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Pertussis is a highly contagious disease mainly caused by Bordetella pertussis. Despite
the massive use of vaccines, since the 1950s the disease has become re-emergent
in 2000 with a shift in incidence from infants to adolescents and adults. Clearly, the
efficacy of current cellular or acellular vaccines, formulated from bacteria grown in
stirred bioreactors is limited, presenting a challenge for future vaccine development. For
gaining insights into the role of B. pertussis biofilm development for host colonization
and persistence within the host, we examined the biofilm forming capacity of eight
argentinean clinical isolates recovered from 2001 to 2007. All clinical isolates showed
an enhanced potential for biofilm formation compared to the reference strain Tohama .
We further selected the clinical isolate B. pertussis 2723, exhibiting the highest biofim
biomass production, for quantitative proteomic profiling by means of two-dimensional
fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry,
which was accompanied by targeted transcriptional analysis. Results revealed an
elevated expression of several virulence factors, including adhesins involved in biofilm
development. In addition, we observed a higher expression of energy metabolism
enzymes in the clinical isolate compared to the Tohama | strain. Furthermore, all clinical
isolates carried a polymorphism in the bvgS gene. This mutation was associated
to an increased sensitivity to modulation and a faster rate of adhesion to abiotic
surfaces. Thus, the phenotypic biofilm characteristics shown by the clinical isolates
might represent an important, hitherto underestimated, adaptive strategy for host
colonization and long time persistence within the host.
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INTRODUCTION

Bordetella pertussis is a human-restricted pathogen specifically
adapted to infect the respiratory tract producing whooping
cough or pertussis. Despite the success of mass immunization
in reducing the incidence of the disease in the 1950s, after
six decades of sustained high vaccination coverage, whooping
cough remains endemic with epidemic cycles every 2-5 years
(Mooi et al., 1998, 2001, 2009, 2014; Heikkinen et al., 2007;
King et al, 2008). Although the disease has been associated
to an acute infection, mainly affecting unvaccinated infants
aged <6 months, in the last two decades, a shift in the
incidence toward vaccinated children, adolescents, and adults has
become increasingly evident (Cherry, 1999; Hellenbrand et al.,
2009; de Greeff et al,, 2010). This new scenario represents a
significant health concern, since these individuals could provide
reservoirs for B. pertussis transmission. Several reasons for the
resurgence and persistence of pertussis in the population have
been discussed, including: waning immunity over time, variation
between circulating isolates and vaccine strains as a result of
constant pathogen adaptation, and reduced efficiency of vaccine
formulations (He et al., 2003; Hewlett and Edwards, 2005; Brinig
et al.,, 2006; Bottero et al., 2007; Berbers et al., 2009; Elomaa
etal., 2009; Lavine et al., 2011). For the commercial production of
both, cellular and acellular vaccines, B. pertussis cells are grown
in stirred bioreactor operated in batch culture. This planktonic
(free-floating) mode of growth does not reflect the lifestyle of
the pathogen in its host, where bacteria must primarily adhere
to ciliated respiratory epithelial cells; in this hostile environment,
bacteria must resist mucociliary clearance and avoid the immune
system’s mechanisms, adjusting their growth state and virulence
accordingly to survive.

Numerous reports provide evidence that the ability of
pathogens to adhere and grow attached to tissues’ surfaces in
microbial communities, known as biofilm, is crucial for the
development and progression of human infections (Costerton
et al., 1999; Hall-Stoodley et al,, 2004). Generally, biofilm
development, which is often associated to an enhanced resistance
to antimicrobial agents and host defenses, is considered as an
important survival strategy for bacteria (Ito et al., 2009; Hoiby
et al., 2010; Gurung et al., 2013). In addition, the switch from
planktonic to biofilm lifestyle is accompanied by significant
changes in bacterial metabolism and phenotypic features, which
represent a unique challenge for the development of novel
prophylactic therapeutics. We as well as others have shown
the capacity of Bordetella spp. to grow adhered to abiotic and
biotic surfaces as biofilms (Irie et al, 2004; Mishra et al,
2005; Serra et al, 2008, 2011). The two-component sensory
transduction system BvgAS, which controls the expression of
nearly all known virulence factors, was reported to play an
important role in the regulation of biofilm formation for
these bacteria (Irie et al., 2004; Mishra et al., 2005). However,
the role of biofilm in B. pertussis pathogenesis is not yet
fully understood and, with a few exceptions (de Gouw et al.,
2014), this mode of growth is still largely ignored when new
antigens are selected for the formulation of novel pertussis
vaccines. Thus, the aim of this study was to compare the

biofilm formation by a well-characterized reference strain and
eight B. pertussis clinical isolates, retrieved from children with
pertussis during a 7-years period in Argentina. A comparative
analysis, employing proteomics, targeted transcriptomics, and
complementary genetic studies including the reference strain
Tohama I (which has been sub-cultured in vitro since the 1950s),
and the clinical isolate Bp2723 (selected by its high capacity
of biofilm growth) were carried out to gain insight into the
mechanisms responsible for the different behavior of sessile
cells exposed to similar external conditions. Our results support
the hypothesis that the phenotypic heterogeneity between the
reference strain and clinical isolates reflects a specific adaptation
of clinical B. pertussis to its host. Interestingly, a single nucleotide
polymorphism in the bvgS gene in all clinical isolates was found,
which might implicate an intrinsic feature of the circulating cells.
This mutation allowed a fast adaptive response of modulated cells
(vir-), incubated under non-modulating conditions, to adhere
on abiotic surfaces. Our results foster the hypothesis that these
bacteria have developed a repertoire of mechanisms that enable
adaptive response to growth adhered to surfaces, allowing these
cells to persist in unfriendly environments.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions

Bordetella pertussis Tohama I strain -isolated in Japan in the
1950s- was obtained from the Collection of Institute Pasteur,
Paris, France (CIP 8132); BPSM, a streptomycin resistant (Smr)
strain derivative from Tohama I; Bpkyosg, a mutant derivative
of BPSM in which the amino acid lysine (K) at position
705 of the BvgS has been replaced by glutamic acid (E)
(Herrou et al,, 2009); and eight B. pertussis clinical isolates
collected at La Plata Children’s Hospital (Hospital Interzonal de
Agudos Especializado en Pediatria Sor Maria Ludovica, La Plata,
Argentina) from 2001 to 2007 (Table 1) were used throughout
this study. Stock cultures were grown on Bordet-Gengou agar
(Difco Laboratories, Detroit, MI, USA) plates supplemented

TABLE 1 | Bordetella pertussis reference strain and clinical isolates used
in this study.

Strain Year of Patient age Source PtxA Fim Prn
isolation (weeks)
Bp Tohama | 1954 Japan 2 2 1
Bp2723 2001 8 Argentina 1 3 1
Bp1918 2003 12 Argentina 1 3 2
Bp2930 2004 17 Argentina 1 3 2
Bp3495 2004 Argentina 1 3 2
Bp7470 2005 Argentina 1 3 2
Bp162 2006 Argentina 1 3 2
Bp492 2006 Argentina 1 3 2
Bp892 2007 12 Argentina 1 3 2
Bpk7osE 2009 Japan 2 2 1
BPSM 1994 Tohama 2 2 1
derivative
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with 1% w/v Bactopectone (Difco) and 15% v/v defibrinated
sheep blood (Instituto Bioldgico, Ministerio de Salud, La Plata,
Argentina; BGA) for 72 h at 37°C. Colonies were cultured for
others 48 h and then inoculated into 250-mL Erlenmeyer flasks
containing 50-mL of Stainer-Scholte (SS) broth and incubated
for 24 h at 37°C on a rotatory shaker (160 rpm). The suspension
was used as inoculum for 1-L Erlenmeyer flasks containing 200-
mL of SS broth. The initial optical density at 650 nm (ODgs)
was adjusted to 0.2 and the flaks were incubated for 24 h with
agitation. Bacteria were harvested (15°C, 8000 x g, 20 min) at
exponential phase, frozen using liquid Nitrogen for 30 s and
stored for 48 h at —-80°C before being freeze-dried. To study the
growth kinetic in liquid medium, samples were collected every 2 h
and the ODgs9 was measured. Three independent experiments
were performed for each strain, averages and standard deviations
of the experimental data obtained are indicated in the figures.
Specific growth rates (ju) were obtained from curves In ODgs0 vs.
time.

Biofilm Cultures

The biofilm growth was performed as indicated previously (de
Gouw et al., 2014). Briefly, for each B. pertussis strain, a bacterial
suspension of planktonic cells (24 h of growth), adjusted to an
ODgs5p = 1.0 (1.0 x 10° CFUs/mL) was incubated with 20 g
of polypropylene beads (4.2 mm diameter and 2 mm high,
average density: 0.901 g/L, Petroken SA, Argentina) contained
in glass tubes for 4 h at 37°C under static conditions. The
cell suspension was drained and 20-mL of fresh medium were
added to each reactor (glass tubes). The tubes were incubated
for 72 h on roller drums under 60 rpm agitation. The culture
medium was replaced every 24 h by fresh broth. Before harvest,
the beads were washed three times with phosphate buffer
saline (PBS) and then used for crystal violet staining. Growth
kinetic for sessile cells of B. pertussis 2723 strain was evaluated
analyzing colony forming units (CFU) every 24 h until 120 h of
development. These experiments were performed by triplicate. In
a similar way, a semi-continuous biofilm culture was performed
to obtain samples able to be analyzed by confocal laser scanning
microscopy (CLSM). Duplicates of Bp Tohama I and Bp2723
biofilms were grown attached to glass cover slips. In a first step,
bacteria coming from a 24 h planktonic culture were incubated
during 4 h with the cover slips inside a Petri dish. Then, broth
was changed for fresh medium and incubated under agitation
(60 rpm) for 72 h. Every 24 h the medium was changed for fresh
broth. After 72 h the cover slips were carefully washed with PBS
and stained for CLSM analysis.

For proteomic studies sessile cells were cultured on
polypropylene beads contained in column bioreactors as
was previously described (Serra et al, 2008) with minor
modifications. Briefly, B. pertussis Tohama I strain or the clinical
isolate B. pertussis 2723 were grown in 200-mL SS broth for 24 h
and then used to inoculate column reactors. After 4 h of static
incubation to allow cell attachment, the suspension was drained
to remove non-adhered cells and 200-mL of fresh SS broth
were added to each column. Bioreactors were incubated with a
constant air supply (0.1 vvm) at 37°C for 72 h (mature biofilm
stage). Every 24 h the broth was replaced by fresh medium.

Afterward, polypropylene beads were washed three times with
PBS prior to harvest the cells. The biofilm was detached from
the surface by lightly agitation on PBS, subsequently, cells were
harvested (15°C, 8000 x g, 20 min) and immediately frozen in
liquid Nitrogen and stored at —80°C before being freeze-dried.

Fourier Transform Infrared Spectroscopy
(FT-IR)

For infrared analysis of biofilms each strain was grown in 6-
well plates. After 72 h incubation, the biofilms were washed
three times with distilled water and the biomass attached to the
wells were suspended in bi-distilled water, adjusting the ODg5
to 10. Samples were prepared from three independent assays by
triplicate in each case. One hundred microliters of each bacterial
suspension were transferred to an optical cell of zinc selenide
(ZnSe) and vacuum dried (3.6 kPa) to obtain transparent films
on the cell. FT-IR absorption spectra from 4,000 to 600 cm~!
were acquired with a FT-IR spectrometer (Spectrum One, Perkin
Elmer, USA) as was reported (Serra et al., 2007). Infrared analysis
was carried out as by means of OPUS 7.0 software (Bruker Optics,
USA).

Quantification of Biofilm Biomass

Biofilm biomass was quantified using the crystal violet assay
described by O’'Toole and Kolter (1998) adapted to the system.
The absorbance of the solubilized dye was measured at 590 nm
(ODsgp). Triplicates were made for each strain and t-Student’s
test was used to compare absorbance against B. pertussis Tohama
Is biofilm. Samples were considered significantly different when
p < 0.05. CLSM was used to study the architecture and
quantitative information of 72 h biofilms. An inverted confocal
microscope Carl Zeiss LSM510-Axiovert 100M (Germany) was
used as previously reported (Serra et al., 2007). Briefly, biofilms
coming from semi-continuous culture, adhered to glass cover
slips were first washed very carefully in PBS, and fixed with
4% paraformaldheyde. Then, adhered cells were rinsed in PBS,
stained for 20 min with Acridine Orange and washed three
times. In order to obtain quantitative information of mature
biofilm structure, images were analyzed by COMSTAT software
(Heydorn et al., 2000).

Preparation of Soluble Protein Fraction
Cytosolic proteins were obtained following the protocol
described by Ehling-Schulz et al. (2002) with minor
modifications. Planktonic and sessile freeze-dried bacteria
were suspended in detergent buffer containing 7 M urea, 2 M
thiourea, 4% CHAPS and 30 mM TRIS (Sigma, St. Louis, MO,
USA), cooled and then passed through a precooled French
pressure cell (SLM AMINCO) working at 140 mPa two times.
Cellular debris was harvested by centrifugation (4°C, 10000 x g,
15 min). The supernatant was transferred to ultracentrifuge tubes
(Beckman, USA) and centrifuged at 30000 x g for 40 min at
15°C. The supernatant containing cytosolic proteins was stored
in aliquots at -80°C. Protein concentration was estimated using
the 2-D Quant kit following the manufacture’s protocol (GE
Healthcare, Amersham Biosciences).
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2D-DIGE

For two-dimensional difference gel electrophoresis (2D-DIGE)
protein samples were minimally labeled as previously described
(Radwan et al., 2008) with minor modifications. CyDye DIGE™
fluorescent dyes (GE Healthcare Life Science, Munich, Germany)
were used to label 33 pg of proteins per sample using 8 nmol
dye/mg proteins. For each mode of growth three biological
replicates were used. Biofilm and planktonic samples from each
strain were labeled with Cye3 and Cye5. The internal standard
comprising a pool of equal amounts from all samples was
labeled with Cye2. Isoelectric focusing was carried out on an
IPGphor III (GE Healthcare, Amersham Biosciences) system
using 18 cm IPG Dry strips with linear pH gradients of 4-7 and
6-9 (all GE Healthcare, Amersham Biosciences). The IPG strips
were rehydrated over night with rehydration buffer [7 M urea,
2 M thiourea, 4% (w/v) CHAPS, 0.4% (w/v) DTT, 0.5% carrier
ampholytes] at room temperature. DTT 0.4% (w/v) and carrier
ampholytes 0.5% (v/v) were added to the mixed proteins samples
in detergent buffer and the final volume was adjusted to 50 pL
with rehydration buffer. Protein samples were then loaded onto
the strips via loading cups. pH 4-7 strips were focused for a
total of 36 KVh and pH 6-9 strips were focused for a total of
27 KVh. The IPG strips were reduced with 1% w/v DTT for
15 min and alkylated using 4% (w/v) iodoacetamide for 15 min in
equilibration buffer (6 M urea, 30% (v/v) glycerin, 2% (w/v) SDS)
and SDS-PAGE (12.5% T) was subsequently performed overnight
(13 mA per gel) using an Ettan Dalt Six Electrophoresis Chamber
(GE Healthcare, Amersham, Biosciences).

Imaging and Data Processing

Fluorescence images of the gels were acquired using a Typhoon
9400 scanner (GE Healthcare). Data analysis was performed
with the DeCyder software version 7.0 (GE Healthcare). Spot
detection, matching, and normalization were performed using a
standard algorithm of the software. Spot matching as well as spot
quality of proteins of interest were manually checked eliminating
false positives. To assess the reproducibility of gel replicates,
principal component analysis (PCA) was carried out employing
the DeCyder analysis module. For PCA all spots within the
ANOVA 95th confidence interval were included. Spots showing
more than threefold changes (p < 0.05) in abundance between the
strains growing as biofilm or in planktonic mode were considered
as significant differences, manually excised from silvers stained
gels (Blum et al., 1989; Miller and Gemeiner, 1992) and subjected
to mass-spectrometry for protein identification.

In-gel Trypsin Digestion and MS-Based
Protein Identification

Protein identification was carried out using a matrix-assisted
laser desorption/ionization time-of-flight (MALDI-TOF) mass
spectrometer (Bruker Daltonics, Ultraflex I) in MS and MS/MS
modes. Spot distaining, in gel digestion and sample purification
using Zip-Tipp-C18 (Millipore) pipette tips were performed as
reported previously (Blum et al.,, 1989). Samples were applied
on a disposable target plate (Bruker Daltonics, PAC target) pre-
spotted with a-cyano-4-hydroxycinnamic acid as matrix. Spectral

pre-processing and peak annotation were carried out using
FlexAnalysis 3.0 and Biotools 3.2 (Bruker Daltonics). Processed
MS and MS/MS spectra were submitted to MASCOT server
(Matrix Science) searching the database NCBInr restricting to
B. pertussis Tohama I strain. Peptide mass fingerprint (PMF)
search parameters were set for mass accuracy: <150 ppm, fixed
modification: carbamidomethylation, variable modifications:
methionine oxidation and acetylation at the protein N-terminal
end, and missed cleavages: one. Based on the measured PMF
at least one peptide was selected for MS/MS experiments.
Search parameters were identical to PMF experiments, except for
product ion tolerance (1.0 Da). A protein was considered as
identified, if the scores of database searches clearly exceeded the
algorithm’s significance threshold (p < 0.05) for PMF data and
for sequence tag ion analyses of at least one peptide.

RNA Isolation, cDNA Synthesis, and
Quantitative Real-time PCR (QRT-PCR)

Total RNA was isolated from planktonic and biofilm bacteria
using Trizol reagent (Life Technologies, Invitrogen) following
manufacturer’s instructions. The RNA was treated with DNase I
(Promega, Madison, WI, USA) to remove contaminating DNA
and cDNA synthesis was performed using hexamers primers
(Promega, Madison, WI, USA) and M-MLV retrotranscriptase
enzyme (Invitrogen, Carlsbad, CA, USA) following supplier’s
protocol. Specific primers were used to determine transcript
levels of the selected genes (Table 2). SYBR premix (Thermo
Scientific) was used for qPCR assays following manufacturer’s
instructions. Reactions were carried out on triplicate samples,
including technical duplicates. Relative mRNA expression ratios
of selected genes were normalized to the expression of 16S rRNA.
Calculations for comparison between samples were performed
using the AACT (where CT is threshold cycle) method as
described by Conover et al. (2012). In the case of differences in
primers efficiency a modification was done following the method
described by Pfaftl (2001).

DNA Sequencing and Data Analysis

The bvgS gene was sequenced for all clinical isolates used in
this study. In addition, the following genes and their promoter
regions were sequenced for clinical isolate Bp2723: fhaB, ptxS1,
fim3, prn, bsp22, berH2, vag8, brkA, and bvgA using the primers
listed in Table 2. For chromosomal PCR amplification the
procedure described by Van Loo and Mooi (2002) was employed.
Briefly, 1 pL of DNA was added to 19 nL of buffer comprising
50% Hotstar Taq Master mix kit (Qiagen), 1 pM concentration
of each primer, and 5-10% dimethyl sulfoxide. Amplification
of genes was performed in a Hybaid Omnigene incubator. The
PCR fragments were purified with QIAquick PCR purification kit
(Qiagen) and sequenced with the primers used for amplification
and internal primers (not shown). Sequence reactions were
performed with an ABI Prism Big Dye terminator reaction
Kit, and the reactions were analyzed using a 377 or 3700
ABI DNA Sequencer (Perkin-Elmer, Applied Biosystems). The
resulting sequences were searched against NCBI nucleotide or
non-redundant protein database by using BLAST tool.
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TABLE 2 | List of primers used for amplification of virulence genes, bvgA
and bvgS genes of B. pertussis reference strain and the clinical isolate Bp
2723 through quantitative RT-PCR.

Gene Primer sequence Gene Primer sequence

bvgA F: 5 AGACCGTCAGCACC pm F: 8 TGTTCCGCATGAA
TACA TGTCTIC
R: 5’GAGGTCTATCAGTTC R: 5 TGTTGGCAAGG
CACCA GTAAAGGTC

bvgS F: 5’ ATTACGTCAACCG fim2 F: 8 GCCGCAGTTCCGGA
CTACTTC TAAA
R: 5’GTTCAGGATGGACAT R: 5’CGTTTGGGTCGACT
CAGTT CGTTG

vag8 F: 5GGTTCACTGGTAG fim3 F: 5 GGTGCGGGAAGC
AGAGCAC TGTAGTTC
R: 5GTTGAGCAGGGACAC R: 5’CGTAGTGGTGGTTGA
ATTAC TGCTGT

bsp22  F: 5’GAACTCGAAAGTGCC  ompQ F: 5 CAACCAGCCTTTA
TACAC TGCCTATG
R: 5’ATGTCCATCTGTTG R: 5GTCATTCCCACGC
CGTATT CAAAC

brkA F: 5 GACGCAGGAGTTC bipA F: 5GACAGCGGTTTC
AAAAG TACCTGGA
R: 5’ TACGAAGCATAGAGG R: 5’CGCCACCTTGAA
TIGTG GTCATTCT

bcrH2 F:5'CTATGCCTGCAGAA ptxS F: 5 TGTTCCGCATG
GACC AATGTCTTC
R: 5’GAATCTGGATAGAGC R: 5GACAGCGGTTTC
GTGAG TACCTGGA

fhaB F: 5 GCCACGATTTCACG 16S F: 5 TCAGCATGTCGC
GTGCA GGTGAAT
R: 5’CAGCGTCGCGTC R: 5TGTGACGGGC
ATGCT GGTGTGTA

RESULTS

Planktonic Growth and Biofilm
Formation Capacity on Abiotic Surfaces
by B. pertussis Tohama | Strain and

Clinical Isolates

Using a collection of eight clinical isolates recovered in
Argentina from whooping cough patients and the reference strain
B. pertussis Tohama I, a comparative growth analysis under
planktonic conditions in SS broth was performed. Figure 1 shows
the growth kinetics for Tohama I strain and the clinical isolates
B. pertussis 2723 (Bp 2723), B. pertussis 892, B. pertussis 1918, and
B. pertussis 492. The four isolates are depicted as representative
for the clinical isolates, which showed similar growth behavior
(data not shown). At stationary phase the planktonic biomass of
the isolates -measured by optical density- was approximately 70%
higher than the biomass reached by B. pertussis Tohama I strain.
From batch cultures, specific growth rate () for each strain was
calculated. B. pertussis 2723, as well as the other clinical isolates,
exhibited similar specific growth rates of 0.091 & 0.003 h~! while
the pu of Tohama I strain under the same experimental conditions
was significantly lower (0.052 & 0.002 h—!). Next, we compared
the adhesion and the mature biofilm biomass of the clinical
isolates on abiotic surface. All clinical isolates showed higher

2:5 4
2 |
" ~—a—Bp Tohama |
315 —4—Bp2723
8
——Bp1918
1 =
—<—Bp892
0.5 - = Bp492
0 — —

T
0 4 10 12 14 16 18 20 22 24 26 28 42 48
t(h)

FIGURE 1 | Growth kinetics of Bordetella pertussis Tohama | strain and
four clinical isolates in Stainer-Scholte (SS) liquid medium. B. pertussis
clinical isolates and B. pertussis Tohama | strain were grown planktonically for
48 hin SS broth. The biomass of clinical isolates after 30 h of culture was
almost 70% higher than produced by the reference strain. Results are
represented as the mean of values obtained from three independent
experiments. The error bars indicate the standard deviations.

adhesion to polypropylene beads after 4 h of static incubation
(data not shown) and higher biofilm biomass production after
72 h of culture (mature biofilm) compared to the reference strain
(Figure 2). However, the final sessile biomass was different for
each isolate. The B. pertussis 2723 strain was selected for further
analysis since it exhibited fivefold more biofilm biomass as well
as 70% more biomass under planktonic conditions compared
to the reference strain Tohama I. The growth kinetics of this
clinical isolate and B. pertussis Tohama I strain growing as
biofilm were also studied. The clinical isolate Bp2723 showed
a final biomass of 2.6 x 10'° CFU/cm? while the biomass
for reference strain was 2.5 x 10° CFU/cm?. In addition, the
specific growth rate for Bp2723 was 0.033 4 0.002 h~! and for
Tohama I strain 0.028 & 0.001 h™!. Next, and to differentiate the
structure of mature biofilms produced by both Bp2723 clinical
isolate and Tohama I strain, micrograph images of biofilms were
obtained from CLSM stacks (Supplementary Figure S1). The
images were then analyzed by using COMSTAT software. The
images obtained showed characteristic biofilm architecture with
channels for both, Bp Tohama I and Bp2723. A more profound
analysis revealed that the clinical strain produced a bigger
biofilm, characterized by a maximum thickness of around the
double of that achieved by the reference strain. Five architectural
parameters calculated for the two biofilms are provided in
Table 3. These parameters show not only significant differences in
the thickness of the biofilms but also in the covered surface and
the roughness coefficient that were higher for the clinical strain
biofilm. This analysis revealed an apparent higher complexity
of the biofilm produced by Bp2723 compared to the biofilm
produced by the reference strain and confirm its enhanced
biomass production under this culture condition. To gain insight
into the nature of the biofilm developed by the clinical isolate
we employed FT-IR spectroscopy for the comparison of the
chemical composition of the biofilms developed by the reference
strain and the clinical isolate growing in similar environmental
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FIGURE 2 | Biofilm formation by B. pertussis Tohama | strain and 0.8 * ” *
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conditions. FT-IR spectroscopy, one of the most frequently used
spectroscopic techniques to compare biochemical composition
among biological samples, in association with PCA showed clear
chemical differences between the FT-IR spectra obtained from
both biofilms communities (Figure 3). Differences in biomass
composition were detected between spectral areas assigned to
protein and carbohydrates. The protein:carbohydrate ratio was
1.684 for Bp2723 and 1.142 for B. pertussis Tohama I strain,
respectively. Based on this information we decided to explore
the molecular basis for these significant phenotypic differences
between the reference strain and the clinical isolate selected.

2D-DIGE Analysis and Protein

Identification

Bordetella pertussis Tohama I strain and the clinical isolate
B. pertussis 2723 were grown in parallel as planktonic cells
for 24 h in SS medium (exponential phase) and as biofilm on
polypropylene beads for 72 h (mature stage). To investigate the
differentially expressed proteins in the reference strain and the
clinical isolate under both culture conditions, a comparative

TABLE 3 | Biometric parameters obtained from 72 h biofilms formed by
Bordetella pertussis wild type (Bp Tohama I) and the clinical isolate
B. pertussis 2723.

Quantitative parameters Bp Tohamall Bp2723

Thickness (wm) 10.33 (0.10) 14.55 (0.38)
Maximum thickness (m) 17.78 (0.005) 36.56 (0.57)
Roughness coefficient 0.18 (0.005) 0.36 (0.07)
Covered surface 0.78 (0.03) 0.94 (0.04)
Surface to biovolume ratio (wm2/pum3) 1.72 (0.008) 1.93(0.42)

The features of the biofilms were quantified using the program COMSTAT.
Parameters correspond to mean values. Standard errors are indicated.

proteomic analysis was performed. The soluble cellular protein
fraction was isolated from three replicates per strain and growth
condition, and subjected to differential 2D DIGE analysis in
two pH ranges (4-7 and 6-9) and a PCA was carried out. As
shown in Supplementary Figure S2, the statistical analysis of
each biological replicate, clearly indicates a distinct clustering of
the four groups demonstrating a high reproducibility between
the replicate samples. In addition, the analysis demonstrates that
the highest variation was found to be strain-dependent (PC1),
whereas PC2 discriminates the different growth conditions.
Representative 2D electrophoresis patterns of bacterial proteins
based on the internal standard sample for both pH ranges are
depicted in Figure 4. The global proteome analysis showed
that out of a total of 1275 spots analyzed, 65 proteins (5.1%)
were differentially expressed in B. pertussis 2723 compared
to the reference strain growing attached to surface and under
planktonic culture conditions. Forty eight differentially expressed
protein spots were selected for protein identification based on
a combination of selection criteria as published elsewhere
(Radwan et al., 2008). MALDI-ToF-MS-MS analysis resulted
in the identification of 35 different proteins and/or protein
species (Supplementary Table S1). The clinical isolate showed,
in comparison to Tohama I strain 10 up-regulated proteins
(p < 0.05) and five down-regulated proteins (p < 0.05) growing
under biofilm conditions, and 27 proteins up-regulated and
eight proteins down-regulated growing under planktonic
conditions. These differentially expressed proteins can be
assigned to five functional categories, namely metabolism-
energy production, amino acid and protein synthesis, transport,
virulence, and cellular process (Supplementary Table SI).
More specifically, within the metabolic group, four proteins

(aconitate  hydratase —acnB-,  dihydrolipoamide  succinyl
transferase component of 2-oxoglutarate dehydrogenase
complex —odhB-, citrate synthase -gltA- and enoyl-CoA
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FIGURE 4 | Representative image of a 2D gel of B. pertussis at pH 4-7 (A) and pH 6-9 (B). Circled spots correspond to at least threefold differentially
expressed cytosolic proteins in B. pertussis 2723 compared to Tohama | growing under planktonic and biofilm conditions (see Supplementary Table S1 for details).

hydratase/isomerase —acnA-), related to the energy production
were found in higher abundance in the clinical isolate under
both culture conditions. Three out of four proteins belonging
to “amino acids and protein biosynthesis” pathways were
found down regulated in the clinical isolate 2723. These
proteins correspond to enzymes involved in phenylalanine,
tyrosine, tryptophan, and lysine biosynthesis. The fourth
protein, cystathionine beta-lyase -metC-, which is related to
methionine synthesis and sulfur metabolism, was up-regulated
in B. pertussis 2723. In addition, three proteins involved in
amino acids transport [leu/ile/val (branched chain amino
acid-) ~Q7VYNI- binding protein -liv/-, amino acid- binding
periplasmic protein —~Q7VS83-, ABC transporter ATP binding
protein ~Q7VTG4-] and four proteins related to stress response
and adaptation (putative Zinc protease -Q7VVY4-, antioxidant
protein —Q7VZE7-, chaperone protein Dna] -Q7VVY3-, and
protein tex —Q45388-) were found to be up-regulated in the
clinical isolate under both culture conditions (Supplementary
Table S1). Noteworthy, four BvgAS-activated virulence factors,
BcerH2, OmpQ), Vag8, and BrkA, were found under both growth
conditions in higher abundance in the clinical isolate 2723 than
in the reference strain. One of these proteins, namely BcrH2, is
a chaperone protein member of the Type III secretion system
(T3SS). T3SS correspond to an injection system that delivers
virulence factors into the host cells changing its physiological
functions (Mattoo et al., 2004; Medhekar et al., 2009). It is
known to protrude from bacterial outer membrane of many
Gram-negative bacteria. Another BvgAS regulated protein found
to be differentially expressed in the clinical isolate is OmpQ, an
outer membrane porin protein that so far has no clear assigned
function (Finn et al., 1995). In addition, Vag8 and BrkA were
also found in higher abundance in the clinical isolate. Vag8 is
an autotransporter recently described to participate in serum
resistance and described to bind C1; and BrkA, another serum
resistance protein of B. pertussis, was reported as necessary for
efficient colonization of mice (Finn and Amsbaugh, 1998; Barnes
and Weiss, 2001; Marr et al., 2011). These latter observations were

particularly interesting since we detected four BvgAS-activated
proteins highly expressed in the clinical isolate compared to the
Tohama I strain in soluble fraction. As BvgAS-activated genes
play an essential role in biofilm development, we next studied
the expression of BvgAS regulated adhesins in both strains under
biofilm and planktonic culture conditions.

qRT-PCR for bvgAS and its Positively

Regulated Genes

qRT-PCR was performed to measure mRNA expression levels
of BvgAS-regulated genes: fhaB, fim (fim2 for Tohama I and
fim3 for Bp2723), prn, and bipA in cells grown under biofilm
and planktonic conditions. In addition vag8, brkA, bcrH2, and
ompQ genes, encoding the four proteins which showed increased
levels of expression by B. pertussis 2723 compared to Tohama
I strain in the cytosolic proteome (Supplementary Table S1), as
well as bvgS, bvgA, and ptx genes were included in the analysis.
This approach revealed a higher mRNA expression levels of
vag8, berH2, prn, and brkA in planktonic cells of the clinical
isolate compared to Tohama I strain (Figure 5A). Interestingly,
significantly higher mRNA expression levels of fhaB, fim3, ptxS1,
bipA, vag8, prn, bvgA, bsp22, and brkA, genes were found in
sessile cells of the clinical isolate compared to the reference
strain (p < 0.05; Figure 5B). The higher expression of fhaB,
prn, fim3, and bipA genes, might probably be associated with
increased biofilm formation capacity depicted by the clinical
isolate, since these genes encode adhesins reported to participate
in the development of B. pertussis mature biofilm (Serra et al.,
2011; Sugisaki et al., 2013; de Gouw et al., 2014).

Sequence Analysis of bvgA, bvgs,

Virulence Genes, and Promoters

To determine whether specific nucleotide changes within
virulence genes, or their promoter regions had occurred in
Bp2723, the respective DNA sequences and their flanking regions
were analyzed. No changes were detected when compared with

Frontiers in Microbiology | www.frontiersin.org 7

December 2015 | Volume 6 | Article 1352


http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

Arnal et al. Biofilm Formation by Bordetella pertussis

60 18

Relative gene expression level
©

Relative gene expression level

bvgA  bsp22 vag8 fhaB ptx brkA ompQ  prn fim bipA

0
vag8 bcrh2 brkA prn

FIGURE 5 | Relative transcription levels of virulence genes. Transcription levels of selected genes positively regulated by the BvgAS system were quantified by
gRT-PCR. Transcription levels from the clinical isolate B. pertussis 2723 are shown relative to those from the Tohama | strain growing in planktonic (A) and biofilm
culture (B). The black line indicates equal relative gene expression level, lower values indicate low expression in the clinical strain Bp2723 and higher value indicates
up regulation of the genes. In the case of fim genes, expression of fim2 gene in Tohama | was compared to the corresponding fim 3 of the clinical isolate.

the published sequences of Tohama I strain (GenBank accession BPSM and Tohama I strain after 72 h of culture (data not
number BX470248.1). However, one nucleotide polymorphism, shown), suggesting that this point mutation in the bvgS gene
which corresponds to a single exchange of an A for a G at position  is not associated to the increased biofilm biomass shown by
2113 of the bvgS gene (Figure 6), resulting in the replacement of  the clinical isolate. Since this mutation has been previously
K by E in the amino acid sequence of BvgS protein was observed  described to confer a sensitive response to modulatory agents,
for Bp 2723. Based on this result, we sequenced the bvgS gene of such as MgSO4 and nicotinic acid, we investigated whether
all clinical isolates used in this study and surprisingly found the this mutation could trigger a faster attachment of bacteria
same mutation in each clinical isolate (Figure 6). Interestingly, ~when they are transferred from a modulatory environment to
the same nucleotide exchange has been previously described by — a non-modulatory one. The four strains described above were

Herrou et al. (2009) for strains circulating in the Netherlands. therefore modulated using SS culture medium with the addition
of 40 mM MgSOy4 and then incubated in a non-modulating
Effect of E at 705 Position of BvgS SS medium under static conditions with polypropylene beads

o - o for 4 h. Under this condition, the surface adhesion of each
Sensor on the Biofilm Formation Ability strain was monitored every 30 min. Noteworthy, the clinical
of B. pertussis isolate Bp2723 and the mutant Bpgyosg strain adhered to
To evaluate whether the mutation detected in the bvgS gene polypropylene beads significantly faster than Tohama I and
could affect biofilm formation ability, B. pertussis 2723 and BPSM wild type strains (Figure 7). The kinetic adhesion of
B. pertussis Tohama I strain were tested for their capacity for the Tohama I and BPSM wild type strains showed a lag
biofilm development. Growth was evaluated in tube-bioreactors  period of 120 min while an increase of biomass attached was
containing polypropylene beads. The mutant strain Bpgrosg already observed for the clinical isolate and Bpxyosg strain
with an E at position 705 of BvgS and the wild type strain after 30 min. These findings suggest that the bvgS allele coding
(BPSM) with a K at position 705 were also included in this for the 705 E protein variant might be associated with an
analysis. Our results did not reveal any significant differences accelerated expression of adhesins involved in the initial adhesion
in the mature biofilm biomass of Bpkyosg strain, the wild type  steps.

E N L O I I I Y I R I R I e e
Bpl62 CCGAACGCGCCGAGCTGCTGCGCGAGCTGCACGACGCCAAGGAAAGCGCCGACGCCGCCAACCGGGCCAAGACCACGTTCCTGGCAACGATGAGCCACGA
Bp3495 CCGAACGCGCCGAGCTGCTGCGCGAGCTGCACGACGCCAAGGAAAGCGCCGACGCCGCCAACCGGGCCAAGACCACGTTCCTGGCAACGATGAGCCACGA
Bp492 CCGAACGCGCCGAGCTGCTGCGCGAGCTGCACGACGCCAAGGAAAGCGCCGACGCCGCCAACCGGGCCAAGACCACGTTCCTGGCAACGATGAGCCACGA
Bp892 CCGAACGCGCCGAGCTGCTGCGCGAGCTGCACGACGCCAAGGAAAGCGCCGACGCCGCCAACCGGGCCAAGACCACGTTCCTGGCAACGATGAGCCACGA
Bp2930 CCGAACGCGCCGAGCTGCTGCGCGAGCTGCACGACGCCAAGGAAAGCGCCGACGCCGCCAACCGGGCCAAGACCACGTTCCTGGCAACGATGAGCCACGA
Bp2723 CCGAACGCGCCGAGCTGCTGCGCGAGCTGCACGACGCCAAGGAAAGCGCCGACGCCGCCAACCGGGCCAAGACCACGTTCCTGGCAACGATGAGCCACGA
Bpl918 CCGAACGCGCCGAGCTGCTGCGCGAGCTGCACGACGCCAAGGAAAGCGCCGACGCCGCCAACCGGGCCAAGACCACGTTCCTGGCAACGATGAGCCACGA
Bp7470 CCGAACGCGCCGAGCTGCTGCGCGAGCTGCACGACGCCAAGGAAAGCGCCGACGCCGCCAACCGGGCCAAGACCACGTTCCTGGCAACGATGAGCCACGA
Bp Tohamal CCGAACGCGCCGAGCTGCTGCGCAAGCTGCACGACGCCAAGGAAAGCGCCGACGCCGCCAACCGGGCCAAGACCACGTTCCTGGCAACGATGAGCCACGA

FIGURE 6 | Comparative sequence analysis of bvgS gene. The bvgS-PAS domain sequence for B. pertussis Tohama | strain and the eight B. pertussis clinical
isolates analyzed are shown. The single nucleotide mutation at position 2113 is highlighted in yellow.
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FIGURE 7 | Adhesion kinetic of modulated B. pertussis to
polypropylene beads. B. pertussis Tohama | strain (square spots), Bp 2723
(circle spots), the mutant strain for the BvgS, BpK705E (horizontal triangles)
and its wild type strain, BPSM (vertical triangles) were modulated in agar
plates and planktonic cultures under 40 mM MgSOy,. Then the cells were
harvested and suspended in non-modulating media to perform the adhesion
assay to polypropylene beads in static conditions. Every 30 min. a sample
was taken to measure the adhered biomass to beads using the violet crystal
staining.

DISCUSSION

In the current work, we investigated the biofilm formation
capacity of eight argentinean B. pertussis clinical isolates
recovered over a seven years time period in a local children
hospital compared to a laboratory adapted strain grown under
biofilm conditions. Clinical strains showed an increased ability
to grow attached to polypropylene surfaces compared to the
laboratory strain. The architecture of biofilm developed by
the reference strain was compared with the one developed
by the isolate Bp2723 growing in similar culture conditions
by using CLSM. We found a marked variability in three
dimensional biofilm structures between the two strains studied.
The measurement of parameters extracted from confocal stack
images analyzed by COMSTAT software such as thickness,
roughness coeflicient, surface to biovolume ratio, revealed that
the biofilm developed by clinical isolate is significantly thicker
than the formed by the reference strain. In addition to the
differences between the architectures of both biofilms a FT-IR
spectroscopic analysis also showed clearly phenotypic variations
between these two biofilms. Thus, to better understand the
different growth performances between clinical isolates and
Tohama I strain we carried out a proteome investigation. The
major functional groups of differentially expressed proteins
in the clinical isolate included energy metabolism, transport,
stress and regulation, and virulence factors. Seven proteins
involved in metabolism and energy production were found up-
regulated in sessile cells of the clinical isolate B. pertussis 2723.
Among them the citrate synthase that catalyzes the first reaction
in the TCA cycle represents an important control point for
determining the metabolic rate of the cell (Park et al., 1994). The
higher expression of proteins associated to energy production
under respiratory conditions was attributed primarily to the
cell biosynthetic needs to produce higher biomass quantities.

Our results indicate that the clinical isolate 2723 could have
different metabolic and energetic requirements than the reference
strain, which is supported by the higher final biomass reached
for this isolate both in liquid medium and biofilm growth
conditions. However, this higher capacity of biofilm formation
is not associated with a higher growth rate. The TCA cycle is not
only a central point in the metabolism of living organisms but
also important for the survival of infectious biofilms. Therefore,
its inhibition could be a promising strategy for the control of
biofilms (Yahya et al, 2014). Similar results were previously
reported in comparative proteomic studies of two Burkholderia
cenocepacia isolates retrieved from a chronically infected cystic
fibrosis patient. B. cenocepacia isolate obtained after 3 years
of persistent infection and antibiotic therapy, showed an up-
regulation of citrate synthase (Madeira et al., 2011), which was
reported to be important for biofilm formation and virulence
(Subramoni et al., 2011). The results from the B. cenocepacia
study as well as the results from our current study on B. pertussis,
point toward a tight link between primary metabolism and
biofilm formation capability.

Our proteome analysis revealed an increased expression of
the Bvg-activated factors BcrH2, OmpQ, BrkA, and Vag8 in the
clinical isolate B. pertussis 2723. These proteins are positively
regulated by the B. pertussis BvgAS two-component signal
transduction system. This system is known for its key role in
the regulation of Bordetella virulence gene expression including
adhesins and toxins, and it has also been shown to be determinant
for the ability of Bordetella species to produce biofilms (Irie
et al., 2004; Mishra et al., 2005; Serra et al., 2007). If BvgAS
is not active B. pertussis is unable to adhere to respiratory
tract and colonize the host (Bassinet et al., 2000; Scheller et al.,
2015). Using quantitative real-time PCR assays we analyzed the
relative expression level of adhesin genes, known to be positively
regulated by the BvgAS system. After 72 h of biofilm growth these
genes were transcribed at higher levels in the clinical isolated
compared to Tohama I strain. In addition the bvgA regulatory
gene showed three times higher transcription in B. pertussis 2723
sessile cells compared to reference strain, although no significant
increase was found on the protein level. The latter results
underpin the importance and value of combinatory analysis on
transcriptional and translation levels. Although beyond the scope
of our current work, these studies should be expanded in the
future to post-translation and metabolic level to gain a holistic
picture of pathogen host adaptation mechanisms.

The adhesins tested, namely FHA, Fim3, Prn, and BipA,
showed higher transcriptional levels by qRT-PCR in the clinical
isolate grown as biofilm compared to the reference strain Tohama
I. FHA, one of the main adhesins described for B. pertussis,
is involved in different steps of biofilm formation in vitro and
in vivo in mouse nasopharynx, contributing not only to the first
adhesion to the surface but also enhancing cell-cell interactions
(Serra et al., 2011). Recently, we also reported that BipA is a
common signature of B. pertussis biofilms (de Gouw et al., 2014).
Interestingly, although Prn negative strains are now increasingly
being isolated from patients with whooping cough (Barkoff et al.,
2012; Pawloski et al., 2014), our results showed that this protein is
up-regulated in biofilm culture for B. pertussis 2723. Proteomics
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and targeted transcriptomics approaches provide a picture of
the changes between reference strain and a clinical B. pertussis
isolate growing in similar culture conditions. These results are
in agreement with the ones from FT-IR analysis, which show
a chemical abundance of proteins in the mature structure of
the biofilm produced by the clinical isolate. Therefore, it is
tempting to speculate that: (i) the high expression of adhesins,
mediating a faster and enhanced attachment, as well as (ii) the
higher expression of enzymes involved in energy metabolism,
leading to the augmented biomass, are responsible for the robust
biofilm structure of the clinical isolate. When bacteria are under
stress conditions, they often get together to form biofilms, which
suggests that this bacterial lifestyle increases the fitness of the
cells in harsh environments. Differential gene expression patterns
between Tohama I strain and clinical isolates planktonic cells
were previously attributed to either sequence divergence in cis-
regulatory regions or variation in the levels, activity, or encoding
of transcriptional regulatory proteins (Cummings et al., 2006).
However, in our current study, the higher transcription of
adhesin genes could not be assigned to specific polymorphisms
in the sequences of structural genes or promoters, suggesting
that trans-acting factors could be involved. A single nucleotide
mutation was found in bvgS gene of all clinical isolates tested,
resulting in an exchange of lysine by glutamic acid at position
705 in the linker domain of the sensor protein. Interestingly,
Herrou et al. (2009) reported the same mutation previously.
Using an experimental infection model, they demonstrated that
this mutation in the BvgS sensor of B. pertussis BPSM strain
does not lead to a better pulmonary survival of the pathogen,
though a faster response to modulatory agents like MgSO,4 and
nicotinic acid was observed. The latter results are in agreement
with our current findings. After being modulated by MgSOy,
the clinical isolate Bp2723 were transferred to SS medium and
incubated under non-modulating conditions with polypropylene
beads. Under the latter culture condition cells showed faster
adherence to abiotic surfaces than the reference strain. In our
experimental conditions, both, the clinical isolate Bp2723 and
the Bpko7se strain showed an accelerated adhesion kinetic to
polypropylene beads compared to Tohama I and the wild
type BPSM strain. This high phase variation capability might
represent an important adaptive advantage during pathogen
colonization of its host. Fast adhesion suggests that the phases
are tuned to different environmental niches favoring spatially
defined regulation. This timing for attachment could promote
persistence by protecting bacteria from the clearance occasioned
by hydrodynamic forces in upper respiratory tract and the
killing activity of host defense mechanisms. It is important
to note that the increase of adhered cells (Bp2723 and
Bpkoyse strain) detected after 30 min of incubation under our
experimental conditions is not due to growth on the surface
since these sessile bacteria have a reduced specific growth rate
(W = 0.033 h™!, and duplication time of 21.0 h). B. pertussis
transmission from human to human can probably occur by
aerosolized respiratory droplets containing modulated bacteria.
Thus, the results shown in our work could be important for the

understanding of the rapid adaptation of clinical isolates to new
environment. Our combinatory approach of proteomics, targeted
transcriptional and genetic analysis revealed that multiple realms
of regulation are governing the adaptation of B. pertussis to
biofilm lifestyle.

CONCLUSION

The divergent biofilm responses between B. pertussis clinical
isolates and the laboratory adapted reference strain suggest that
clinical isolates probably evolved in order to increase their
potential and capacity to form biofilm and eventually to adapt
rapidly to the fluctuations that they encounter at the site of
infection. To date the emergence of pertussis remains a critical
issue that should gear researchers to develop novel control
measures by considering particularly the biofilm as a B. pertussis
way of life.
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