS AND METHODS

Site Description and Sample Collection

Sites and sampling methods are as described previously
(Niederberger et al., 2012). In short, a transect-based sampling
approach was utilized consisting of three or four sampling
points originating from site 1 defined as a “wet” zone (soils
with overlying stream, lake or pond water) extending through a
hyporheic zone containing obvious microbial mats to the final
site (i.e., site 3 or 4) situated in a typical arid DV mineral soil.
Gravimetric water content of soil samples were measured as
described previously (Niederberger et al., 2012).

Measurement of CO,-fixation Rates

CO, fixation was measured using a stable isotope enrichment
method modeled after Finzi-Hart et al. (2009). Mats were
sampled with a cut-off 5 ml plastic syringe and four 1 cm
deep cores placed in a 27 ml glass serum bottle. Serum bottles
were completely filled with water from the sampling site and
gas bubbles removed before sealing with a rubber septa and
crimp seal. A total of 10 pl of 0.233 M NaH!*CO;3 was then
added and samples incubated for 24 h at in situ conditions.
After incubation, bottles were opened and the contents poured
into 50 ml centrifuge tubes. Samples were rinsed three times by
washing with stream water, centrifuging at low speed and pouring
off the supernatant, and then dried at 60°C. Samples were then
homogenized in a mortar and pestle, weighed into aluminum foil
cups and folded into small pellets using forceps. N and C content
and stable isotope mass ratio (d®N, and d'3C) were determined
at the UC Davis Stable Isotope Facility Davis (Davis, CA 95616,
USA). Values were corrected using internal standards and CO;
fixation rates calculated as detailed previously (Montoya et al.,
1996).

Nucleic Acid Isolation, cDNA Synthesis
from mRNA, and Polymerase Chain

Reaction (PCR)

Nucleic acid (DNA and RNA) isolation, cDNA synthesis
and confirmation of DNA removal in RNA extracts and
DNase treated extracts undertaken as described previously
(Niederberger et al., 2012). RuBisCO form I cbbL green- and
red-type genes were PCR amplified utilizing respective primer
pairs RubIgF:RubIgR and RubIrF:RubIrR corresponding to
positions 571-1382 and 196-1016 of the cbbL gene as outlined
by Spiridonova et al. (2004). Commonly utilized primer pair,
cbbL595F:cbbL1387R (Elsaied and Naganuma, 2001; Giri et al.,
2004), was also tested to amplify the form I cbbL green-
type gene; however, non-specific banding was observed within

electrophoretic profiles (results not shown). The RuBisCO from
II cbbM gene was PCR amplified utilizing a nested approach with
primer pairs RullF1:RullR3 and RullF2:RullR2 as outlined by
Spiridonova et al. (2004).

Gene Cloning and Restriction Fragment
Length Polymorphism (RFLP) Analyses

RuBisCO PCR amplicons were excised from ethidium stained
2% agarose TAE gels and purified using the GenElute™ gel
extraction kit (SIGMA) and ligated (pCR4-TOPO vector;
Invitrogen), transformed (One Shot TOP10 chemically
competent Escherichia coli; Invitrogen) and clones selected
as described previously (Niederberger et al., 2012). Inserts from
~30 clones of each 96 clone library were sequenced and the
remainder of the clones screened by RFLP using restriction
enzymes (Haelll and Rsal; New England BioLabs) as commonly
used for partial length c¢bbL amplicons (Alfreider et al., 2009).
Due to a high frequency of Haelll cut sites and the subsequent
small DNA fragments (~ <50 bp), visualization and comparison
between samples within agarose gels was difficult (also confirmed
through simulated in silico restriction endonucluease digestion of
pre-sequenced clones). Therefore, RELP was performed with Rsal
alone and representative clones of each RFLP type sequenced.
cbbL amino-acid sequences are deposited as accession numbers
KP836071 to KP836108 in the NCBI GenBank database cbbL
gene sequences and 16S rRNA and 18S rRNA gene sequences are
deposited in the Knowledge Network for Biocomplexity' under
identifier ID: knb.756.1.

cbbL Gene Analyses

Sequences were aligned using ClustalW (Thompson et al., 1994)
and a PHYLIP output file used to construct a Jukes-Cantor
corrected distance matrix by the DNADIST program of PHYLIP?
and operational taxonomic units (OTUs) defined and rarefaction
analyses undertaken using the DOTUR program (Schloss and
Handelsman, 2005). Representative cbbL gene sequences (90%
sequence similarity) were aligned and translated within the
Geneious software environment’ and aligned to translated cbbL
genes obtained from the NCBI GenBank database. The alignment
was manually checked and a phylogenetic tree constructed using
the Jukes-Cantor genetic distance model and the Neighbor-
joining method with 1000 bootstrap re-samplings.

Amplicon Pyrosequencing, Processing,

and Analyses

Tag-encoded FLX (Roche) amplicon pyrosequencing of the V1-
V3 regions of the 16S and 18S rRNA gene was performed on
DNA extracts by Research and Testing Laboratories (Lubbock,
TX, USA®). Resulting data were then processed using the
Quantitative Insights Into Microbial Ecology (QIIME) toolkit
(Caporaso et al, 2010). In brief, rRNA gene sequences were

'https://knb.ecoinformatics.org

2www.phylip.com

3www.geneious.com

4www.researchandtesting.com
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quality trimmed (QIIME defaults; >200 bp), split according to
barcoded tags and sequences binned into operational taxonomic
units (OTU) at 97 and 95% for bacteria and eukaryotes,
respectively. Following quality trimming, a total of 7640 and
7163 partial length (>200 bp) 16S rRNA gene sequences
were obtained for ML1-2 and ML1-4 respectively. Bacterial
taxonomic assignment was undertaken on all quality trimmed
16S rRNA gene sequences using the online RDP classifier tool
(at 80 confidence level) and associated RDP database (Cole
et al., 2009). Eukaryotic taxonomic assignment was undertaken
on a representative sequence from each OTU using the Basic
Local Alignment Search Tool (BLAST) within the QIIME toolkit
against the SILVA 18S rRNA gene database (Pruesse et al.,
2007) as obtained from mothur (Schloss et al., 2009). Bacterial
16S rRNA gene rarefaction analyses and library comparisons
(LIBCOMPARE) were performed using the tools within the
online RDP pyrosequencing pipeline (Cole et al., 2009) and 18S
rRNA gene rarefaction within mothur (Schloss et al., 2009).16S
rRNA gene and 18S rRNA gene sequences are deposited
within the Knowledge Network for Biocomplexity as stated
above.

RESULTS

A total of four transects in the vicinity of Miers Valley
were utilized as part of the study, including both lake-
and stream-associated sites (Supplementary Table S1).
Carbon-fixation rates were higher at lake-associated soils
(2.15-751.29 nmol C/cc/h) as compared to stream systems
(below detection limits to 15.83 nmol C/cc/h). Differences
in C-fixation rates between dry and wetted soils was only
apparent for lacustrine soils with rates for arid soils (<5%
water content) ranging from undetected to 11.83 nmol
Clcc/h as compared to wetted soils (12.52-751.29 nmol
Clcc/h).

The MLL1 transect on the northern shore of Miers Lake was
chosen as a representative transect for the in-depth identification
of C-fixers and microbial communities between contrasting wet
(ML1-2, ~23% moisture content) and dry soils (ML1-4, ~2%
moisture content). This transect was chosen due to the noticeable
differences in C-fixation rates between wetted and arid soils, and
because the N;-fixing microorganisms and nitrogenase activities
of the soils have previously been described (Niederberger et al.,
2012).

Both form I green- and red-type cbbL genes were detected
in total DNA extracts from wet (ML1-2) and dry (MLI-
4) sites (detection of c¢bbL genes by PCR is summarized in
Supplementary Table S1). Amplicons of the green-type cbbL gene
were faintly detectable by electrophoresis from cDNA in ML1-2,
with an additional 10 thermocycles providing sufficient amplicon
concentrations for cloning purposes; however, the green-type
cbbL gene was not detected in ¢cDNA from the arid (ML1-4)
site. The red-type c¢bbL gene was not detected in cDNA from
either ML1-2 or MLI1-4. The form II cbbM gene was also
detectable in DNA extracts; but not in the corresponding cDNA
preparations. Because the expressed chbM gene was not detected

in these samples, cbbL was utilized to identify the autotrophic
microorganisms inhabiting these sites.

The total number of cbbL gene clones from each library
ranged between 61 and 80 (Supplementary Table S1) with the
exception of ML1-2 c¢DNA. This library contained only 44
sequences due to the presence of large number (49) of sequences
closely related to 23S rRNA genes (results not shown), attributed
to non-specific PCR amplification. Although low numbers of
cbbL clones were sequenced, rarefaction (90%) analyses indicate
that, for all samples, the green-type sequences were well-
represented whilst red-type sequences were under-represented
(Supplementary Information: Supplementary Figure S1).

For both the wet and dry samples, 100% of the green
type cbbL phylotypes grouped within the 1B variant of
cyanobacterial-related phylotypes (Figure 1), i.e., the green-type
1A variant was not detected. Diversity levels were similar for
all sample types, 7, 6, and 7 OTUs for ML1-2, ML1-2 cDNA,
and ML1-4, respectively and the majority of the sequences
were most closely related to clones from the water column of
Lake Bonney in the DV (Figure 1). Unexpectedly, the red-type
clone libraries also contained 1B variant green-types (Figure 2).
However, these 1B variant sequences were not added to the green-
type phylogenetic tree as the red-type primers amplify a different
region of the green-type cbbL gene than targeted by the green-
type primers. In contrast to the green-type library, the wet and
the dry samples differed considerably in the red-type library. For
the dry ML1-4 soil, the red-type library was dominated by 1C
variant phylotypes related to the actinobacteria (76%, Figure 2),
with the remainder related to the proteobacterial 1C variant clade
while the actinobacterial and proteobacterial 1C variants made up
only 23 and 20% of the total phylotypes detected in the wet ML1-
2 soil and 1D algal signatures were numerically dominant in this
sample (32%, Figure 2).

Diversity plateaus within 16S rRNA gene based rarefaction
plots indicate sufficient representation (Supplementary
Information: Supplementary Figure S2), with a lower total
diversity level for the arid ML1-4 site. Taxonomic affiliations of
the 16S rRNA sequences are presented in Figure 3. Noticeable
differences between the wet (ML1-2) and arid (ML1-4)
sites include higher concentrations of cyanobacteria and
alphaproteobacteria for ML1-2 (i.e., 47 and 14%, respectively
and 7 and 4% for ML14), and higher concentrations of
Bacteroidetes and gammaproteobacteria for ML1-4 (55 and 7%,
respectively vs. 7 and 2% for ML1-2). Various significant (as
supported by e-scores) differences in taxonomic representation
were observed between the wet and dry sites using the online
RDP LIBCOMPARE tool at an 80% confidence level. The most
significant (<1E~!2) are listed in Supplementary Table S2 and
include the presence of Gillisia in dry ML1-4 soil (~27% of
total Bacteroidetes) and the absence of this genus in wet ML1-2
soil, a high contribution (~59%) of Streptophyta in the total
cyanobacteria detected in the wet ML1-2 soil with this genus
being unobserved in the arid ML1-4 site. The Gpl group of
cyanobacteria were also well-represented in the wet ML1-2
soil (~26% of total detected cyanobacteria) with less than 1%
representation in dry ML1-4 soil, and interestingly, the majority
(~91%) of the cyanobacteria detected in the dry ML1-4 soil

Frontiers in Microbiology | www.frontiersin.org

December 2015 | Volume 6 | Article 1347


http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

Niederberger et al.

Primary Production: Dry Valley Soils

Nitrobacter hamburgensis X14 (YP_571759)
Nitrobacter winog /i (AAD41022)

pha C91 (YP_747036)

Thi ja K12 (ZP_05499559)

1A

Thiobacillus denitrificans ATCC 25259 (YP_316382)

990 Thloalkaliion

Sp. HL-EbGRY7 (YP_002515259)

europaea ATCC 19718 (1082879)

Halothic
Synechococcus sp. JA-2-3B'a(2-13) (YP_478774)

€2 (YP_003262812)

oy

PCC 6301 (YP_170840)

Thermos,

BP-1 (NP_682296)

785

76.3

OTU7 - ML1-2 (10)
99.81 OTU1 - ML1-2 cDNA (9); ML1-2 (40)
OTU12-ML1-4 (1)

64.9| Lake Bonney water column clone T2ELB6-IAB-DNA-006 (GU132902)

Lake Bonney water column clone T2EB13-IAB-DNA-032 (GU132922)
OTUS - ML1-2 cDNA (10); ML1-2 (4); ML1-4 (27)

OTU11-ML1-4(2)

91.2

Lake Bonney water column clone T2EB13-IAB-DNA-048 (GU132920)
Lake Bonney water column clone T2ELB18-IAB-DNA-065 (GU132904)
Leptolyngbya laminosa ETS-08 (FM955229)

OTU2 - ML1-2 cDNA (11); ML1-2 (1); ML1-4 (1)

OTU13-ML1-4 (1)

Leptolyngbya sp. PCC 73110 (AB075914)

F ium persicinum CCMP638 (AB075919)

Cyanothece sp. PCC 7425 (YP_002484107) 1B

Uncultured organism 0ze05L52 (AB505111)
51.9 OTU9 -ML1-2(2)

Anabaena circinalis CENA190 (FJ830542)
Tolypothrix sp. CCMP1185 (AB075923)

Nostoc sp. PCC 7120 (NP_485564)

91.9 — OTU3 - ML1-2 cDNA (3); ML1-2 (20)

0TUS -ML1-2 (3)
wnr Nostoc sp. PCC 7906 (AB075918)

67.5

9.5 77.9  Anabaena sp. WH School st. isolate' (ABO75905)
— OTU10 - ML1-4 (24)
. OTU4 - ML1-2 cDNA (9); ML1-4 (5)

sp. XPORK27C (EF565340)

0.03

FIGURE 1 | Neighbor joining tree showing the phylogenetic relationships of translated green-type cbbL sequences as based on 127 amino-acid
residues. The tree was constructed using the Jukes-Cantor distance model. Sinorhizobium meliloti 1021 (NP_436731) was used as an out-group and has been
removed from the tree. Bootstrap supports are indicated as percentages (>50%) of 1000 replicates.

OTU6 - ML1-2 cDNA (2)
Acaryochloris marina MBIC11017 (YP_001516120)

were related to the GpIV group, with this group only making up
6% of wet-associated cyanobacterial signatures. Although only
minor components of the dry ML1-4 soil (<1%), members of
the Deinococcus-Thermus group were not detected in the wet
ML1-2 soil.

A total of 14,642 and 2,958 quality trimmed 18S rRNA gene
sequences were obtained for ML1-2 and ML1-4 respectively.
Rarefaction analyses at 90% sequence cut-off, indicate sufficient
sampling for both ML1-2 and ML1-4 with higher diversity
levels observed at the dry ML1-4 site (Supplementary Figure S3).
Phylogenetic analyses indicate that wetted ML1-2 soil was almost
completely dominated (>99%) by Virdiplantae, with 99.8% of
these sequences most closely related to the moss Ephemerum
(Figure 3). For the dry soil, a diverse assemblage of eukaryotes
was observed including members of various phyla (Figure 3).

DISCUSSION AND CONCLUSION

Dry Valley soils are severely carbon-limited and can be
considered some of the most oligotrophic on the planet (Cary
et al,, 2010). Current literature has highlighted the importance
of C-fixation as a means of consistent replenishment of organic

carbon in DV soils (Parsons et al., 2004; Hopkins et al., 2009;
Feng et al., 2010); however, the extent that DV soil microbial
communities undertake C-fixation or their reliance on external
sources of C remains unknown. This study therefore provides
important insights into this fundamental biogeochemical cycle
and the understanding of carbon transformations in DV soils by
focusing on communities found in the Miers Valley. Autotrophy
is an energetically expensive process, which is usually slow and
under strict control (Alfreider et al., 2009), especially in limited
conditions such as soils of the DV. Therefore, complementary
stable isotope- and mRNA-based methods were applied to
resolve activities and to identify the associated active microbial
component.

As expected, carbon fixation rates were typically higher wetter
soils as compared to arid soils (>5% moisture) with rates being
considerably lower in stream systems as compared to the lake-
associated soils. This is most likely caused by the transient nature
of the streams making the establishment of permanent microbial
communities difficult as evidenced by the formation of thick
mats on lake edges but not in the Miers Valley streams. The
transects involved in this study have also been described in a
previous study investigating nitrogen-fixation activities in these
soils (Niederberger et al., 2012).
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FIGURE 2 | Neighbor joining tree showing the phylogenetic relationships of translated red-type cbbL sequences as based on 120 amino-acid
residues. The tree was constructed using the Jukes-Cantor distance model and green-type sequences was used as an out-group. Bootstrap supports are
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Few studies have reported carbon-fixation rates in the DV,
with rates in the bulk arid soils being considered extremely
low, ranging from 1 to 20 g C m~2 year~! (Friedmann, 1993;
Novis et al., 2007; Cary et al., 2010). Rates of carbon addition
to DV soils are also hypothesized to be less than or equal to
respiration rates (~ <6.5 g C m~2 year~!) otherwise soil carbon
reservoirs would already be depleted (Burkins et al., 2001). In
this study, C turnover rates in the ephemerally wet soils ranged
between ~7 and 140 days and equated to micrograms of C-fixed
per cubic centimeter on a daily basis in both wetted and arid
biotopes. These rates fall within the same range (3.22 ug C L™}
day~!) as recently measured in the water column of Lake Bonney
situated in the Antarctic DV (Kong et al.,, 2012a). C-fixation
rates reported in this study are well-above previous estimates;
however, it is important to note that rates were measured
during the high productivity summer months associated with
warmer temperatures, wetter soils and a longer photo-period,
and focused specifically on microbial mats. Therefore, at least
during the Polar summer period, autotrophs play a major role
in carbon replenishment of DV soils and further corroborate
suggestions that as opposed to the reliance of carbon from high
productivity soils from aeolian redistribution (Burkins et al.,
2000, 2001; Barrett et al., 2006¢; Hopkins et al., 2009; Feng et al.,
2010), in situ CO,-fixation may be the largest contributor to
SOC in DV soils (Burkins et al.,, 2000, 2001; Hopkins et al.,
2009).

The cyanobacterial-related form 1B c¢bbL gene was the only
phylotype detected in the green-type sequences for both the
wet and dry soils, with the 1A proteobacterial-related phylotype
remaining undetected. These cyanobacterial sequences from both
the wet and dry sites were related to sequences from Lake Bonney
in Taylor Valley, a larger and more northern Valley than the
Miers (Kong et al., 2012b). The 1B green-type phylotype was the
only ¢bbL gene expressed in the wet sample, indicating that at
the time of sampling, cyanobacteria were the major contributors
to the observed C-fixation there. Although C-fixation rates
were measureable in some arid soil samples, expression of
RuBisCO genes was not seen, and therefore, the members directly
responsible for these activities remain unidentified. Expression
of red-type sequences was also not seen in the wet or dry
soils, but the presence of the genes in DNA isolated from
these sites shows that there were other organism present besides
caynobacteria that have the potential to fix carbon. The wet soil
contained both 1C- (both actinobacterial and proteobacterial)
and 1D-related sequences, with algal (1D) dominance (32%).
Similarly 1D-related sequences have been proven to dominate
the water column of Lake Bonney in the DV (Kong et al,
2012b). Proteobacterial red-type signatures in the wetted soil
were most closely related to nitrifying bacteria, a group of
chemolithoautotrophs that oxidize either ammonia or nitrite and
are typically present in areas of high ammonia concentrations.
While we did not attempt to measure nitrification in this study,
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FIGURE 3 | Bacterial and Eukaryotic phylogeny of 16S rRNA and 18S
rRNA genes from wet (ML1-2) and dry (ML1-4) Miers Lake soil sites.

it is known to occur in DV soils, with highest rates at wetted
lake margins (Hopkins et al., 2006a), suggesting that some of
the measured C-fixation could be based on chemical- rather
light-based energy. Red-type gene sequences were not shared
between wet and dry soils; the bulk arid soil was dominated
by actinobacterial-related 1C signatures (76%) with algal (1D)
phylotypes absent. 16S rRNA gene results did not reflect the
difference in actinobacterial cbbL gene presence in dry vs. wet
soils, with a similar percentage of actinobacterial signatures in
both biotopes as was also noted in a previous study comparing
high and low DV productivity soils (Niederberger et al., 2008)
with 18S rRNA gene sequencing indicating an almost complete
dominance of wetted soils by Virdiplantae. Babalola et al. (2009)
investigate and describe in depth, Actinobacteria in DV soils with
various molecular-based studies proving that both Actinobacteria
and Bacteroidetes are commonly dominant members of arid

REFERENCES

Adams, B. ]., Bardgett, R. D., Ayres, E., Wall, D. H,, Aislabie, J., Bamforth, S., et al.
(2006). Diversity and distribution of Victoria Land biota. Soil Biol. Biochem. 38,
3003-3018. doi: 10.1016/j.s0ilbi0.2006.04.030

Alfreider, A., Vogt, C., Geiger-Kaiser, M., and Psenner, R. (2009). Distribution
and diversity of autotrophic bacteria in groundwater systems based on the
analysis of RubisCO genotypes. Syst. Appl. Microbiol. 32, 140-150. doi:
10.1016/j.syapm.2008.11.005

Babalola, O. O., Kirby, B. M., Le Roes-Hill, M., Cook, A. E., Cary, S. C,
Burton, S. G, et al. (2009). Phylogenetic analysis of actinobacterial

soils including the DV (Fierer et al., 2007; Niederberger et al.,
2008; Pointing et al., 2009; Lee et al., 2012; Tiao et al., 2012;
Bottos et al., 2014); therefore, it is not surprising that this group
of organisms have C-fixation capabilities thereby permitting
their subsistence in these severely oligotrophic soils. In fact, an
important study by Chan et al. (2013) has reported the presence
of RuBisCo signatures in Antarctic DV habitats specifically form
I from cyanobacteria and forms II and III indicated as being
from Archaea, Actinobacteria, and Proteobacteria. These results
also suggest a significant capability in chemoautotrophy in these
habitats.

The rates of C-fixation in both arid and wetted DV
soils reported in this study coupled with documented low
levels of SOC (Parsons et al, 2004; Barrett et al., 2006a;
Elberling et al., 2006; Hopkins et al., 2006b, 2009; Ball et al,,
2009; Cary et al, 2010; Feng et al., 2010) lends further
credence to the hypothesized high turnover rates of C in
DV soils. Therefore, at least in the summer months, in situ
autotrophic C-fixation can replenish soil SOC levels with arid
soils most likely dominated by actinobacterial C-fixers with a
more diverse microbial community in wetted soils dominated
by cyanobacterial-related activity. The recent discovery of
genetically localized communities between valleys also indicates
that these communities maybe endemic and that inter-valley
aeolian-based redistribution maybe negligible (Lee et al., 2012).
If this holds true, communities in these distinct biotopes cannot
rely on consistent external sources of carbon and must be
adapted to exist under these extreme dry and nutrient-limited
conditions.

ACKNOWLEDGMENTS

We would like to thank the staff at the United States Antarctic
Program, as well as Antarctica New Zealand, and the Foundation
for Research in Science and Technology, New Zealand, for
logistical support while in the field. This research was supported
by National Science Foundation Grants ANT 0739633 (to DC),
ANT 0739640 (to EC), and ANT 0739648 and 1246292 (to SC).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2015.01347

populations  associated ~with  Antarctic
Environ.  Microbiol. 11, 566-576. doi:
809.x

Ball, B. A, Virginia, R. A., Barrett, J. E,, Parsons, A. N,, and Wall, D. H.
(2009). Interactions between physical and biotic factors influence CO,
flux in Antarctic dry valley soils. Soil Biol. Biochem. 41, 1510-1517. doi:
10.1016/j.50ilbi0.2009.04.011

Barrett, J. E., Virginia, R. A., Hopkins, D. W., Aislabie, J., Bargagli, R,
Bockheim, J. G., et al. (2006a). Terrestrial ecosystem processes of Victoria
Land, Antarctica. Soil Biol. Biochem. 38, 3019-3034. doi: 10.1016/j.s0ilbio.2006.
04.041

Dry Valley mineral soils.
10.1111/j.1462-2920.2008.01

Frontiers in Microbiology | www.frontiersin.org

December 2015 | Volume 6 | Article 1347


http://journal.frontiersin.org/article/10.3389/fmicb.2015.01347
http://journal.frontiersin.org/article/10.3389/fmicb.2015.01347
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

Niederberger et al.

Primary Production: Dry Valley Soils

Barrett, J. E., Virginia, R. A, Parsons, A. N., and Wall, D. H. (2006b). Soil carbon
turnover in the McMurdo Dry Valleys, Antarctica. Soil Biol. Biochem. 38,
3065-3082. doi: 10.1016/j.s0ilbi0.2006.03.025

Barrett, J. E., Virginia, R. A.,, Wall, D. H.,, Cary, S. C., Adams, B. J., Hacker,
A. L, et al. (2006c¢). Co-variation in soil biodiversity and biogeochemistry in
northern and southern Victoria Land, Antarctica. Antarct. Sci. 18, 535-548. doi:
10.1017/50954102006000587

Barrett, J. E., Virginia, R. A,, Lyons, W. B., McKnight, D. M., Priscu, J. C., Doran,
P. T, et al. (2007). Biogeochemical stoichiometry of Antarctic Dry Valley
ecosystems. J. Geophys. Res. 112, 1-12.

Barrett, J. E., Virginia, R. A., Parsons, A. N., and Wall, D. H. (2005). Potential soil
organic matter turnover in taylor valley, Antarctica. Arctic Antarct. Alp. Res. 37,
108-117. doi: 10.1657/1523-0430(2005)037[0108:PSOMTI]2.0.CO;2

Bottos, E., Woo, A., Zawar-Reza, P., Pointing, S., and Cary, S. (2014).
Airborne bacterial populations above desert soils of the McMurdo Dry
Valleys, Antarctica. Microb. Ecol. 67, 120-128. doi: 10.1007/s00248-013-
0296-y

Burkins, B. M., Virginia, A. R., and Wall, H. D. (2001). Organic carbon cycling in
Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Glob.
Change Biol. 7, 113-125. doi: 10.1046/j.1365-2486.2001.00393.x

Burkins, M. B., Virginia, R. A., Chamberlain, C. P., and Wall, D. H. (2000). Origin
and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81,
2377-2391. doi: 10.1890/0012-9658(2000)081[2377:0ADOS0]2.0.CO;2

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman,
F. D, Costello, E. K., et al. (2010). QIIME allows analysis of high-
throughput community sequencing data. Nat. Methods 7, 335-336. doi:
10.1038/nmeth.f.303

Cary, S. C., McDonald, I. R., Barrett, J. E., and Cowan, D. A. (2010). On the rocks:
the microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol. 8, 129-138.
doi: 10.1038/nrmicro2281

Chan, Y., Van Nostrand, J. D., Zhou, J., Pointing, S. B., and Farrell, R. L. (2013).
Functional ecology of an Antarctic Dry Valley. Proc. Natl. Acad. Sci. U.S.A. 110,
8990-8995. doi: 10.1073/pnas.1300643110

Cole, J. R, Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., et al. (2009).
The ribosomal database project: improved alignments and new tools for rRNA
analysis. Nucleic Acids Res. 37, D141-D145. doi: 10.1093/nar/gkn879

Cowan, D., Russell, N., Mamais, A., and Sheppard, D. (2002). Antarctic Dry
Valley mineral soils contain unexpectedly high levels of microbial biomass.
Extremophiles 6, 431-436. doi: 10.1007/s00792-002-0276-5

Elberling, B., Gregorich, E. G., Hopkins, D. W., Sparrow, A. D., Novis, P.,
and Greenfield, L. G. (2006). Distribution and dynamics of soil organic
matter in an Antarctic dry valley. Soil Biol. Biochem. 38, 3095-3106. doi:
10.1016/j.50ilbi0.2005.12.011

Elsaied, H., and Naganuma, T. (2001). Phylogenetic diversity of ribulose-
1,5-Bisphosphate  Carboxylase/Oxygenase large-subunit  genes  from
deep-sea microorganisms. Appl. Environ. Microbiol. 67, 1751-1765. doi:
10.1128/AEM.67.4.1751-1765.2001

Feng, X., Simpson, A. J., Gregorich, E. G., Elberling, B., Hopkins, D. W., Sparrow,
A. D, et al. (2010). Chemical characterization of microbial-dominated soil
organic matter in the Garwood Valley, Antarctica. Geochim. Cosmochim. Acta
74, 6485-6498. doi: 10.1016/j.gca.2010.08.019

Fierer, N., Breitbart, M., Nulton, J., Salamon, P., Lozupone, C., Jones, R,, et al.
(2007). Metagenomic and small-subunit rRNA analyses reveal the genetic
diversity of bacteria archaea, fungi, and viruses in soil. Appl. Environ. Microbiol.
73, 7059-7066. doi: 10.1128/AEM.00358-07

Finzi-Hart, J. A., Pett-Ridge, J., Weber, P. K,, Popa, R., Fallon, S. J,, and
Gunderson, T. (2009). Fixation and fate of C and N in the cyanobacterium
Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc.
Natl. Acad. Sci. U.S.A. 106, 6345-6350. doi: 10.1073/pnas.0810547106

Friedmann, E. I. (ed.) (1993). Antarctic Microbiology. New York, NY: Wiley &
Sons, Inc.

Giri, B. J., Bano, N., and Hollibaugh, J. T. (2004). Distribution of RuBisCO
genotypes along a redox gradient in mono lake, California. Appl. Environ.
Microbiol. 70, 3443-3448. doi: 10.1128/ AEM.70.6.3443-3448.2004

Gooseff, M. N., McKnight, D. M., Runkel, R. L., and Vaughn, B. H. (2003).
Determining long time-scale hyporheic zone flow paths in Antarctic streams.
Hydrol. Process. 17, 1691-1710. doi: 10.1002/hyp.1210

Hopkins, D. W., Sparrow, A. D., Elberling, B., Gregorich, E. G., Novis, P. M.,
Greenfield, L. G., et al. (2006a). Carbon, nitrogen and temperature controls on
microbial activity in soils from an Antarctic dry valley. Soil Biol. Biochem. 38,
3130-3140. doi: 10.1016/j.s0ilbio.2006.01.012

Hopkins, D. W., Sparrow, A. D., Novis, P. M., Gregorich, E. G., Elberling, B.,
and Greenfield, L. G. (2006b). Controls on the distribution of productivity and
organic resources in Antarctic dry valley soils. Proc. R. Soc. B 273, 2687-2695.
doi: 10.1098/rspb.2006.3595

Hopkins, D. W., Sparrow, A. D., Gregorich, E. G., Elberling, B., Novis, P., Fraser, F.,
et al. (2009). Isotopic evidence for the provenance and turnover of organic
carbon by soil microorganisms in the Antarctic dry valleys. Environ. Microbiol.
11, 597-608. doi: 10.1111/j.1462-2920.2008.01830.x

Kong, W., Dolhi, J. M., Chiuchiolo, A., Priscu, J., and Morgan-Kiss, R. M. (2012a).
Evidence of form II RubisCO (cbbM) in a perennially ice-covered Antarctic
lake. FEMS Microbiol. Ecol. 82, 491-500. doi: 10.1111/j.1574-6941.2012.
01431.x

Kong, W., Ream, D. C,, Priscu, J. C., and Morgan-Kiss, R. M. (2012b). Diversity
and expression of RubisCO genes in a perennially ice-covered Antarctic lake
during the polar night transition. Appl. Environ. Microbiol. 78, 4358-4366. doi:
10.1128/AEM.00029-12

Lancaster, N. (2002). Flux of eolian sediment in the McMurdo Dry Valleys,
Antarctica?: a preliminary assessment in the McMurdo Antarctica?: of eolian
flux sediment Dry Valleys, assessment. Assessment 34, 318-323.

Lee, C. K., Barbier, B. A, Bottos, E. M., McDonald, I. R., and Cary, S. C. (2012).
The inter-valley soil comparative survey: the ecology of Dry Valley edaphic
microbial communities. ISME J. 6, 1046-1057. doi: 10.1038/ismej.2011.170

Maurice, P. A, MCKnight, D. M., Leff, L., Fulghum, J. E,, and Gooseff, M. N.
(2002). Direct observations of aluminosilicate weathering in the hyporheic zone
of an Antarctic Dry Valley stream. Geochim. Cosmochim. Acta 66, 1335-1357.
doi: 10.1016/S0016-7037(01)00890-0

McKnight, D. M., Niyogi, D. K., Alger, A. S., Bomblies, A., Conovitz, P. A., and Tate,
C. M. (1999). Dry valley streams in Antarctica: ecosystems waiting for water.
Bioscience 49, 985-995. doi: 10.2307/1313732

McKnight, D. M., Runkel, R. L., Tate, C. M., Duff, J. H., and Moorhead, D. L.
(2004). Inorganic N and P dynamics of Antarctic glacial meltwater streams as
controlled by hyporheic exchange and benthic autotrophic communities. J. N.
Am. Benthol. Soc. 23, 171-188.

McKnight, D. M., Tate, C. M., Andrews, E. D., Niyogi, D. K., Cozzetto, K.,
Welch, K., et al. (2007). Reactivation of a cryptobiotic stream ecosystem in the
McMurdo Dry Valleys, Antarctica: a long-term geomorphological experiment.
Geomorphology 89, 186-204. doi: 10.1016/j.geomorph.2006.07.025

Montoya, J. P., Voss, M., Kahler, P., and Capone, D. G. (1996). A simple, high
precision tracer assay for dinitrogen fixation. Appl. Environ. Microbiol. 62,
986-993.

Niederberger, T. D., McDonald, I. R, Hacker, A. L., Soo, R. M., Barrett, J. E.,
Wall, D. H., et al. (2008). Microbial community composition in soils of
Northern Victoria Land, Antarctica. Environ. Microbiol. 10, 1713-1724. doi:
10.1111/j.1462-2920.2008.01593.x

Niederberger, T. D., Sohm, J. A., Tirindelli, J., Gunderson, T., Capone, D. G.,
Carpenter, E., et al. (2012). Diverse and highly active diazotrophic assemblages
inhabit ephermally wetted soils of the Antarctic Dry Valleys. FEMS Microbiol.
Ecol. 82, 376-390. doi: 10.1111/j.1574-6941.2012.01390.x

Novis, P. M., Whitehead, D., Gregorich, E. G., Hunt, J. E.,, Sparrow, A. D,,
Hopkins, D. W, et al. (2007). Annual carbon fixation in terrestrial populations
of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven
by temperature regime. Glob. Change Biol. 13, 1224-1237. doi: 10.1111/j.1365-
2486.2007.01354.x

Parsons, A. N, Barrett, J. E., Wall, D. H., and Virginia, R. A. (2004). Soil carbon
dioxide flux in antarctic dry valley ecosystems. Ecosystems 7, 286-295. doi:
10.1007/s10021-003-0132-1

Pointing, S. B., Chan, Y., Lacap, D. C., Lau, M. C. Y., Jurgens, J. A., and Farrell, R. L.
(2009). Highly specialized microbial diversity in hyper-arid polar desert. Proc.
Natl. Acad. Sci. U.S.A. 106, 19964-19969. doi: 10.1073/pnas.0908274106

Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., et al.
(2007). SILVA: a comprehensive online resource for quality checked and aligned
ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35,
7188-7196. doi: 10.1093/nar/gkm864

Frontiers in Microbiology | www.frontiersin.org

December 2015 | Volume 6 | Article 1347


http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

Niederberger et al.

Primary Production: Dry Valley Soils

Runkel, R. L., McKnight, D. M, and Andrews, E. D. (1998). Analysis
of transient storage subject to unsteady flow: diel flow variation in an
antarctic stream. J. North Am. Benthol. Soc. 17, 143-154. doi: 10.2307/146
7958

Schloss, P. D., and Handelsman, J. (2005). Introducing DOTUR, a computer
program for defining operational taxonomic units and estimating species
richness. Appl. Environ. Microbiol. 71,1501-1506. doi: 10.1128/AEM.71.3.1501-
1506.2005

Schloss, P. D., Westcott, S. L., Ryabin, T. Hall, J. R, Hartmann, M,
Hollister, E. B, et al. (2009). Introducing mothur: open-source,
platform-independent, community-supported software for describing and
comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541.
doi: 10.1128/AEM.01541-09

Shively, J. M., van Keulen, G., and Meijer, W. G. (1998). Something from almost
nothing: carbon dioxide fixation in chemoautotrophs. Annu. Rev. Microbiol. 52,
191-230. doi: 10.1146/annurev.micro.52.1.191

Smith, J., Tow, L., Stafford, W., Cary, C., and Cowan, D. (2006). Bacterial diversity
in three different antarctic cold desert mineral soils. Microb. Ecol. 51, 413-421.
doi: 10.1007/500248-006-9022-3

Spiridonova, E. M., Berg, I. A., Kolganova, T. V., Ivanovsky, R. N., Kuznetsov,
B. B, and Tourova, T. P. (2004). An oligonucleotide primer system for
amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes
of bacteria of various taxonomic groups. Microbiology 73, 316-325. doi:
10.1023/B:MICI1.0000032243.93917.30

Takacs-Vesbach, C., Zeglin, L., Barrett, J. E, Gosseff, M. N.,, and Priscu,
J. C. (2010). “Factors promoting microbial diversity in the McMurdo Dry
Valleys, Antarctica,” in Life in Antarctic Deserts and Other Cold Environments:
Astrobiological Analogs, eds P. T. Doran, W. B. Lyons, and D. M. McKnight
(Cambridge: Cambridge University Press).

Thompson, J. D., Higgins, D. G., and Gibson, T.J. (1994). CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic
Acids Res. 22, 4673-4680. doi: 10.1093/nar/22.22.4673

Tiao, G., Lee, C. K., McDonald, I. R., Cowan, D. A., and Cary, S. C. (2012). Rapid
microbial response to the presence of an ancient relic in the Antarctic Dry
Valleys. Nat. Commun. 3:660. doi: 10.1038/ncomms1645

Tourova, T., and Spiridonova, E. (2009). Phylogeny and evolution of the ribulose
1,5-bisphosphate carboxylase/oxygenase genes in prokaryotes. Mol. Biol. 43,
713-728. doi: 10.1134/50026893309050033

van der Wielen, P. W. (2006). Diversity of ribulose-1,5-bisphosphate
carboxylase/oxygenase large-subunit genes in the MgCl;-dominated deep
hypersaline anoxic basin discovery. FEMS Microbiol. Lett. 259, 326-331. doi:
10.1111/j.1574-6968.2006.00284.x

Videmsek, U., Hagn, A., Suhadolc, M., Radl, V., Knicker, H., Schloter, M., et al.
(2009). Abundance and diversity of CO,-fixing bacteria in grassland soils close
to natural carbon dioxide springs. Microb. Ecol. 58, 1-9. doi: 10.1007/s00248-
008-9442-3

Vincent, W. F., and Howard-Williams, C. (1986). Antarctic stream ecosystems:
physiological ecology of a blue-green algal epilithon. Freshw. Biol. 16, 219-233.
doi: 10.1111/j.1365-2427.1986.tb00966.x

Watson, M. F. G., and Tabita, F. R. (1997). Microbial ribulose 1,5-
bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and
enzymological investigation. FEMS Microbiol. Lett. 146, 13-22. doi:
10.1111/§.1574-6968.1997.tb10165.x

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Niederberger, Sohm, Gunderson, Tirindelli, Capone, Carpenter
and Cary. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) or licensor are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Microbiology | www.frontiersin.org

December 2015 | Volume 6 | Article 1347


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Carbon-Fixation Rates and Associated Microbial Communities Residing in Arid and Ephemerally Wet Antarctic Dry Valley Soils
	Introduction
	Materials And Methods
	Site Description and Sample Collection
	Measurement of CO2-fixation Rates
	Nucleic Acid Isolation, cDNA Synthesis from mRNA, and Polymerase Chain Reaction (PCR)
	Gene Cloning and Restriction Fragment Length Polymorphism (RFLP) Analyses
	cbbL Gene Analyses
	Amplicon Pyrosequencing, Processing, and Analyses

	Results
	Discussion And Conclusion
	Acknowledgments
	Supplementary Material
	References


